// Copyright 2018 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . //go:build !js // +build !js // Package leveldb implements the key-value database layer based on LevelDB. package leveldb import ( "bytes" "fmt" "sync" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/metrics" "github.com/syndtr/goleveldb/leveldb" "github.com/syndtr/goleveldb/leveldb/errors" "github.com/syndtr/goleveldb/leveldb/filter" "github.com/syndtr/goleveldb/leveldb/opt" "github.com/syndtr/goleveldb/leveldb/util" ) const ( // degradationWarnInterval specifies how often warning should be printed if the // leveldb database cannot keep up with requested writes. degradationWarnInterval = time.Minute // minCache is the minimum amount of memory in megabytes to allocate to leveldb // read and write caching, split half and half. minCache = 16 // minHandles is the minimum number of files handles to allocate to the open // database files. minHandles = 16 // metricsGatheringInterval specifies the interval to retrieve leveldb database // compaction, io and pause stats to report to the user. metricsGatheringInterval = 3 * time.Second ) // Database is a persistent key-value store. Apart from basic data storage // functionality it also supports batch writes and iterating over the keyspace in // binary-alphabetical order. type Database struct { fn string // filename for reporting db *leveldb.DB // LevelDB instance compTimeMeter *metrics.Meter // Meter for measuring the total time spent in database compaction compReadMeter *metrics.Meter // Meter for measuring the data read during compaction compWriteMeter *metrics.Meter // Meter for measuring the data written during compaction writeDelayNMeter *metrics.Meter // Meter for measuring the write delay number due to database compaction writeDelayMeter *metrics.Meter // Meter for measuring the write delay duration due to database compaction diskSizeGauge *metrics.Gauge // Gauge for tracking the size of all the levels in the database diskReadMeter *metrics.Meter // Meter for measuring the effective amount of data read diskWriteMeter *metrics.Meter // Meter for measuring the effective amount of data written memCompGauge *metrics.Gauge // Gauge for tracking the number of memory compaction level0CompGauge *metrics.Gauge // Gauge for tracking the number of table compaction in level0 nonlevel0CompGauge *metrics.Gauge // Gauge for tracking the number of table compaction in non0 level seekCompGauge *metrics.Gauge // Gauge for tracking the number of table compaction caused by read opt manualMemAllocGauge *metrics.Gauge // Gauge to track the amount of memory that has been manually allocated (not a part of runtime/GC) levelsGauge []*metrics.Gauge // Gauge for tracking the number of tables in levels quitLock sync.Mutex // Mutex protecting the quit channel access quitChan chan chan error // Quit channel to stop the metrics collection before closing the database log log.Logger // Contextual logger tracking the database path } // New returns a wrapped LevelDB object. The namespace is the prefix that the // metrics reporting should use for surfacing internal stats. func New(file string, cache int, handles int, namespace string, readonly bool) (*Database, error) { return NewCustom(file, namespace, func(options *opt.Options) { // Ensure we have some minimal caching and file guarantees if cache < minCache { cache = minCache } if handles < minHandles { handles = minHandles } // Set default options options.OpenFilesCacheCapacity = handles options.BlockCacheCapacity = cache / 2 * opt.MiB options.WriteBuffer = cache / 4 * opt.MiB // Two of these are used internally if readonly { options.ReadOnly = true } }) } // NewCustom returns a wrapped LevelDB object. The namespace is the prefix that the // metrics reporting should use for surfacing internal stats. // The customize function allows the caller to modify the leveldb options. func NewCustom(file string, namespace string, customize func(options *opt.Options)) (*Database, error) { options := configureOptions(customize) logger := log.New("database", file) usedCache := options.GetBlockCacheCapacity() + options.GetWriteBuffer()*2 logCtx := []interface{}{"cache", common.StorageSize(usedCache), "handles", options.GetOpenFilesCacheCapacity()} if options.ReadOnly { logCtx = append(logCtx, "readonly", "true") } logger.Info("Allocated cache and file handles", logCtx...) // Open the db and recover any potential corruptions db, err := leveldb.OpenFile(file, options) if _, corrupted := err.(*errors.ErrCorrupted); corrupted { db, err = leveldb.RecoverFile(file, nil) } if err != nil { return nil, err } // Assemble the wrapper with all the registered metrics ldb := &Database{ fn: file, db: db, log: logger, quitChan: make(chan chan error), } ldb.compTimeMeter = metrics.NewRegisteredMeter(namespace+"compact/time", nil) ldb.compReadMeter = metrics.NewRegisteredMeter(namespace+"compact/input", nil) ldb.compWriteMeter = metrics.NewRegisteredMeter(namespace+"compact/output", nil) ldb.diskSizeGauge = metrics.NewRegisteredGauge(namespace+"disk/size", nil) ldb.diskReadMeter = metrics.NewRegisteredMeter(namespace+"disk/read", nil) ldb.diskWriteMeter = metrics.NewRegisteredMeter(namespace+"disk/write", nil) ldb.writeDelayMeter = metrics.NewRegisteredMeter(namespace+"compact/writedelay/duration", nil) ldb.writeDelayNMeter = metrics.NewRegisteredMeter(namespace+"compact/writedelay/counter", nil) ldb.memCompGauge = metrics.NewRegisteredGauge(namespace+"compact/memory", nil) ldb.level0CompGauge = metrics.NewRegisteredGauge(namespace+"compact/level0", nil) ldb.nonlevel0CompGauge = metrics.NewRegisteredGauge(namespace+"compact/nonlevel0", nil) ldb.seekCompGauge = metrics.NewRegisteredGauge(namespace+"compact/seek", nil) ldb.manualMemAllocGauge = metrics.NewRegisteredGauge(namespace+"memory/manualalloc", nil) // Start up the metrics gathering and return go ldb.meter(metricsGatheringInterval, namespace) return ldb, nil } // configureOptions sets some default options, then runs the provided setter. func configureOptions(customizeFn func(*opt.Options)) *opt.Options { // Set default options options := &opt.Options{ Filter: filter.NewBloomFilter(10), DisableSeeksCompaction: true, } // Allow caller to make custom modifications to the options if customizeFn != nil { customizeFn(options) } return options } // Close stops the metrics collection, flushes any pending data to disk and closes // all io accesses to the underlying key-value store. func (db *Database) Close() error { db.quitLock.Lock() defer db.quitLock.Unlock() if db.quitChan != nil { errc := make(chan error) db.quitChan <- errc if err := <-errc; err != nil { db.log.Error("Metrics collection failed", "err", err) } db.quitChan = nil } return db.db.Close() } // Has retrieves if a key is present in the key-value store. func (db *Database) Has(key []byte) (bool, error) { return db.db.Has(key, nil) } // Get retrieves the given key if it's present in the key-value store. func (db *Database) Get(key []byte) ([]byte, error) { dat, err := db.db.Get(key, nil) if err != nil { return nil, err } return dat, nil } // Put inserts the given value into the key-value store. func (db *Database) Put(key []byte, value []byte) error { return db.db.Put(key, value, nil) } // Delete removes the key from the key-value store. func (db *Database) Delete(key []byte) error { return db.db.Delete(key, nil) } var ErrTooManyKeys = errors.New("too many keys in deleted range") // DeleteRange deletes all of the keys (and values) in the range [start,end) // (inclusive on start, exclusive on end). // Note that this is a fallback implementation as leveldb does not natively // support range deletion. It can be slow and therefore the number of deleted // keys is limited in order to avoid blocking for a very long time. // ErrTooManyKeys is returned if the range has only been partially deleted. // In this case the caller can repeat the call until it finally succeeds. func (db *Database) DeleteRange(start, end []byte) error { batch := db.NewBatch() it := db.NewIterator(nil, start) defer it.Release() var count int for it.Next() && bytes.Compare(end, it.Key()) > 0 { count++ if count > 10000 { // should not block for more than a second if err := batch.Write(); err != nil { return err } return ErrTooManyKeys } if err := batch.Delete(it.Key()); err != nil { return err } } return batch.Write() } // NewBatch creates a write-only key-value store that buffers changes to its host // database until a final write is called. func (db *Database) NewBatch() ethdb.Batch { return &batch{ db: db.db, b: new(leveldb.Batch), } } // NewBatchWithSize creates a write-only database batch with pre-allocated buffer. func (db *Database) NewBatchWithSize(size int) ethdb.Batch { return &batch{ db: db.db, b: leveldb.MakeBatch(size), } } // NewIterator creates a binary-alphabetical iterator over a subset // of database content with a particular key prefix, starting at a particular // initial key (or after, if it does not exist). func (db *Database) NewIterator(prefix []byte, start []byte) ethdb.Iterator { return db.db.NewIterator(bytesPrefixRange(prefix, start), nil) } // Stat returns the statistic data of the database. func (db *Database) Stat() (string, error) { var stats leveldb.DBStats if err := db.db.Stats(&stats); err != nil { return "", err } var ( message string totalRead int64 totalWrite int64 totalSize int64 totalTables int totalDuration time.Duration ) if len(stats.LevelSizes) > 0 { message += " Level | Tables | Size(MB) | Time(sec) | Read(MB) | Write(MB)\n" + "-------+------------+---------------+---------------+---------------+---------------\n" for level, size := range stats.LevelSizes { read := stats.LevelRead[level] write := stats.LevelWrite[level] duration := stats.LevelDurations[level] tables := stats.LevelTablesCounts[level] if tables == 0 && duration == 0 { continue } totalTables += tables totalSize += size totalRead += read totalWrite += write totalDuration += duration message += fmt.Sprintf(" %3d | %10d | %13.5f | %13.5f | %13.5f | %13.5f\n", level, tables, float64(size)/1048576.0, duration.Seconds(), float64(read)/1048576.0, float64(write)/1048576.0) } message += "-------+------------+---------------+---------------+---------------+---------------\n" message += fmt.Sprintf(" Total | %10d | %13.5f | %13.5f | %13.5f | %13.5f\n", totalTables, float64(totalSize)/1048576.0, totalDuration.Seconds(), float64(totalRead)/1048576.0, float64(totalWrite)/1048576.0) message += "-------+------------+---------------+---------------+---------------+---------------\n\n" } message += fmt.Sprintf("Read(MB):%.5f Write(MB):%.5f\n", float64(stats.IORead)/1048576.0, float64(stats.IOWrite)/1048576.0) message += fmt.Sprintf("BlockCache(MB):%.5f FileCache:%d\n", float64(stats.BlockCacheSize)/1048576.0, stats.OpenedTablesCount) message += fmt.Sprintf("MemoryCompaction:%d Level0Compaction:%d NonLevel0Compaction:%d SeekCompaction:%d\n", stats.MemComp, stats.Level0Comp, stats.NonLevel0Comp, stats.SeekComp) message += fmt.Sprintf("WriteDelayCount:%d WriteDelayDuration:%s Paused:%t\n", stats.WriteDelayCount, common.PrettyDuration(stats.WriteDelayDuration), stats.WritePaused) message += fmt.Sprintf("Snapshots:%d Iterators:%d\n", stats.AliveSnapshots, stats.AliveIterators) return message, nil } // Compact flattens the underlying data store for the given key range. In essence, // deleted and overwritten versions are discarded, and the data is rearranged to // reduce the cost of operations needed to access them. // // A nil start is treated as a key before all keys in the data store; a nil limit // is treated as a key after all keys in the data store. If both is nil then it // will compact entire data store. func (db *Database) Compact(start []byte, limit []byte) error { return db.db.CompactRange(util.Range{Start: start, Limit: limit}) } // Path returns the path to the database directory. func (db *Database) Path() string { return db.fn } // meter periodically retrieves internal leveldb counters and reports them to // the metrics subsystem. func (db *Database) meter(refresh time.Duration, namespace string) { // Create the counters to store current and previous compaction values compactions := make([][]int64, 2) for i := 0; i < 2; i++ { compactions[i] = make([]int64, 4) } // Create storages for states and warning log tracer. var ( errc chan error merr error stats leveldb.DBStats iostats [2]int64 delaystats [2]int64 lastWritePaused time.Time ) timer := time.NewTimer(refresh) defer timer.Stop() // Iterate ad infinitum and collect the stats for i := 1; errc == nil && merr == nil; i++ { // Retrieve the database stats // Stats method resets buffers inside therefore it's okay to just pass the struct. err := db.db.Stats(&stats) if err != nil { db.log.Error("Failed to read database stats", "err", err) merr = err continue } // Iterate over all the leveldbTable rows, and accumulate the entries for j := 0; j < len(compactions[i%2]); j++ { compactions[i%2][j] = 0 } compactions[i%2][0] = stats.LevelSizes.Sum() for _, t := range stats.LevelDurations { compactions[i%2][1] += t.Nanoseconds() } compactions[i%2][2] = stats.LevelRead.Sum() compactions[i%2][3] = stats.LevelWrite.Sum() // Update all the requested meters if db.diskSizeGauge != nil { db.diskSizeGauge.Update(compactions[i%2][0]) } if db.compTimeMeter != nil { db.compTimeMeter.Mark(compactions[i%2][1] - compactions[(i-1)%2][1]) } if db.compReadMeter != nil { db.compReadMeter.Mark(compactions[i%2][2] - compactions[(i-1)%2][2]) } if db.compWriteMeter != nil { db.compWriteMeter.Mark(compactions[i%2][3] - compactions[(i-1)%2][3]) } var ( delayN = int64(stats.WriteDelayCount) duration = stats.WriteDelayDuration paused = stats.WritePaused ) if db.writeDelayNMeter != nil { db.writeDelayNMeter.Mark(delayN - delaystats[0]) } if db.writeDelayMeter != nil { db.writeDelayMeter.Mark(duration.Nanoseconds() - delaystats[1]) } // If a warning that db is performing compaction has been displayed, any subsequent // warnings will be withheld for one minute not to overwhelm the user. if paused && delayN-delaystats[0] == 0 && duration.Nanoseconds()-delaystats[1] == 0 && time.Now().After(lastWritePaused.Add(degradationWarnInterval)) { db.log.Warn("Database compacting, degraded performance") lastWritePaused = time.Now() } delaystats[0], delaystats[1] = delayN, duration.Nanoseconds() var ( nRead = int64(stats.IORead) nWrite = int64(stats.IOWrite) ) if db.diskReadMeter != nil { db.diskReadMeter.Mark(nRead - iostats[0]) } if db.diskWriteMeter != nil { db.diskWriteMeter.Mark(nWrite - iostats[1]) } iostats[0], iostats[1] = nRead, nWrite db.memCompGauge.Update(int64(stats.MemComp)) db.level0CompGauge.Update(int64(stats.Level0Comp)) db.nonlevel0CompGauge.Update(int64(stats.NonLevel0Comp)) db.seekCompGauge.Update(int64(stats.SeekComp)) for i, tables := range stats.LevelTablesCounts { // Append metrics for additional layers if i >= len(db.levelsGauge) { db.levelsGauge = append(db.levelsGauge, metrics.NewRegisteredGauge(namespace+fmt.Sprintf("tables/level%v", i), nil)) } db.levelsGauge[i].Update(int64(tables)) } // Sleep a bit, then repeat the stats collection select { case errc = <-db.quitChan: // Quit requesting, stop hammering the database case <-timer.C: timer.Reset(refresh) // Timeout, gather a new set of stats } } if errc == nil { errc = <-db.quitChan } errc <- merr } // batch is a write-only leveldb batch that commits changes to its host database // when Write is called. A batch cannot be used concurrently. type batch struct { db *leveldb.DB b *leveldb.Batch size int } // Put inserts the given value into the batch for later committing. func (b *batch) Put(key, value []byte) error { b.b.Put(key, value) b.size += len(key) + len(value) return nil } // Delete inserts the key removal into the batch for later committing. func (b *batch) Delete(key []byte) error { b.b.Delete(key) b.size += len(key) return nil } // ValueSize retrieves the amount of data queued up for writing. func (b *batch) ValueSize() int { return b.size } // Write flushes any accumulated data to disk. func (b *batch) Write() error { return b.db.Write(b.b, nil) } // Reset resets the batch for reuse. func (b *batch) Reset() { b.b.Reset() b.size = 0 } // Replay replays the batch contents. func (b *batch) Replay(w ethdb.KeyValueWriter) error { return b.b.Replay(&replayer{writer: w}) } // replayer is a small wrapper to implement the correct replay methods. type replayer struct { writer ethdb.KeyValueWriter failure error } // Put inserts the given value into the key-value data store. func (r *replayer) Put(key, value []byte) { // If the replay already failed, stop executing ops if r.failure != nil { return } r.failure = r.writer.Put(key, value) } // Delete removes the key from the key-value data store. func (r *replayer) Delete(key []byte) { // If the replay already failed, stop executing ops if r.failure != nil { return } r.failure = r.writer.Delete(key) } // bytesPrefixRange returns key range that satisfy // - the given prefix, and // - the given seek position func bytesPrefixRange(prefix, start []byte) *util.Range { r := util.BytesPrefix(prefix) r.Start = append(r.Start, start...) return r }