// Copyright 2020 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package snap import ( "bytes" "encoding/json" "errors" "fmt" gomath "math" "math/big" "math/rand" "sort" "sync" "sync/atomic" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/common/math" "github.com/ethereum/go-ethereum/core/rawdb" "github.com/ethereum/go-ethereum/core/state" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/event" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/p2p/msgrate" "github.com/ethereum/go-ethereum/rlp" "github.com/ethereum/go-ethereum/trie" "github.com/ethereum/go-ethereum/trie/trienode" "golang.org/x/crypto/sha3" ) const ( // minRequestSize is the minimum number of bytes to request from a remote peer. // This number is used as the low cap for account and storage range requests. // Bytecode and trienode are limited inherently by item count (1). minRequestSize = 64 * 1024 // maxRequestSize is the maximum number of bytes to request from a remote peer. // This number is used as the high cap for account and storage range requests. // Bytecode and trienode are limited more explicitly by the caps below. maxRequestSize = 512 * 1024 // maxCodeRequestCount is the maximum number of bytecode blobs to request in a // single query. If this number is too low, we're not filling responses fully // and waste round trip times. If it's too high, we're capping responses and // waste bandwidth. // // Deployed bytecodes are currently capped at 24KB, so the minimum request // size should be maxRequestSize / 24K. Assuming that most contracts do not // come close to that, requesting 4x should be a good approximation. maxCodeRequestCount = maxRequestSize / (24 * 1024) * 4 // maxTrieRequestCount is the maximum number of trie node blobs to request in // a single query. If this number is too low, we're not filling responses fully // and waste round trip times. If it's too high, we're capping responses and // waste bandwidth. maxTrieRequestCount = maxRequestSize / 512 // trienodeHealRateMeasurementImpact is the impact a single measurement has on // the local node's trienode processing capacity. A value closer to 0 reacts // slower to sudden changes, but it is also more stable against temporary hiccups. trienodeHealRateMeasurementImpact = 0.005 // minTrienodeHealThrottle is the minimum divisor for throttling trie node // heal requests to avoid overloading the local node and excessively expanding // the state trie breadth wise. minTrienodeHealThrottle = 1 // maxTrienodeHealThrottle is the maximum divisor for throttling trie node // heal requests to avoid overloading the local node and exessively expanding // the state trie bedth wise. maxTrienodeHealThrottle = maxTrieRequestCount // trienodeHealThrottleIncrease is the multiplier for the throttle when the // rate of arriving data is higher than the rate of processing it. trienodeHealThrottleIncrease = 1.33 // trienodeHealThrottleDecrease is the divisor for the throttle when the // rate of arriving data is lower than the rate of processing it. trienodeHealThrottleDecrease = 1.25 ) var ( // accountConcurrency is the number of chunks to split the account trie into // to allow concurrent retrievals. accountConcurrency = 16 // storageConcurrency is the number of chunks to split the a large contract // storage trie into to allow concurrent retrievals. storageConcurrency = 16 ) // ErrCancelled is returned from snap syncing if the operation was prematurely // terminated. var ErrCancelled = errors.New("sync cancelled") // accountRequest tracks a pending account range request to ensure responses are // to actual requests and to validate any security constraints. // // Concurrency note: account requests and responses are handled concurrently from // the main runloop to allow Merkle proof verifications on the peer's thread and // to drop on invalid response. The request struct must contain all the data to // construct the response without accessing runloop internals (i.e. task). That // is only included to allow the runloop to match a response to the task being // synced without having yet another set of maps. type accountRequest struct { peer string // Peer to which this request is assigned id uint64 // Request ID of this request time time.Time // Timestamp when the request was sent deliver chan *accountResponse // Channel to deliver successful response on revert chan *accountRequest // Channel to deliver request failure on cancel chan struct{} // Channel to track sync cancellation timeout *time.Timer // Timer to track delivery timeout stale chan struct{} // Channel to signal the request was dropped origin common.Hash // First account requested to allow continuation checks limit common.Hash // Last account requested to allow non-overlapping chunking task *accountTask // Task which this request is filling (only access fields through the runloop!!) } // accountResponse is an already Merkle-verified remote response to an account // range request. It contains the subtrie for the requested account range and // the database that's going to be filled with the internal nodes on commit. type accountResponse struct { task *accountTask // Task which this request is filling hashes []common.Hash // Account hashes in the returned range accounts []*types.StateAccount // Expanded accounts in the returned range cont bool // Whether the account range has a continuation } // bytecodeRequest tracks a pending bytecode request to ensure responses are to // actual requests and to validate any security constraints. // // Concurrency note: bytecode requests and responses are handled concurrently from // the main runloop to allow Keccak256 hash verifications on the peer's thread and // to drop on invalid response. The request struct must contain all the data to // construct the response without accessing runloop internals (i.e. task). That // is only included to allow the runloop to match a response to the task being // synced without having yet another set of maps. type bytecodeRequest struct { peer string // Peer to which this request is assigned id uint64 // Request ID of this request time time.Time // Timestamp when the request was sent deliver chan *bytecodeResponse // Channel to deliver successful response on revert chan *bytecodeRequest // Channel to deliver request failure on cancel chan struct{} // Channel to track sync cancellation timeout *time.Timer // Timer to track delivery timeout stale chan struct{} // Channel to signal the request was dropped hashes []common.Hash // Bytecode hashes to validate responses task *accountTask // Task which this request is filling (only access fields through the runloop!!) } // bytecodeResponse is an already verified remote response to a bytecode request. type bytecodeResponse struct { task *accountTask // Task which this request is filling hashes []common.Hash // Hashes of the bytecode to avoid double hashing codes [][]byte // Actual bytecodes to store into the database (nil = missing) } // storageRequest tracks a pending storage ranges request to ensure responses are // to actual requests and to validate any security constraints. // // Concurrency note: storage requests and responses are handled concurrently from // the main runloop to allow Merkle proof verifications on the peer's thread and // to drop on invalid response. The request struct must contain all the data to // construct the response without accessing runloop internals (i.e. tasks). That // is only included to allow the runloop to match a response to the task being // synced without having yet another set of maps. type storageRequest struct { peer string // Peer to which this request is assigned id uint64 // Request ID of this request time time.Time // Timestamp when the request was sent deliver chan *storageResponse // Channel to deliver successful response on revert chan *storageRequest // Channel to deliver request failure on cancel chan struct{} // Channel to track sync cancellation timeout *time.Timer // Timer to track delivery timeout stale chan struct{} // Channel to signal the request was dropped accounts []common.Hash // Account hashes to validate responses roots []common.Hash // Storage roots to validate responses origin common.Hash // First storage slot requested to allow continuation checks limit common.Hash // Last storage slot requested to allow non-overlapping chunking mainTask *accountTask // Task which this response belongs to (only access fields through the runloop!!) subTask *storageTask // Task which this response is filling (only access fields through the runloop!!) } // storageResponse is an already Merkle-verified remote response to a storage // range request. It contains the subtries for the requested storage ranges and // the databases that's going to be filled with the internal nodes on commit. type storageResponse struct { mainTask *accountTask // Task which this response belongs to subTask *storageTask // Task which this response is filling accounts []common.Hash // Account hashes requested, may be only partially filled roots []common.Hash // Storage roots requested, may be only partially filled hashes [][]common.Hash // Storage slot hashes in the returned range slots [][][]byte // Storage slot values in the returned range cont bool // Whether the last storage range has a continuation } // trienodeHealRequest tracks a pending state trie request to ensure responses // are to actual requests and to validate any security constraints. // // Concurrency note: trie node requests and responses are handled concurrently from // the main runloop to allow Keccak256 hash verifications on the peer's thread and // to drop on invalid response. The request struct must contain all the data to // construct the response without accessing runloop internals (i.e. task). That // is only included to allow the runloop to match a response to the task being // synced without having yet another set of maps. type trienodeHealRequest struct { peer string // Peer to which this request is assigned id uint64 // Request ID of this request time time.Time // Timestamp when the request was sent deliver chan *trienodeHealResponse // Channel to deliver successful response on revert chan *trienodeHealRequest // Channel to deliver request failure on cancel chan struct{} // Channel to track sync cancellation timeout *time.Timer // Timer to track delivery timeout stale chan struct{} // Channel to signal the request was dropped paths []string // Trie node paths for identifying trie node hashes []common.Hash // Trie node hashes to validate responses task *healTask // Task which this request is filling (only access fields through the runloop!!) } // trienodeHealResponse is an already verified remote response to a trie node request. type trienodeHealResponse struct { task *healTask // Task which this request is filling paths []string // Paths of the trie nodes hashes []common.Hash // Hashes of the trie nodes to avoid double hashing nodes [][]byte // Actual trie nodes to store into the database (nil = missing) } // bytecodeHealRequest tracks a pending bytecode request to ensure responses are to // actual requests and to validate any security constraints. // // Concurrency note: bytecode requests and responses are handled concurrently from // the main runloop to allow Keccak256 hash verifications on the peer's thread and // to drop on invalid response. The request struct must contain all the data to // construct the response without accessing runloop internals (i.e. task). That // is only included to allow the runloop to match a response to the task being // synced without having yet another set of maps. type bytecodeHealRequest struct { peer string // Peer to which this request is assigned id uint64 // Request ID of this request time time.Time // Timestamp when the request was sent deliver chan *bytecodeHealResponse // Channel to deliver successful response on revert chan *bytecodeHealRequest // Channel to deliver request failure on cancel chan struct{} // Channel to track sync cancellation timeout *time.Timer // Timer to track delivery timeout stale chan struct{} // Channel to signal the request was dropped hashes []common.Hash // Bytecode hashes to validate responses task *healTask // Task which this request is filling (only access fields through the runloop!!) } // bytecodeHealResponse is an already verified remote response to a bytecode request. type bytecodeHealResponse struct { task *healTask // Task which this request is filling hashes []common.Hash // Hashes of the bytecode to avoid double hashing codes [][]byte // Actual bytecodes to store into the database (nil = missing) } // accountTask represents the sync task for a chunk of the account snapshot. type accountTask struct { // These fields get serialized to key-value store on shutdown Next common.Hash // Next account to sync in this interval Last common.Hash // Last account to sync in this interval SubTasks map[common.Hash][]*storageTask // Storage intervals needing fetching for large contracts // This is a list of account hashes whose storage are already completed // in this cycle. This field is newly introduced in v1.14 and will be // empty if the task is resolved from legacy progress data. Furthermore, // this additional field will be ignored by legacy Geth. The only side // effect is that these contracts might be resynced in the new cycle, // retaining the legacy behavior. StorageCompleted []common.Hash `json:",omitempty"` // These fields are internals used during runtime req *accountRequest // Pending request to fill this task res *accountResponse // Validate response filling this task pend int // Number of pending subtasks for this round needCode []bool // Flags whether the filling accounts need code retrieval needState []bool // Flags whether the filling accounts need storage retrieval needHeal []bool // Flags whether the filling accounts's state was chunked and need healing codeTasks map[common.Hash]struct{} // Code hashes that need retrieval stateTasks map[common.Hash]common.Hash // Account hashes->roots that need full state retrieval stateCompleted map[common.Hash]struct{} // Account hashes whose storage have been completed genBatch ethdb.Batch // Batch used by the node generator genTrie *trie.StackTrie // Node generator from storage slots done bool // Flag whether the task can be removed } // activeSubTasks returns the set of storage tasks covered by the current account // range. Normally this would be the entire subTask set, but on a sync interrupt // and later resume it can happen that a shorter account range is retrieved. This // method ensures that we only start up the subtasks covered by the latest account // response. // // Nil is returned if the account range is empty. func (task *accountTask) activeSubTasks() map[common.Hash][]*storageTask { if len(task.res.hashes) == 0 { return nil } var ( tasks = make(map[common.Hash][]*storageTask) last = task.res.hashes[len(task.res.hashes)-1] ) for hash, subTasks := range task.SubTasks { subTasks := subTasks // closure if hash.Cmp(last) <= 0 { tasks[hash] = subTasks } } return tasks } // storageTask represents the sync task for a chunk of the storage snapshot. type storageTask struct { Next common.Hash // Next account to sync in this interval Last common.Hash // Last account to sync in this interval // These fields are internals used during runtime root common.Hash // Storage root hash for this instance req *storageRequest // Pending request to fill this task genBatch ethdb.Batch // Batch used by the node generator genTrie *trie.StackTrie // Node generator from storage slots done bool // Flag whether the task can be removed } // healTask represents the sync task for healing the snap-synced chunk boundaries. type healTask struct { scheduler *trie.Sync // State trie sync scheduler defining the tasks trieTasks map[string]common.Hash // Set of trie node tasks currently queued for retrieval, indexed by node path codeTasks map[common.Hash]struct{} // Set of byte code tasks currently queued for retrieval, indexed by code hash } // SyncProgress is a database entry to allow suspending and resuming a snapshot state // sync. Opposed to full and fast sync, there is no way to restart a suspended // snap sync without prior knowledge of the suspension point. type SyncProgress struct { Tasks []*accountTask // The suspended account tasks (contract tasks within) // Status report during syncing phase AccountSynced uint64 // Number of accounts downloaded AccountBytes common.StorageSize // Number of account trie bytes persisted to disk BytecodeSynced uint64 // Number of bytecodes downloaded BytecodeBytes common.StorageSize // Number of bytecode bytes downloaded StorageSynced uint64 // Number of storage slots downloaded StorageBytes common.StorageSize // Number of storage trie bytes persisted to disk // Status report during healing phase TrienodeHealSynced uint64 // Number of state trie nodes downloaded TrienodeHealBytes common.StorageSize // Number of state trie bytes persisted to disk BytecodeHealSynced uint64 // Number of bytecodes downloaded BytecodeHealBytes common.StorageSize // Number of bytecodes persisted to disk } // SyncPending is analogous to SyncProgress, but it's used to report on pending // ephemeral sync progress that doesn't get persisted into the database. type SyncPending struct { TrienodeHeal uint64 // Number of state trie nodes pending BytecodeHeal uint64 // Number of bytecodes pending } // SyncPeer abstracts out the methods required for a peer to be synced against // with the goal of allowing the construction of mock peers without the full // blown networking. type SyncPeer interface { // ID retrieves the peer's unique identifier. ID() string // RequestAccountRange fetches a batch of accounts rooted in a specific account // trie, starting with the origin. RequestAccountRange(id uint64, root, origin, limit common.Hash, bytes uint64) error // RequestStorageRanges fetches a batch of storage slots belonging to one or // more accounts. If slots from only one account is requested, an origin marker // may also be used to retrieve from there. RequestStorageRanges(id uint64, root common.Hash, accounts []common.Hash, origin, limit []byte, bytes uint64) error // RequestByteCodes fetches a batch of bytecodes by hash. RequestByteCodes(id uint64, hashes []common.Hash, bytes uint64) error // RequestTrieNodes fetches a batch of account or storage trie nodes rooted in // a specific state trie. RequestTrieNodes(id uint64, root common.Hash, paths []TrieNodePathSet, bytes uint64) error // Log retrieves the peer's own contextual logger. Log() log.Logger } // Syncer is an Ethereum account and storage trie syncer based on snapshots and // the snap protocol. It's purpose is to download all the accounts and storage // slots from remote peers and reassemble chunks of the state trie, on top of // which a state sync can be run to fix any gaps / overlaps. // // Every network request has a variety of failure events: // - The peer disconnects after task assignment, failing to send the request // - The peer disconnects after sending the request, before delivering on it // - The peer remains connected, but does not deliver a response in time // - The peer delivers a stale response after a previous timeout // - The peer delivers a refusal to serve the requested state type Syncer struct { db ethdb.KeyValueStore // Database to store the trie nodes into (and dedup) scheme string // Node scheme used in node database root common.Hash // Current state trie root being synced tasks []*accountTask // Current account task set being synced snapped bool // Flag to signal that snap phase is done healer *healTask // Current state healing task being executed update chan struct{} // Notification channel for possible sync progression peers map[string]SyncPeer // Currently active peers to download from peerJoin *event.Feed // Event feed to react to peers joining peerDrop *event.Feed // Event feed to react to peers dropping rates *msgrate.Trackers // Message throughput rates for peers // Request tracking during syncing phase statelessPeers map[string]struct{} // Peers that failed to deliver state data accountIdlers map[string]struct{} // Peers that aren't serving account requests bytecodeIdlers map[string]struct{} // Peers that aren't serving bytecode requests storageIdlers map[string]struct{} // Peers that aren't serving storage requests accountReqs map[uint64]*accountRequest // Account requests currently running bytecodeReqs map[uint64]*bytecodeRequest // Bytecode requests currently running storageReqs map[uint64]*storageRequest // Storage requests currently running accountSynced uint64 // Number of accounts downloaded accountBytes common.StorageSize // Number of account trie bytes persisted to disk bytecodeSynced uint64 // Number of bytecodes downloaded bytecodeBytes common.StorageSize // Number of bytecode bytes downloaded storageSynced uint64 // Number of storage slots downloaded storageBytes common.StorageSize // Number of storage trie bytes persisted to disk extProgress *SyncProgress // progress that can be exposed to external caller. // Request tracking during healing phase trienodeHealIdlers map[string]struct{} // Peers that aren't serving trie node requests bytecodeHealIdlers map[string]struct{} // Peers that aren't serving bytecode requests trienodeHealReqs map[uint64]*trienodeHealRequest // Trie node requests currently running bytecodeHealReqs map[uint64]*bytecodeHealRequest // Bytecode requests currently running trienodeHealRate float64 // Average heal rate for processing trie node data trienodeHealPend atomic.Uint64 // Number of trie nodes currently pending for processing trienodeHealThrottle float64 // Divisor for throttling the amount of trienode heal data requested trienodeHealThrottled time.Time // Timestamp the last time the throttle was updated trienodeHealSynced uint64 // Number of state trie nodes downloaded trienodeHealBytes common.StorageSize // Number of state trie bytes persisted to disk trienodeHealDups uint64 // Number of state trie nodes already processed trienodeHealNops uint64 // Number of state trie nodes not requested bytecodeHealSynced uint64 // Number of bytecodes downloaded bytecodeHealBytes common.StorageSize // Number of bytecodes persisted to disk bytecodeHealDups uint64 // Number of bytecodes already processed bytecodeHealNops uint64 // Number of bytecodes not requested stateWriter ethdb.Batch // Shared batch writer used for persisting raw states accountHealed uint64 // Number of accounts downloaded during the healing stage accountHealedBytes common.StorageSize // Number of raw account bytes persisted to disk during the healing stage storageHealed uint64 // Number of storage slots downloaded during the healing stage storageHealedBytes common.StorageSize // Number of raw storage bytes persisted to disk during the healing stage startTime time.Time // Time instance when snapshot sync started logTime time.Time // Time instance when status was last reported pend sync.WaitGroup // Tracks network request goroutines for graceful shutdown lock sync.RWMutex // Protects fields that can change outside of sync (peers, reqs, root) } // NewSyncer creates a new snapshot syncer to download the Ethereum state over the // snap protocol. func NewSyncer(db ethdb.KeyValueStore, scheme string) *Syncer { return &Syncer{ db: db, scheme: scheme, peers: make(map[string]SyncPeer), peerJoin: new(event.Feed), peerDrop: new(event.Feed), rates: msgrate.NewTrackers(log.New("proto", "snap")), update: make(chan struct{}, 1), accountIdlers: make(map[string]struct{}), storageIdlers: make(map[string]struct{}), bytecodeIdlers: make(map[string]struct{}), accountReqs: make(map[uint64]*accountRequest), storageReqs: make(map[uint64]*storageRequest), bytecodeReqs: make(map[uint64]*bytecodeRequest), trienodeHealIdlers: make(map[string]struct{}), bytecodeHealIdlers: make(map[string]struct{}), trienodeHealReqs: make(map[uint64]*trienodeHealRequest), bytecodeHealReqs: make(map[uint64]*bytecodeHealRequest), trienodeHealThrottle: maxTrienodeHealThrottle, // Tune downward instead of insta-filling with junk stateWriter: db.NewBatch(), extProgress: new(SyncProgress), } } // Register injects a new data source into the syncer's peerset. func (s *Syncer) Register(peer SyncPeer) error { // Make sure the peer is not registered yet id := peer.ID() s.lock.Lock() if _, ok := s.peers[id]; ok { log.Error("Snap peer already registered", "id", id) s.lock.Unlock() return errors.New("already registered") } s.peers[id] = peer s.rates.Track(id, msgrate.NewTracker(s.rates.MeanCapacities(), s.rates.MedianRoundTrip())) // Mark the peer as idle, even if no sync is running s.accountIdlers[id] = struct{}{} s.storageIdlers[id] = struct{}{} s.bytecodeIdlers[id] = struct{}{} s.trienodeHealIdlers[id] = struct{}{} s.bytecodeHealIdlers[id] = struct{}{} s.lock.Unlock() // Notify any active syncs that a new peer can be assigned data s.peerJoin.Send(id) return nil } // Unregister injects a new data source into the syncer's peerset. func (s *Syncer) Unregister(id string) error { // Remove all traces of the peer from the registry s.lock.Lock() if _, ok := s.peers[id]; !ok { log.Error("Snap peer not registered", "id", id) s.lock.Unlock() return errors.New("not registered") } delete(s.peers, id) s.rates.Untrack(id) // Remove status markers, even if no sync is running delete(s.statelessPeers, id) delete(s.accountIdlers, id) delete(s.storageIdlers, id) delete(s.bytecodeIdlers, id) delete(s.trienodeHealIdlers, id) delete(s.bytecodeHealIdlers, id) s.lock.Unlock() // Notify any active syncs that pending requests need to be reverted s.peerDrop.Send(id) return nil } // Sync starts (or resumes a previous) sync cycle to iterate over a state trie // with the given root and reconstruct the nodes based on the snapshot leaves. // Previously downloaded segments will not be redownloaded of fixed, rather any // errors will be healed after the leaves are fully accumulated. func (s *Syncer) Sync(root common.Hash, cancel chan struct{}) error { // Move the trie root from any previous value, revert stateless markers for // any peers and initialize the syncer if it was not yet run s.lock.Lock() s.root = root s.healer = &healTask{ scheduler: state.NewStateSync(root, s.db, s.onHealState, s.scheme), trieTasks: make(map[string]common.Hash), codeTasks: make(map[common.Hash]struct{}), } s.statelessPeers = make(map[string]struct{}) s.lock.Unlock() if s.startTime == (time.Time{}) { s.startTime = time.Now() } // Retrieve the previous sync status from LevelDB and abort if already synced s.loadSyncStatus() if len(s.tasks) == 0 && s.healer.scheduler.Pending() == 0 { log.Debug("Snapshot sync already completed") return nil } defer func() { // Persist any progress, independent of failure for _, task := range s.tasks { s.forwardAccountTask(task) } s.cleanAccountTasks() s.saveSyncStatus() }() log.Debug("Starting snapshot sync cycle", "root", root) // Flush out the last committed raw states defer func() { if s.stateWriter.ValueSize() > 0 { s.stateWriter.Write() s.stateWriter.Reset() } }() defer s.report(true) // commit any trie- and bytecode-healing data. defer s.commitHealer(true) // Whether sync completed or not, disregard any future packets defer func() { log.Debug("Terminating snapshot sync cycle", "root", root) s.lock.Lock() s.accountReqs = make(map[uint64]*accountRequest) s.storageReqs = make(map[uint64]*storageRequest) s.bytecodeReqs = make(map[uint64]*bytecodeRequest) s.trienodeHealReqs = make(map[uint64]*trienodeHealRequest) s.bytecodeHealReqs = make(map[uint64]*bytecodeHealRequest) s.lock.Unlock() }() // Keep scheduling sync tasks peerJoin := make(chan string, 16) peerJoinSub := s.peerJoin.Subscribe(peerJoin) defer peerJoinSub.Unsubscribe() peerDrop := make(chan string, 16) peerDropSub := s.peerDrop.Subscribe(peerDrop) defer peerDropSub.Unsubscribe() // Create a set of unique channels for this sync cycle. We need these to be // ephemeral so a data race doesn't accidentally deliver something stale on // a persistent channel across syncs (yup, this happened) var ( accountReqFails = make(chan *accountRequest) storageReqFails = make(chan *storageRequest) bytecodeReqFails = make(chan *bytecodeRequest) accountResps = make(chan *accountResponse) storageResps = make(chan *storageResponse) bytecodeResps = make(chan *bytecodeResponse) trienodeHealReqFails = make(chan *trienodeHealRequest) bytecodeHealReqFails = make(chan *bytecodeHealRequest) trienodeHealResps = make(chan *trienodeHealResponse) bytecodeHealResps = make(chan *bytecodeHealResponse) ) for { // Remove all completed tasks and terminate sync if everything's done s.cleanStorageTasks() s.cleanAccountTasks() if len(s.tasks) == 0 && s.healer.scheduler.Pending() == 0 { return nil } // Assign all the data retrieval tasks to any free peers s.assignAccountTasks(accountResps, accountReqFails, cancel) s.assignBytecodeTasks(bytecodeResps, bytecodeReqFails, cancel) s.assignStorageTasks(storageResps, storageReqFails, cancel) if len(s.tasks) == 0 { // Sync phase done, run heal phase s.assignTrienodeHealTasks(trienodeHealResps, trienodeHealReqFails, cancel) s.assignBytecodeHealTasks(bytecodeHealResps, bytecodeHealReqFails, cancel) } // Update sync progress s.lock.Lock() s.extProgress = &SyncProgress{ AccountSynced: s.accountSynced, AccountBytes: s.accountBytes, BytecodeSynced: s.bytecodeSynced, BytecodeBytes: s.bytecodeBytes, StorageSynced: s.storageSynced, StorageBytes: s.storageBytes, TrienodeHealSynced: s.trienodeHealSynced, TrienodeHealBytes: s.trienodeHealBytes, BytecodeHealSynced: s.bytecodeHealSynced, BytecodeHealBytes: s.bytecodeHealBytes, } s.lock.Unlock() // Wait for something to happen select { case <-s.update: // Something happened (new peer, delivery, timeout), recheck tasks case <-peerJoin: // A new peer joined, try to schedule it new tasks case id := <-peerDrop: s.revertRequests(id) case <-cancel: return ErrCancelled case req := <-accountReqFails: s.revertAccountRequest(req) case req := <-bytecodeReqFails: s.revertBytecodeRequest(req) case req := <-storageReqFails: s.revertStorageRequest(req) case req := <-trienodeHealReqFails: s.revertTrienodeHealRequest(req) case req := <-bytecodeHealReqFails: s.revertBytecodeHealRequest(req) case res := <-accountResps: s.processAccountResponse(res) case res := <-bytecodeResps: s.processBytecodeResponse(res) case res := <-storageResps: s.processStorageResponse(res) case res := <-trienodeHealResps: s.processTrienodeHealResponse(res) case res := <-bytecodeHealResps: s.processBytecodeHealResponse(res) } // Report stats if something meaningful happened s.report(false) } } // cleanPath is used to remove the dangling nodes in the stackTrie. func (s *Syncer) cleanPath(batch ethdb.Batch, owner common.Hash, path []byte) { if owner == (common.Hash{}) && rawdb.ExistsAccountTrieNode(s.db, path) { rawdb.DeleteAccountTrieNode(batch, path) deletionGauge.Inc(1) } if owner != (common.Hash{}) && rawdb.ExistsStorageTrieNode(s.db, owner, path) { rawdb.DeleteStorageTrieNode(batch, owner, path) deletionGauge.Inc(1) } lookupGauge.Inc(1) } // loadSyncStatus retrieves a previously aborted sync status from the database, // or generates a fresh one if none is available. func (s *Syncer) loadSyncStatus() { var progress SyncProgress if status := rawdb.ReadSnapshotSyncStatus(s.db); status != nil { if err := json.Unmarshal(status, &progress); err != nil { log.Error("Failed to decode snap sync status", "err", err) } else { for _, task := range progress.Tasks { log.Debug("Scheduled account sync task", "from", task.Next, "last", task.Last) } s.tasks = progress.Tasks for _, task := range s.tasks { task := task // closure for task.genBatch in the stacktrie writer callback // Restore the completed storages task.stateCompleted = make(map[common.Hash]struct{}) for _, hash := range task.StorageCompleted { task.stateCompleted[hash] = struct{}{} } task.StorageCompleted = nil // Allocate batch for account trie generation task.genBatch = ethdb.HookedBatch{ Batch: s.db.NewBatch(), OnPut: func(key []byte, value []byte) { s.accountBytes += common.StorageSize(len(key) + len(value)) }, } options := trie.NewStackTrieOptions() options = options.WithWriter(func(path []byte, hash common.Hash, blob []byte) { rawdb.WriteTrieNode(task.genBatch, common.Hash{}, path, hash, blob, s.scheme) }) if s.scheme == rawdb.PathScheme { // Configure the dangling node cleaner and also filter out boundary nodes // only in the context of the path scheme. Deletion is forbidden in the // hash scheme, as it can disrupt state completeness. options = options.WithCleaner(func(path []byte) { s.cleanPath(task.genBatch, common.Hash{}, path) }) // Skip the left boundary if it's not the first range. // Skip the right boundary if it's not the last range. options = options.WithSkipBoundary(task.Next != (common.Hash{}), task.Last != common.MaxHash, boundaryAccountNodesGauge) } task.genTrie = trie.NewStackTrie(options) // Restore leftover storage tasks for accountHash, subtasks := range task.SubTasks { for _, subtask := range subtasks { subtask := subtask // closure for subtask.genBatch in the stacktrie writer callback subtask.genBatch = ethdb.HookedBatch{ Batch: s.db.NewBatch(), OnPut: func(key []byte, value []byte) { s.storageBytes += common.StorageSize(len(key) + len(value)) }, } owner := accountHash // local assignment for stacktrie writer closure options := trie.NewStackTrieOptions() options = options.WithWriter(func(path []byte, hash common.Hash, blob []byte) { rawdb.WriteTrieNode(subtask.genBatch, owner, path, hash, blob, s.scheme) }) if s.scheme == rawdb.PathScheme { // Configure the dangling node cleaner and also filter out boundary nodes // only in the context of the path scheme. Deletion is forbidden in the // hash scheme, as it can disrupt state completeness. options = options.WithCleaner(func(path []byte) { s.cleanPath(subtask.genBatch, owner, path) }) // Skip the left boundary if it's not the first range. // Skip the right boundary if it's not the last range. options = options.WithSkipBoundary(subtask.Next != common.Hash{}, subtask.Last != common.MaxHash, boundaryStorageNodesGauge) } subtask.genTrie = trie.NewStackTrie(options) } } } s.lock.Lock() defer s.lock.Unlock() s.snapped = len(s.tasks) == 0 s.accountSynced = progress.AccountSynced s.accountBytes = progress.AccountBytes s.bytecodeSynced = progress.BytecodeSynced s.bytecodeBytes = progress.BytecodeBytes s.storageSynced = progress.StorageSynced s.storageBytes = progress.StorageBytes s.trienodeHealSynced = progress.TrienodeHealSynced s.trienodeHealBytes = progress.TrienodeHealBytes s.bytecodeHealSynced = progress.BytecodeHealSynced s.bytecodeHealBytes = progress.BytecodeHealBytes return } } // Either we've failed to decode the previous state, or there was none. // Start a fresh sync by chunking up the account range and scheduling // them for retrieval. s.tasks = nil s.accountSynced, s.accountBytes = 0, 0 s.bytecodeSynced, s.bytecodeBytes = 0, 0 s.storageSynced, s.storageBytes = 0, 0 s.trienodeHealSynced, s.trienodeHealBytes = 0, 0 s.bytecodeHealSynced, s.bytecodeHealBytes = 0, 0 var next common.Hash step := new(big.Int).Sub( new(big.Int).Div( new(big.Int).Exp(common.Big2, common.Big256, nil), big.NewInt(int64(accountConcurrency)), ), common.Big1, ) for i := 0; i < accountConcurrency; i++ { last := common.BigToHash(new(big.Int).Add(next.Big(), step)) if i == accountConcurrency-1 { // Make sure we don't overflow if the step is not a proper divisor last = common.MaxHash } batch := ethdb.HookedBatch{ Batch: s.db.NewBatch(), OnPut: func(key []byte, value []byte) { s.accountBytes += common.StorageSize(len(key) + len(value)) }, } options := trie.NewStackTrieOptions() options = options.WithWriter(func(path []byte, hash common.Hash, blob []byte) { rawdb.WriteTrieNode(batch, common.Hash{}, path, hash, blob, s.scheme) }) if s.scheme == rawdb.PathScheme { // Configure the dangling node cleaner and also filter out boundary nodes // only in the context of the path scheme. Deletion is forbidden in the // hash scheme, as it can disrupt state completeness. options = options.WithCleaner(func(path []byte) { s.cleanPath(batch, common.Hash{}, path) }) // Skip the left boundary if it's not the first range. // Skip the right boundary if it's not the last range. options = options.WithSkipBoundary(next != common.Hash{}, last != common.MaxHash, boundaryAccountNodesGauge) } s.tasks = append(s.tasks, &accountTask{ Next: next, Last: last, SubTasks: make(map[common.Hash][]*storageTask), genBatch: batch, stateCompleted: make(map[common.Hash]struct{}), genTrie: trie.NewStackTrie(options), }) log.Debug("Created account sync task", "from", next, "last", last) next = common.BigToHash(new(big.Int).Add(last.Big(), common.Big1)) } } // saveSyncStatus marshals the remaining sync tasks into leveldb. func (s *Syncer) saveSyncStatus() { // Serialize any partial progress to disk before spinning down for _, task := range s.tasks { if err := task.genBatch.Write(); err != nil { log.Error("Failed to persist account slots", "err", err) } for _, subtasks := range task.SubTasks { for _, subtask := range subtasks { if err := subtask.genBatch.Write(); err != nil { log.Error("Failed to persist storage slots", "err", err) } } } // Save the account hashes of completed storage. task.StorageCompleted = make([]common.Hash, 0, len(task.stateCompleted)) for hash := range task.stateCompleted { task.StorageCompleted = append(task.StorageCompleted, hash) } if len(task.StorageCompleted) > 0 { log.Debug("Leftover completed storages", "number", len(task.StorageCompleted), "next", task.Next, "last", task.Last) } } // Store the actual progress markers progress := &SyncProgress{ Tasks: s.tasks, AccountSynced: s.accountSynced, AccountBytes: s.accountBytes, BytecodeSynced: s.bytecodeSynced, BytecodeBytes: s.bytecodeBytes, StorageSynced: s.storageSynced, StorageBytes: s.storageBytes, TrienodeHealSynced: s.trienodeHealSynced, TrienodeHealBytes: s.trienodeHealBytes, BytecodeHealSynced: s.bytecodeHealSynced, BytecodeHealBytes: s.bytecodeHealBytes, } status, err := json.Marshal(progress) if err != nil { panic(err) // This can only fail during implementation } rawdb.WriteSnapshotSyncStatus(s.db, status) } // Progress returns the snap sync status statistics. func (s *Syncer) Progress() (*SyncProgress, *SyncPending) { s.lock.Lock() defer s.lock.Unlock() pending := new(SyncPending) if s.healer != nil { pending.TrienodeHeal = uint64(len(s.healer.trieTasks)) pending.BytecodeHeal = uint64(len(s.healer.codeTasks)) } return s.extProgress, pending } // cleanAccountTasks removes account range retrieval tasks that have already been // completed. func (s *Syncer) cleanAccountTasks() { // If the sync was already done before, don't even bother if len(s.tasks) == 0 { return } // Sync wasn't finished previously, check for any task that can be finalized for i := 0; i < len(s.tasks); i++ { if s.tasks[i].done { s.tasks = append(s.tasks[:i], s.tasks[i+1:]...) i-- } } // If everything was just finalized just, generate the account trie and start heal if len(s.tasks) == 0 { s.lock.Lock() s.snapped = true s.lock.Unlock() // Push the final sync report s.reportSyncProgress(true) } } // cleanStorageTasks iterates over all the account tasks and storage sub-tasks // within, cleaning any that have been completed. func (s *Syncer) cleanStorageTasks() { for _, task := range s.tasks { for account, subtasks := range task.SubTasks { // Remove storage range retrieval tasks that completed for j := 0; j < len(subtasks); j++ { if subtasks[j].done { subtasks = append(subtasks[:j], subtasks[j+1:]...) j-- } } if len(subtasks) > 0 { task.SubTasks[account] = subtasks continue } // If all storage chunks are done, mark the account as done too for j, hash := range task.res.hashes { if hash == account { task.needState[j] = false } } delete(task.SubTasks, account) task.pend-- // Mark the state as complete to prevent resyncing, regardless // if state healing is necessary. task.stateCompleted[account] = struct{}{} // If this was the last pending task, forward the account task if task.pend == 0 { s.forwardAccountTask(task) } } } } // assignAccountTasks attempts to match idle peers to pending account range // retrievals. func (s *Syncer) assignAccountTasks(success chan *accountResponse, fail chan *accountRequest, cancel chan struct{}) { s.lock.Lock() defer s.lock.Unlock() // Sort the peers by download capacity to use faster ones if many available idlers := &capacitySort{ ids: make([]string, 0, len(s.accountIdlers)), caps: make([]int, 0, len(s.accountIdlers)), } targetTTL := s.rates.TargetTimeout() for id := range s.accountIdlers { if _, ok := s.statelessPeers[id]; ok { continue } idlers.ids = append(idlers.ids, id) idlers.caps = append(idlers.caps, s.rates.Capacity(id, AccountRangeMsg, targetTTL)) } if len(idlers.ids) == 0 { return } sort.Sort(sort.Reverse(idlers)) // Iterate over all the tasks and try to find a pending one for _, task := range s.tasks { // Skip any tasks already filling if task.req != nil || task.res != nil { continue } // Task pending retrieval, try to find an idle peer. If no such peer // exists, we probably assigned tasks for all (or they are stateless). // Abort the entire assignment mechanism. if len(idlers.ids) == 0 { return } var ( idle = idlers.ids[0] peer = s.peers[idle] cap = idlers.caps[0] ) idlers.ids, idlers.caps = idlers.ids[1:], idlers.caps[1:] // Matched a pending task to an idle peer, allocate a unique request id var reqid uint64 for { reqid = uint64(rand.Int63()) if reqid == 0 { continue } if _, ok := s.accountReqs[reqid]; ok { continue } break } // Generate the network query and send it to the peer req := &accountRequest{ peer: idle, id: reqid, time: time.Now(), deliver: success, revert: fail, cancel: cancel, stale: make(chan struct{}), origin: task.Next, limit: task.Last, task: task, } req.timeout = time.AfterFunc(s.rates.TargetTimeout(), func() { peer.Log().Debug("Account range request timed out", "reqid", reqid) s.rates.Update(idle, AccountRangeMsg, 0, 0) s.scheduleRevertAccountRequest(req) }) s.accountReqs[reqid] = req delete(s.accountIdlers, idle) s.pend.Add(1) go func(root common.Hash) { defer s.pend.Done() // Attempt to send the remote request and revert if it fails if cap > maxRequestSize { cap = maxRequestSize } if cap < minRequestSize { // Don't bother with peers below a bare minimum performance cap = minRequestSize } if err := peer.RequestAccountRange(reqid, root, req.origin, req.limit, uint64(cap)); err != nil { peer.Log().Debug("Failed to request account range", "err", err) s.scheduleRevertAccountRequest(req) } }(s.root) // Inject the request into the task to block further assignments task.req = req } } // assignBytecodeTasks attempts to match idle peers to pending code retrievals. func (s *Syncer) assignBytecodeTasks(success chan *bytecodeResponse, fail chan *bytecodeRequest, cancel chan struct{}) { s.lock.Lock() defer s.lock.Unlock() // Sort the peers by download capacity to use faster ones if many available idlers := &capacitySort{ ids: make([]string, 0, len(s.bytecodeIdlers)), caps: make([]int, 0, len(s.bytecodeIdlers)), } targetTTL := s.rates.TargetTimeout() for id := range s.bytecodeIdlers { if _, ok := s.statelessPeers[id]; ok { continue } idlers.ids = append(idlers.ids, id) idlers.caps = append(idlers.caps, s.rates.Capacity(id, ByteCodesMsg, targetTTL)) } if len(idlers.ids) == 0 { return } sort.Sort(sort.Reverse(idlers)) // Iterate over all the tasks and try to find a pending one for _, task := range s.tasks { // Skip any tasks not in the bytecode retrieval phase if task.res == nil { continue } // Skip tasks that are already retrieving (or done with) all codes if len(task.codeTasks) == 0 { continue } // Task pending retrieval, try to find an idle peer. If no such peer // exists, we probably assigned tasks for all (or they are stateless). // Abort the entire assignment mechanism. if len(idlers.ids) == 0 { return } var ( idle = idlers.ids[0] peer = s.peers[idle] cap = idlers.caps[0] ) idlers.ids, idlers.caps = idlers.ids[1:], idlers.caps[1:] // Matched a pending task to an idle peer, allocate a unique request id var reqid uint64 for { reqid = uint64(rand.Int63()) if reqid == 0 { continue } if _, ok := s.bytecodeReqs[reqid]; ok { continue } break } // Generate the network query and send it to the peer if cap > maxCodeRequestCount { cap = maxCodeRequestCount } hashes := make([]common.Hash, 0, cap) for hash := range task.codeTasks { delete(task.codeTasks, hash) hashes = append(hashes, hash) if len(hashes) >= cap { break } } req := &bytecodeRequest{ peer: idle, id: reqid, time: time.Now(), deliver: success, revert: fail, cancel: cancel, stale: make(chan struct{}), hashes: hashes, task: task, } req.timeout = time.AfterFunc(s.rates.TargetTimeout(), func() { peer.Log().Debug("Bytecode request timed out", "reqid", reqid) s.rates.Update(idle, ByteCodesMsg, 0, 0) s.scheduleRevertBytecodeRequest(req) }) s.bytecodeReqs[reqid] = req delete(s.bytecodeIdlers, idle) s.pend.Add(1) go func() { defer s.pend.Done() // Attempt to send the remote request and revert if it fails if err := peer.RequestByteCodes(reqid, hashes, maxRequestSize); err != nil { log.Debug("Failed to request bytecodes", "err", err) s.scheduleRevertBytecodeRequest(req) } }() } } // assignStorageTasks attempts to match idle peers to pending storage range // retrievals. func (s *Syncer) assignStorageTasks(success chan *storageResponse, fail chan *storageRequest, cancel chan struct{}) { s.lock.Lock() defer s.lock.Unlock() // Sort the peers by download capacity to use faster ones if many available idlers := &capacitySort{ ids: make([]string, 0, len(s.storageIdlers)), caps: make([]int, 0, len(s.storageIdlers)), } targetTTL := s.rates.TargetTimeout() for id := range s.storageIdlers { if _, ok := s.statelessPeers[id]; ok { continue } idlers.ids = append(idlers.ids, id) idlers.caps = append(idlers.caps, s.rates.Capacity(id, StorageRangesMsg, targetTTL)) } if len(idlers.ids) == 0 { return } sort.Sort(sort.Reverse(idlers)) // Iterate over all the tasks and try to find a pending one for _, task := range s.tasks { // Skip any tasks not in the storage retrieval phase if task.res == nil { continue } // Skip tasks that are already retrieving (or done with) all small states storageTasks := task.activeSubTasks() if len(storageTasks) == 0 && len(task.stateTasks) == 0 { continue } // Task pending retrieval, try to find an idle peer. If no such peer // exists, we probably assigned tasks for all (or they are stateless). // Abort the entire assignment mechanism. if len(idlers.ids) == 0 { return } var ( idle = idlers.ids[0] peer = s.peers[idle] cap = idlers.caps[0] ) idlers.ids, idlers.caps = idlers.ids[1:], idlers.caps[1:] // Matched a pending task to an idle peer, allocate a unique request id var reqid uint64 for { reqid = uint64(rand.Int63()) if reqid == 0 { continue } if _, ok := s.storageReqs[reqid]; ok { continue } break } // Generate the network query and send it to the peer. If there are // large contract tasks pending, complete those before diving into // even more new contracts. if cap > maxRequestSize { cap = maxRequestSize } if cap < minRequestSize { // Don't bother with peers below a bare minimum performance cap = minRequestSize } storageSets := cap / 1024 var ( accounts = make([]common.Hash, 0, storageSets) roots = make([]common.Hash, 0, storageSets) subtask *storageTask ) for account, subtasks := range storageTasks { for _, st := range subtasks { // Skip any subtasks already filling if st.req != nil { continue } // Found an incomplete storage chunk, schedule it accounts = append(accounts, account) roots = append(roots, st.root) subtask = st break // Large contract chunks are downloaded individually } if subtask != nil { break // Large contract chunks are downloaded individually } } if subtask == nil { // No large contract required retrieval, but small ones available for account, root := range task.stateTasks { delete(task.stateTasks, account) accounts = append(accounts, account) roots = append(roots, root) if len(accounts) >= storageSets { break } } } // If nothing was found, it means this task is actually already fully // retrieving, but large contracts are hard to detect. Skip to the next. if len(accounts) == 0 { continue } req := &storageRequest{ peer: idle, id: reqid, time: time.Now(), deliver: success, revert: fail, cancel: cancel, stale: make(chan struct{}), accounts: accounts, roots: roots, mainTask: task, subTask: subtask, } if subtask != nil { req.origin = subtask.Next req.limit = subtask.Last } req.timeout = time.AfterFunc(s.rates.TargetTimeout(), func() { peer.Log().Debug("Storage request timed out", "reqid", reqid) s.rates.Update(idle, StorageRangesMsg, 0, 0) s.scheduleRevertStorageRequest(req) }) s.storageReqs[reqid] = req delete(s.storageIdlers, idle) s.pend.Add(1) go func(root common.Hash) { defer s.pend.Done() // Attempt to send the remote request and revert if it fails var origin, limit []byte if subtask != nil { origin, limit = req.origin[:], req.limit[:] } if err := peer.RequestStorageRanges(reqid, root, accounts, origin, limit, uint64(cap)); err != nil { log.Debug("Failed to request storage", "err", err) s.scheduleRevertStorageRequest(req) } }(s.root) // Inject the request into the subtask to block further assignments if subtask != nil { subtask.req = req } } } // assignTrienodeHealTasks attempts to match idle peers to trie node requests to // heal any trie errors caused by the snap sync's chunked retrieval model. func (s *Syncer) assignTrienodeHealTasks(success chan *trienodeHealResponse, fail chan *trienodeHealRequest, cancel chan struct{}) { s.lock.Lock() defer s.lock.Unlock() // Sort the peers by download capacity to use faster ones if many available idlers := &capacitySort{ ids: make([]string, 0, len(s.trienodeHealIdlers)), caps: make([]int, 0, len(s.trienodeHealIdlers)), } targetTTL := s.rates.TargetTimeout() for id := range s.trienodeHealIdlers { if _, ok := s.statelessPeers[id]; ok { continue } idlers.ids = append(idlers.ids, id) idlers.caps = append(idlers.caps, s.rates.Capacity(id, TrieNodesMsg, targetTTL)) } if len(idlers.ids) == 0 { return } sort.Sort(sort.Reverse(idlers)) // Iterate over pending tasks and try to find a peer to retrieve with for len(s.healer.trieTasks) > 0 || s.healer.scheduler.Pending() > 0 { // If there are not enough trie tasks queued to fully assign, fill the // queue from the state sync scheduler. The trie synced schedules these // together with bytecodes, so we need to queue them combined. var ( have = len(s.healer.trieTasks) + len(s.healer.codeTasks) want = maxTrieRequestCount + maxCodeRequestCount ) if have < want { paths, hashes, codes := s.healer.scheduler.Missing(want - have) for i, path := range paths { s.healer.trieTasks[path] = hashes[i] } for _, hash := range codes { s.healer.codeTasks[hash] = struct{}{} } } // If all the heal tasks are bytecodes or already downloading, bail if len(s.healer.trieTasks) == 0 { return } // Task pending retrieval, try to find an idle peer. If no such peer // exists, we probably assigned tasks for all (or they are stateless). // Abort the entire assignment mechanism. if len(idlers.ids) == 0 { return } var ( idle = idlers.ids[0] peer = s.peers[idle] cap = idlers.caps[0] ) idlers.ids, idlers.caps = idlers.ids[1:], idlers.caps[1:] // Matched a pending task to an idle peer, allocate a unique request id var reqid uint64 for { reqid = uint64(rand.Int63()) if reqid == 0 { continue } if _, ok := s.trienodeHealReqs[reqid]; ok { continue } break } // Generate the network query and send it to the peer if cap > maxTrieRequestCount { cap = maxTrieRequestCount } cap = int(float64(cap) / s.trienodeHealThrottle) if cap <= 0 { cap = 1 } var ( hashes = make([]common.Hash, 0, cap) paths = make([]string, 0, cap) pathsets = make([]TrieNodePathSet, 0, cap) ) for path, hash := range s.healer.trieTasks { delete(s.healer.trieTasks, path) paths = append(paths, path) hashes = append(hashes, hash) if len(paths) >= cap { break } } // Group requests by account hash paths, hashes, _, pathsets = sortByAccountPath(paths, hashes) req := &trienodeHealRequest{ peer: idle, id: reqid, time: time.Now(), deliver: success, revert: fail, cancel: cancel, stale: make(chan struct{}), paths: paths, hashes: hashes, task: s.healer, } req.timeout = time.AfterFunc(s.rates.TargetTimeout(), func() { peer.Log().Debug("Trienode heal request timed out", "reqid", reqid) s.rates.Update(idle, TrieNodesMsg, 0, 0) s.scheduleRevertTrienodeHealRequest(req) }) s.trienodeHealReqs[reqid] = req delete(s.trienodeHealIdlers, idle) s.pend.Add(1) go func(root common.Hash) { defer s.pend.Done() // Attempt to send the remote request and revert if it fails if err := peer.RequestTrieNodes(reqid, root, pathsets, maxRequestSize); err != nil { log.Debug("Failed to request trienode healers", "err", err) s.scheduleRevertTrienodeHealRequest(req) } }(s.root) } } // assignBytecodeHealTasks attempts to match idle peers to bytecode requests to // heal any trie errors caused by the snap sync's chunked retrieval model. func (s *Syncer) assignBytecodeHealTasks(success chan *bytecodeHealResponse, fail chan *bytecodeHealRequest, cancel chan struct{}) { s.lock.Lock() defer s.lock.Unlock() // Sort the peers by download capacity to use faster ones if many available idlers := &capacitySort{ ids: make([]string, 0, len(s.bytecodeHealIdlers)), caps: make([]int, 0, len(s.bytecodeHealIdlers)), } targetTTL := s.rates.TargetTimeout() for id := range s.bytecodeHealIdlers { if _, ok := s.statelessPeers[id]; ok { continue } idlers.ids = append(idlers.ids, id) idlers.caps = append(idlers.caps, s.rates.Capacity(id, ByteCodesMsg, targetTTL)) } if len(idlers.ids) == 0 { return } sort.Sort(sort.Reverse(idlers)) // Iterate over pending tasks and try to find a peer to retrieve with for len(s.healer.codeTasks) > 0 || s.healer.scheduler.Pending() > 0 { // If there are not enough trie tasks queued to fully assign, fill the // queue from the state sync scheduler. The trie synced schedules these // together with trie nodes, so we need to queue them combined. var ( have = len(s.healer.trieTasks) + len(s.healer.codeTasks) want = maxTrieRequestCount + maxCodeRequestCount ) if have < want { paths, hashes, codes := s.healer.scheduler.Missing(want - have) for i, path := range paths { s.healer.trieTasks[path] = hashes[i] } for _, hash := range codes { s.healer.codeTasks[hash] = struct{}{} } } // If all the heal tasks are trienodes or already downloading, bail if len(s.healer.codeTasks) == 0 { return } // Task pending retrieval, try to find an idle peer. If no such peer // exists, we probably assigned tasks for all (or they are stateless). // Abort the entire assignment mechanism. if len(idlers.ids) == 0 { return } var ( idle = idlers.ids[0] peer = s.peers[idle] cap = idlers.caps[0] ) idlers.ids, idlers.caps = idlers.ids[1:], idlers.caps[1:] // Matched a pending task to an idle peer, allocate a unique request id var reqid uint64 for { reqid = uint64(rand.Int63()) if reqid == 0 { continue } if _, ok := s.bytecodeHealReqs[reqid]; ok { continue } break } // Generate the network query and send it to the peer if cap > maxCodeRequestCount { cap = maxCodeRequestCount } hashes := make([]common.Hash, 0, cap) for hash := range s.healer.codeTasks { delete(s.healer.codeTasks, hash) hashes = append(hashes, hash) if len(hashes) >= cap { break } } req := &bytecodeHealRequest{ peer: idle, id: reqid, time: time.Now(), deliver: success, revert: fail, cancel: cancel, stale: make(chan struct{}), hashes: hashes, task: s.healer, } req.timeout = time.AfterFunc(s.rates.TargetTimeout(), func() { peer.Log().Debug("Bytecode heal request timed out", "reqid", reqid) s.rates.Update(idle, ByteCodesMsg, 0, 0) s.scheduleRevertBytecodeHealRequest(req) }) s.bytecodeHealReqs[reqid] = req delete(s.bytecodeHealIdlers, idle) s.pend.Add(1) go func() { defer s.pend.Done() // Attempt to send the remote request and revert if it fails if err := peer.RequestByteCodes(reqid, hashes, maxRequestSize); err != nil { log.Debug("Failed to request bytecode healers", "err", err) s.scheduleRevertBytecodeHealRequest(req) } }() } } // revertRequests locates all the currently pending requests from a particular // peer and reverts them, rescheduling for others to fulfill. func (s *Syncer) revertRequests(peer string) { // Gather the requests first, revertals need the lock too s.lock.Lock() var accountReqs []*accountRequest for _, req := range s.accountReqs { if req.peer == peer { accountReqs = append(accountReqs, req) } } var bytecodeReqs []*bytecodeRequest for _, req := range s.bytecodeReqs { if req.peer == peer { bytecodeReqs = append(bytecodeReqs, req) } } var storageReqs []*storageRequest for _, req := range s.storageReqs { if req.peer == peer { storageReqs = append(storageReqs, req) } } var trienodeHealReqs []*trienodeHealRequest for _, req := range s.trienodeHealReqs { if req.peer == peer { trienodeHealReqs = append(trienodeHealReqs, req) } } var bytecodeHealReqs []*bytecodeHealRequest for _, req := range s.bytecodeHealReqs { if req.peer == peer { bytecodeHealReqs = append(bytecodeHealReqs, req) } } s.lock.Unlock() // Revert all the requests matching the peer for _, req := range accountReqs { s.revertAccountRequest(req) } for _, req := range bytecodeReqs { s.revertBytecodeRequest(req) } for _, req := range storageReqs { s.revertStorageRequest(req) } for _, req := range trienodeHealReqs { s.revertTrienodeHealRequest(req) } for _, req := range bytecodeHealReqs { s.revertBytecodeHealRequest(req) } } // scheduleRevertAccountRequest asks the event loop to clean up an account range // request and return all failed retrieval tasks to the scheduler for reassignment. func (s *Syncer) scheduleRevertAccountRequest(req *accountRequest) { select { case req.revert <- req: // Sync event loop notified case <-req.cancel: // Sync cycle got cancelled case <-req.stale: // Request already reverted } } // revertAccountRequest cleans up an account range request and returns all failed // retrieval tasks to the scheduler for reassignment. // // Note, this needs to run on the event runloop thread to reschedule to idle peers. // On peer threads, use scheduleRevertAccountRequest. func (s *Syncer) revertAccountRequest(req *accountRequest) { log.Debug("Reverting account request", "peer", req.peer, "reqid", req.id) select { case <-req.stale: log.Trace("Account request already reverted", "peer", req.peer, "reqid", req.id) return default: } close(req.stale) // Remove the request from the tracked set s.lock.Lock() delete(s.accountReqs, req.id) s.lock.Unlock() // If there's a timeout timer still running, abort it and mark the account // task as not-pending, ready for rescheduling req.timeout.Stop() if req.task.req == req { req.task.req = nil } } // scheduleRevertBytecodeRequest asks the event loop to clean up a bytecode request // and return all failed retrieval tasks to the scheduler for reassignment. func (s *Syncer) scheduleRevertBytecodeRequest(req *bytecodeRequest) { select { case req.revert <- req: // Sync event loop notified case <-req.cancel: // Sync cycle got cancelled case <-req.stale: // Request already reverted } } // revertBytecodeRequest cleans up a bytecode request and returns all failed // retrieval tasks to the scheduler for reassignment. // // Note, this needs to run on the event runloop thread to reschedule to idle peers. // On peer threads, use scheduleRevertBytecodeRequest. func (s *Syncer) revertBytecodeRequest(req *bytecodeRequest) { log.Debug("Reverting bytecode request", "peer", req.peer) select { case <-req.stale: log.Trace("Bytecode request already reverted", "peer", req.peer, "reqid", req.id) return default: } close(req.stale) // Remove the request from the tracked set s.lock.Lock() delete(s.bytecodeReqs, req.id) s.lock.Unlock() // If there's a timeout timer still running, abort it and mark the code // retrievals as not-pending, ready for rescheduling req.timeout.Stop() for _, hash := range req.hashes { req.task.codeTasks[hash] = struct{}{} } } // scheduleRevertStorageRequest asks the event loop to clean up a storage range // request and return all failed retrieval tasks to the scheduler for reassignment. func (s *Syncer) scheduleRevertStorageRequest(req *storageRequest) { select { case req.revert <- req: // Sync event loop notified case <-req.cancel: // Sync cycle got cancelled case <-req.stale: // Request already reverted } } // revertStorageRequest cleans up a storage range request and returns all failed // retrieval tasks to the scheduler for reassignment. // // Note, this needs to run on the event runloop thread to reschedule to idle peers. // On peer threads, use scheduleRevertStorageRequest. func (s *Syncer) revertStorageRequest(req *storageRequest) { log.Debug("Reverting storage request", "peer", req.peer) select { case <-req.stale: log.Trace("Storage request already reverted", "peer", req.peer, "reqid", req.id) return default: } close(req.stale) // Remove the request from the tracked set s.lock.Lock() delete(s.storageReqs, req.id) s.lock.Unlock() // If there's a timeout timer still running, abort it and mark the storage // task as not-pending, ready for rescheduling req.timeout.Stop() if req.subTask != nil { req.subTask.req = nil } else { for i, account := range req.accounts { req.mainTask.stateTasks[account] = req.roots[i] } } } // scheduleRevertTrienodeHealRequest asks the event loop to clean up a trienode heal // request and return all failed retrieval tasks to the scheduler for reassignment. func (s *Syncer) scheduleRevertTrienodeHealRequest(req *trienodeHealRequest) { select { case req.revert <- req: // Sync event loop notified case <-req.cancel: // Sync cycle got cancelled case <-req.stale: // Request already reverted } } // revertTrienodeHealRequest cleans up a trienode heal request and returns all // failed retrieval tasks to the scheduler for reassignment. // // Note, this needs to run on the event runloop thread to reschedule to idle peers. // On peer threads, use scheduleRevertTrienodeHealRequest. func (s *Syncer) revertTrienodeHealRequest(req *trienodeHealRequest) { log.Debug("Reverting trienode heal request", "peer", req.peer) select { case <-req.stale: log.Trace("Trienode heal request already reverted", "peer", req.peer, "reqid", req.id) return default: } close(req.stale) // Remove the request from the tracked set s.lock.Lock() delete(s.trienodeHealReqs, req.id) s.lock.Unlock() // If there's a timeout timer still running, abort it and mark the trie node // retrievals as not-pending, ready for rescheduling req.timeout.Stop() for i, path := range req.paths { req.task.trieTasks[path] = req.hashes[i] } } // scheduleRevertBytecodeHealRequest asks the event loop to clean up a bytecode heal // request and return all failed retrieval tasks to the scheduler for reassignment. func (s *Syncer) scheduleRevertBytecodeHealRequest(req *bytecodeHealRequest) { select { case req.revert <- req: // Sync event loop notified case <-req.cancel: // Sync cycle got cancelled case <-req.stale: // Request already reverted } } // revertBytecodeHealRequest cleans up a bytecode heal request and returns all // failed retrieval tasks to the scheduler for reassignment. // // Note, this needs to run on the event runloop thread to reschedule to idle peers. // On peer threads, use scheduleRevertBytecodeHealRequest. func (s *Syncer) revertBytecodeHealRequest(req *bytecodeHealRequest) { log.Debug("Reverting bytecode heal request", "peer", req.peer) select { case <-req.stale: log.Trace("Bytecode heal request already reverted", "peer", req.peer, "reqid", req.id) return default: } close(req.stale) // Remove the request from the tracked set s.lock.Lock() delete(s.bytecodeHealReqs, req.id) s.lock.Unlock() // If there's a timeout timer still running, abort it and mark the code // retrievals as not-pending, ready for rescheduling req.timeout.Stop() for _, hash := range req.hashes { req.task.codeTasks[hash] = struct{}{} } } // processAccountResponse integrates an already validated account range response // into the account tasks. func (s *Syncer) processAccountResponse(res *accountResponse) { // Switch the task from pending to filling res.task.req = nil res.task.res = res // Ensure that the response doesn't overflow into the subsequent task lastBig := res.task.Last.Big() for i, hash := range res.hashes { // Mark the range complete if the last is already included. // Keep iteration to delete the extra states if exists. cmp := hash.Big().Cmp(lastBig) if cmp == 0 { res.cont = false continue } if cmp > 0 { // Chunk overflown, cut off excess res.hashes = res.hashes[:i] res.accounts = res.accounts[:i] res.cont = false // Mark range completed break } } // Iterate over all the accounts and assemble which ones need further sub- // filling before the entire account range can be persisted. res.task.needCode = make([]bool, len(res.accounts)) res.task.needState = make([]bool, len(res.accounts)) res.task.needHeal = make([]bool, len(res.accounts)) res.task.codeTasks = make(map[common.Hash]struct{}) res.task.stateTasks = make(map[common.Hash]common.Hash) resumed := make(map[common.Hash]struct{}) res.task.pend = 0 for i, account := range res.accounts { // Check if the account is a contract with an unknown code if !bytes.Equal(account.CodeHash, types.EmptyCodeHash.Bytes()) { if !rawdb.HasCodeWithPrefix(s.db, common.BytesToHash(account.CodeHash)) { res.task.codeTasks[common.BytesToHash(account.CodeHash)] = struct{}{} res.task.needCode[i] = true res.task.pend++ } } // Check if the account is a contract with an unknown storage trie if account.Root != types.EmptyRootHash { // If the storage was already retrieved in the last cycle, there's no need // to resync it again, regardless of whether the storage root is consistent // or not. if _, exist := res.task.stateCompleted[res.hashes[i]]; exist { // The leftover storage tasks are not expected, unless system is // very wrong. if _, ok := res.task.SubTasks[res.hashes[i]]; ok { panic(fmt.Errorf("unexpected leftover storage tasks, owner: %x", res.hashes[i])) } // Mark the healing tag if storage root node is inconsistent, or // it's non-existent due to storage chunking. if !rawdb.HasTrieNode(s.db, res.hashes[i], nil, account.Root, s.scheme) { res.task.needHeal[i] = true } } else { // If there was a previous large state retrieval in progress, // don't restart it from scratch. This happens if a sync cycle // is interrupted and resumed later. However, *do* update the // previous root hash. if subtasks, ok := res.task.SubTasks[res.hashes[i]]; ok { log.Debug("Resuming large storage retrieval", "account", res.hashes[i], "root", account.Root) for _, subtask := range subtasks { subtask.root = account.Root } res.task.needHeal[i] = true resumed[res.hashes[i]] = struct{}{} largeStorageResumedGauge.Inc(1) } else { // It's possible that in the hash scheme, the storage, along // with the trie nodes of the given root, is already present // in the database. Schedule the storage task anyway to simplify // the logic here. res.task.stateTasks[res.hashes[i]] = account.Root } res.task.needState[i] = true res.task.pend++ } } } // Delete any subtasks that have been aborted but not resumed. It's essential // as the corresponding contract might be self-destructed in this cycle(it's // no longer possible in ethereum as self-destruction is disabled in Cancun // Fork, but the condition is still necessary for other networks). // // Keep the leftover storage tasks if they are not covered by the responded // account range which should be picked up in next account wave. if len(res.hashes) > 0 { // The hash of last delivered account in the response last := res.hashes[len(res.hashes)-1] for hash := range res.task.SubTasks { // TODO(rjl493456442) degrade the log level before merging. if hash.Cmp(last) > 0 { log.Info("Keeping suspended storage retrieval", "account", hash) continue } // TODO(rjl493456442) degrade the log level before merging. // It should never happen in ethereum. if _, ok := resumed[hash]; !ok { log.Error("Aborting suspended storage retrieval", "account", hash) delete(res.task.SubTasks, hash) largeStorageDiscardGauge.Inc(1) } } } // If the account range contained no contracts, or all have been fully filled // beforehand, short circuit storage filling and forward to the next task if res.task.pend == 0 { s.forwardAccountTask(res.task) return } // Some accounts are incomplete, leave as is for the storage and contract // task assigners to pick up and fill } // processBytecodeResponse integrates an already validated bytecode response // into the account tasks. func (s *Syncer) processBytecodeResponse(res *bytecodeResponse) { batch := s.db.NewBatch() var ( codes uint64 ) for i, hash := range res.hashes { code := res.codes[i] // If the bytecode was not delivered, reschedule it if code == nil { res.task.codeTasks[hash] = struct{}{} continue } // Code was delivered, mark it not needed any more for j, account := range res.task.res.accounts { if res.task.needCode[j] && hash == common.BytesToHash(account.CodeHash) { res.task.needCode[j] = false res.task.pend-- } } // Push the bytecode into a database batch codes++ rawdb.WriteCode(batch, hash, code) } bytes := common.StorageSize(batch.ValueSize()) if err := batch.Write(); err != nil { log.Crit("Failed to persist bytecodes", "err", err) } s.bytecodeSynced += codes s.bytecodeBytes += bytes log.Debug("Persisted set of bytecodes", "count", codes, "bytes", bytes) // If this delivery completed the last pending task, forward the account task // to the next chunk if res.task.pend == 0 { s.forwardAccountTask(res.task) return } // Some accounts are still incomplete, leave as is for the storage and contract // task assigners to pick up and fill. } // processStorageResponse integrates an already validated storage response // into the account tasks. func (s *Syncer) processStorageResponse(res *storageResponse) { // Switch the subtask from pending to idle if res.subTask != nil { res.subTask.req = nil } batch := ethdb.HookedBatch{ Batch: s.db.NewBatch(), OnPut: func(key []byte, value []byte) { s.storageBytes += common.StorageSize(len(key) + len(value)) }, } var ( slots int oldStorageBytes = s.storageBytes ) // Iterate over all the accounts and reconstruct their storage tries from the // delivered slots for i, account := range res.accounts { // If the account was not delivered, reschedule it if i >= len(res.hashes) { res.mainTask.stateTasks[account] = res.roots[i] continue } // State was delivered, if complete mark as not needed any more, otherwise // mark the account as needing healing for j, hash := range res.mainTask.res.hashes { if account != hash { continue } acc := res.mainTask.res.accounts[j] // If the packet contains multiple contract storage slots, all // but the last are surely complete. The last contract may be // chunked, so check it's continuation flag. if res.subTask == nil && res.mainTask.needState[j] && (i < len(res.hashes)-1 || !res.cont) { res.mainTask.needState[j] = false res.mainTask.pend-- res.mainTask.stateCompleted[account] = struct{}{} // mark it as completed smallStorageGauge.Inc(1) } // If the last contract was chunked, mark it as needing healing // to avoid writing it out to disk prematurely. if res.subTask == nil && !res.mainTask.needHeal[j] && i == len(res.hashes)-1 && res.cont { res.mainTask.needHeal[j] = true } // If the last contract was chunked, we need to switch to large // contract handling mode if res.subTask == nil && i == len(res.hashes)-1 && res.cont { // If we haven't yet started a large-contract retrieval, create // the subtasks for it within the main account task if tasks, ok := res.mainTask.SubTasks[account]; !ok { var ( keys = res.hashes[i] chunks = uint64(storageConcurrency) lastKey common.Hash ) if len(keys) > 0 { lastKey = keys[len(keys)-1] } // If the number of slots remaining is low, decrease the // number of chunks. Somewhere on the order of 10-15K slots // fit into a packet of 500KB. A key/slot pair is maximum 64 // bytes, so pessimistically maxRequestSize/64 = 8K. // // Chunk so that at least 2 packets are needed to fill a task. if estimate, err := estimateRemainingSlots(len(keys), lastKey); err == nil { if n := estimate / (2 * (maxRequestSize / 64)); n+1 < chunks { chunks = n + 1 } log.Debug("Chunked large contract", "initiators", len(keys), "tail", lastKey, "remaining", estimate, "chunks", chunks) } else { log.Debug("Chunked large contract", "initiators", len(keys), "tail", lastKey, "chunks", chunks) } r := newHashRange(lastKey, chunks) if chunks == 1 { smallStorageGauge.Inc(1) } else { largeStorageGauge.Inc(1) } // Our first task is the one that was just filled by this response. batch := ethdb.HookedBatch{ Batch: s.db.NewBatch(), OnPut: func(key []byte, value []byte) { s.storageBytes += common.StorageSize(len(key) + len(value)) }, } owner := account // local assignment for stacktrie writer closure options := trie.NewStackTrieOptions() options = options.WithWriter(func(path []byte, hash common.Hash, blob []byte) { rawdb.WriteTrieNode(batch, owner, path, hash, blob, s.scheme) }) if s.scheme == rawdb.PathScheme { options = options.WithCleaner(func(path []byte) { s.cleanPath(batch, owner, path) }) // Keep the left boundary as it's the first range. // Skip the right boundary if it's not the last range. options = options.WithSkipBoundary(false, r.End() != common.MaxHash, boundaryStorageNodesGauge) } tasks = append(tasks, &storageTask{ Next: common.Hash{}, Last: r.End(), root: acc.Root, genBatch: batch, genTrie: trie.NewStackTrie(options), }) for r.Next() { batch := ethdb.HookedBatch{ Batch: s.db.NewBatch(), OnPut: func(key []byte, value []byte) { s.storageBytes += common.StorageSize(len(key) + len(value)) }, } options := trie.NewStackTrieOptions() options = options.WithWriter(func(path []byte, hash common.Hash, blob []byte) { rawdb.WriteTrieNode(batch, owner, path, hash, blob, s.scheme) }) if s.scheme == rawdb.PathScheme { // Configure the dangling node cleaner and also filter out boundary nodes // only in the context of the path scheme. Deletion is forbidden in the // hash scheme, as it can disrupt state completeness. options = options.WithCleaner(func(path []byte) { s.cleanPath(batch, owner, path) }) // Skip the left boundary as it's not the first range // Skip the right boundary if it's not the last range. options = options.WithSkipBoundary(true, r.End() != common.MaxHash, boundaryStorageNodesGauge) } tasks = append(tasks, &storageTask{ Next: r.Start(), Last: r.End(), root: acc.Root, genBatch: batch, genTrie: trie.NewStackTrie(options), }) } for _, task := range tasks { log.Debug("Created storage sync task", "account", account, "root", acc.Root, "from", task.Next, "last", task.Last) } res.mainTask.SubTasks[account] = tasks // Since we've just created the sub-tasks, this response // is surely for the first one (zero origin) res.subTask = tasks[0] } } // If we're in large contract delivery mode, forward the subtask if res.subTask != nil { // Ensure the response doesn't overflow into the subsequent task last := res.subTask.Last.Big() // Find the first overflowing key. While at it, mark res as complete // if we find the range to include or pass the 'last' index := sort.Search(len(res.hashes[i]), func(k int) bool { cmp := res.hashes[i][k].Big().Cmp(last) if cmp >= 0 { res.cont = false } return cmp > 0 }) if index >= 0 { // cut off excess res.hashes[i] = res.hashes[i][:index] res.slots[i] = res.slots[i][:index] } // Forward the relevant storage chunk (even if created just now) if res.cont { res.subTask.Next = incHash(res.hashes[i][len(res.hashes[i])-1]) } else { res.subTask.done = true } } } // Iterate over all the complete contracts, reconstruct the trie nodes and // push them to disk. If the contract is chunked, the trie nodes will be // reconstructed later. slots += len(res.hashes[i]) if i < len(res.hashes)-1 || res.subTask == nil { // no need to make local reassignment of account: this closure does not outlive the loop options := trie.NewStackTrieOptions() options = options.WithWriter(func(path []byte, hash common.Hash, blob []byte) { rawdb.WriteTrieNode(batch, account, path, hash, blob, s.scheme) }) if s.scheme == rawdb.PathScheme { // Configure the dangling node cleaner only in the context of the // path scheme. Deletion is forbidden in the hash scheme, as it can // disrupt state completeness. // // Notably, boundary nodes can be also kept because the whole storage // trie is complete. options = options.WithCleaner(func(path []byte) { s.cleanPath(batch, account, path) }) } tr := trie.NewStackTrie(options) for j := 0; j < len(res.hashes[i]); j++ { tr.Update(res.hashes[i][j][:], res.slots[i][j]) } tr.Commit() } // Persist the received storage segments. These flat state maybe // outdated during the sync, but it can be fixed later during the // snapshot generation. for j := 0; j < len(res.hashes[i]); j++ { rawdb.WriteStorageSnapshot(batch, account, res.hashes[i][j], res.slots[i][j]) // If we're storing large contracts, generate the trie nodes // on the fly to not trash the gluing points if i == len(res.hashes)-1 && res.subTask != nil { res.subTask.genTrie.Update(res.hashes[i][j][:], res.slots[i][j]) } } } // Large contracts could have generated new trie nodes, flush them to disk if res.subTask != nil { if res.subTask.done { root := res.subTask.genTrie.Commit() if err := res.subTask.genBatch.Write(); err != nil { log.Error("Failed to persist stack slots", "err", err) } res.subTask.genBatch.Reset() // If the chunk's root is an overflown but full delivery, // clear the heal request. accountHash := res.accounts[len(res.accounts)-1] if root == res.subTask.root && rawdb.HasTrieNode(s.db, accountHash, nil, root, s.scheme) { for i, account := range res.mainTask.res.hashes { if account == accountHash { res.mainTask.needHeal[i] = false skipStorageHealingGauge.Inc(1) } } } } if res.subTask.genBatch.ValueSize() > ethdb.IdealBatchSize { if err := res.subTask.genBatch.Write(); err != nil { log.Error("Failed to persist stack slots", "err", err) } res.subTask.genBatch.Reset() } } // Flush anything written just now and update the stats if err := batch.Write(); err != nil { log.Crit("Failed to persist storage slots", "err", err) } s.storageSynced += uint64(slots) log.Debug("Persisted set of storage slots", "accounts", len(res.hashes), "slots", slots, "bytes", s.storageBytes-oldStorageBytes) // If this delivery completed the last pending task, forward the account task // to the next chunk if res.mainTask.pend == 0 { s.forwardAccountTask(res.mainTask) return } // Some accounts are still incomplete, leave as is for the storage and contract // task assigners to pick up and fill. } // processTrienodeHealResponse integrates an already validated trienode response // into the healer tasks. func (s *Syncer) processTrienodeHealResponse(res *trienodeHealResponse) { var ( start = time.Now() fills int ) for i, hash := range res.hashes { node := res.nodes[i] // If the trie node was not delivered, reschedule it if node == nil { res.task.trieTasks[res.paths[i]] = res.hashes[i] continue } fills++ // Push the trie node into the state syncer s.trienodeHealSynced++ s.trienodeHealBytes += common.StorageSize(len(node)) err := s.healer.scheduler.ProcessNode(trie.NodeSyncResult{Path: res.paths[i], Data: node}) switch err { case nil: case trie.ErrAlreadyProcessed: s.trienodeHealDups++ case trie.ErrNotRequested: s.trienodeHealNops++ default: log.Error("Invalid trienode processed", "hash", hash, "err", err) } } s.commitHealer(false) // Calculate the processing rate of one filled trie node rate := float64(fills) / (float64(time.Since(start)) / float64(time.Second)) // Update the currently measured trienode queueing and processing throughput. // // The processing rate needs to be updated uniformly independent if we've // processed 1x100 trie nodes or 100x1 to keep the rate consistent even in // the face of varying network packets. As such, we cannot just measure the // time it took to process N trie nodes and update once, we need one update // per trie node. // // Naively, that would be: // // for i:=0; i time.Second { // Periodically adjust the trie node throttler if float64(pending) > 2*s.trienodeHealRate { s.trienodeHealThrottle *= trienodeHealThrottleIncrease } else { s.trienodeHealThrottle /= trienodeHealThrottleDecrease } if s.trienodeHealThrottle > maxTrienodeHealThrottle { s.trienodeHealThrottle = maxTrienodeHealThrottle } else if s.trienodeHealThrottle < minTrienodeHealThrottle { s.trienodeHealThrottle = minTrienodeHealThrottle } s.trienodeHealThrottled = time.Now() log.Debug("Updated trie node heal throttler", "rate", s.trienodeHealRate, "pending", pending, "throttle", s.trienodeHealThrottle) } } func (s *Syncer) commitHealer(force bool) { if !force && s.healer.scheduler.MemSize() < ethdb.IdealBatchSize { return } batch := s.db.NewBatch() if err := s.healer.scheduler.Commit(batch); err != nil { log.Error("Failed to commit healing data", "err", err) } if err := batch.Write(); err != nil { log.Crit("Failed to persist healing data", "err", err) } log.Debug("Persisted set of healing data", "type", "trienodes", "bytes", common.StorageSize(batch.ValueSize())) } // processBytecodeHealResponse integrates an already validated bytecode response // into the healer tasks. func (s *Syncer) processBytecodeHealResponse(res *bytecodeHealResponse) { for i, hash := range res.hashes { node := res.codes[i] // If the trie node was not delivered, reschedule it if node == nil { res.task.codeTasks[hash] = struct{}{} continue } // Push the trie node into the state syncer s.bytecodeHealSynced++ s.bytecodeHealBytes += common.StorageSize(len(node)) err := s.healer.scheduler.ProcessCode(trie.CodeSyncResult{Hash: hash, Data: node}) switch err { case nil: case trie.ErrAlreadyProcessed: s.bytecodeHealDups++ case trie.ErrNotRequested: s.bytecodeHealNops++ default: log.Error("Invalid bytecode processed", "hash", hash, "err", err) } } s.commitHealer(false) } // forwardAccountTask takes a filled account task and persists anything available // into the database, after which it forwards the next account marker so that the // task's next chunk may be filled. func (s *Syncer) forwardAccountTask(task *accountTask) { // Remove any pending delivery res := task.res if res == nil { return // nothing to forward } task.res = nil // Persist the received account segments. These flat state maybe // outdated during the sync, but it can be fixed later during the // snapshot generation. oldAccountBytes := s.accountBytes batch := ethdb.HookedBatch{ Batch: s.db.NewBatch(), OnPut: func(key []byte, value []byte) { s.accountBytes += common.StorageSize(len(key) + len(value)) }, } for i, hash := range res.hashes { if task.needCode[i] || task.needState[i] { break } slim := types.SlimAccountRLP(*res.accounts[i]) rawdb.WriteAccountSnapshot(batch, hash, slim) // If the task is complete, drop it into the stack trie to generate // account trie nodes for it if !task.needHeal[i] { full, err := types.FullAccountRLP(slim) // TODO(karalabe): Slim parsing can be omitted if err != nil { panic(err) // Really shouldn't ever happen } task.genTrie.Update(hash[:], full) } } // Flush anything written just now and update the stats if err := batch.Write(); err != nil { log.Crit("Failed to persist accounts", "err", err) } s.accountSynced += uint64(len(res.accounts)) // Task filling persisted, push it the chunk marker forward to the first // account still missing data. for i, hash := range res.hashes { if task.needCode[i] || task.needState[i] { return } task.Next = incHash(hash) // Remove the completion flag once the account range is pushed // forward. The leftover accounts will be skipped in the next // cycle. delete(task.stateCompleted, hash) } // All accounts marked as complete, track if the entire task is done task.done = !res.cont // Error out if there is any leftover completion flag. if task.done && len(task.stateCompleted) != 0 { panic(fmt.Errorf("storage completion flags should be emptied, %d left", len(task.stateCompleted))) } // Stack trie could have generated trie nodes, push them to disk (we need to // flush after finalizing task.done. It's fine even if we crash and lose this // write as it will only cause more data to be downloaded during heal. if task.done { task.genTrie.Commit() } if task.genBatch.ValueSize() > ethdb.IdealBatchSize || task.done { if err := task.genBatch.Write(); err != nil { log.Error("Failed to persist stack account", "err", err) } task.genBatch.Reset() } log.Debug("Persisted range of accounts", "accounts", len(res.accounts), "bytes", s.accountBytes-oldAccountBytes) } // OnAccounts is a callback method to invoke when a range of accounts are // received from a remote peer. func (s *Syncer) OnAccounts(peer SyncPeer, id uint64, hashes []common.Hash, accounts [][]byte, proof [][]byte) error { size := common.StorageSize(len(hashes) * common.HashLength) for _, account := range accounts { size += common.StorageSize(len(account)) } for _, node := range proof { size += common.StorageSize(len(node)) } logger := peer.Log().New("reqid", id) logger.Trace("Delivering range of accounts", "hashes", len(hashes), "accounts", len(accounts), "proofs", len(proof), "bytes", size) // Whether or not the response is valid, we can mark the peer as idle and // notify the scheduler to assign a new task. If the response is invalid, // we'll drop the peer in a bit. defer func() { s.lock.Lock() defer s.lock.Unlock() if _, ok := s.peers[peer.ID()]; ok { s.accountIdlers[peer.ID()] = struct{}{} } select { case s.update <- struct{}{}: default: } }() s.lock.Lock() // Ensure the response is for a valid request req, ok := s.accountReqs[id] if !ok { // Request stale, perhaps the peer timed out but came through in the end logger.Warn("Unexpected account range packet") s.lock.Unlock() return nil } delete(s.accountReqs, id) s.rates.Update(peer.ID(), AccountRangeMsg, time.Since(req.time), int(size)) // Clean up the request timeout timer, we'll see how to proceed further based // on the actual delivered content if !req.timeout.Stop() { // The timeout is already triggered, and this request will be reverted+rescheduled s.lock.Unlock() return nil } // Response is valid, but check if peer is signalling that it does not have // the requested data. For account range queries that means the state being // retrieved was either already pruned remotely, or the peer is not yet // synced to our head. if len(hashes) == 0 && len(accounts) == 0 && len(proof) == 0 { logger.Debug("Peer rejected account range request", "root", s.root) s.statelessPeers[peer.ID()] = struct{}{} s.lock.Unlock() // Signal this request as failed, and ready for rescheduling s.scheduleRevertAccountRequest(req) return nil } root := s.root s.lock.Unlock() // Reconstruct a partial trie from the response and verify it keys := make([][]byte, len(hashes)) for i, key := range hashes { keys[i] = common.CopyBytes(key[:]) } nodes := make(trienode.ProofList, len(proof)) for i, node := range proof { nodes[i] = node } cont, err := trie.VerifyRangeProof(root, req.origin[:], keys, accounts, nodes.Set()) if err != nil { logger.Warn("Account range failed proof", "err", err) // Signal this request as failed, and ready for rescheduling s.scheduleRevertAccountRequest(req) return err } accs := make([]*types.StateAccount, len(accounts)) for i, account := range accounts { acc := new(types.StateAccount) if err := rlp.DecodeBytes(account, acc); err != nil { panic(err) // We created these blobs, we must be able to decode them } accs[i] = acc } response := &accountResponse{ task: req.task, hashes: hashes, accounts: accs, cont: cont, } select { case req.deliver <- response: case <-req.cancel: case <-req.stale: } return nil } // OnByteCodes is a callback method to invoke when a batch of contract // bytes codes are received from a remote peer. func (s *Syncer) OnByteCodes(peer SyncPeer, id uint64, bytecodes [][]byte) error { s.lock.RLock() syncing := !s.snapped s.lock.RUnlock() if syncing { return s.onByteCodes(peer, id, bytecodes) } return s.onHealByteCodes(peer, id, bytecodes) } // onByteCodes is a callback method to invoke when a batch of contract // bytes codes are received from a remote peer in the syncing phase. func (s *Syncer) onByteCodes(peer SyncPeer, id uint64, bytecodes [][]byte) error { var size common.StorageSize for _, code := range bytecodes { size += common.StorageSize(len(code)) } logger := peer.Log().New("reqid", id) logger.Trace("Delivering set of bytecodes", "bytecodes", len(bytecodes), "bytes", size) // Whether or not the response is valid, we can mark the peer as idle and // notify the scheduler to assign a new task. If the response is invalid, // we'll drop the peer in a bit. defer func() { s.lock.Lock() defer s.lock.Unlock() if _, ok := s.peers[peer.ID()]; ok { s.bytecodeIdlers[peer.ID()] = struct{}{} } select { case s.update <- struct{}{}: default: } }() s.lock.Lock() // Ensure the response is for a valid request req, ok := s.bytecodeReqs[id] if !ok { // Request stale, perhaps the peer timed out but came through in the end logger.Warn("Unexpected bytecode packet") s.lock.Unlock() return nil } delete(s.bytecodeReqs, id) s.rates.Update(peer.ID(), ByteCodesMsg, time.Since(req.time), len(bytecodes)) // Clean up the request timeout timer, we'll see how to proceed further based // on the actual delivered content if !req.timeout.Stop() { // The timeout is already triggered, and this request will be reverted+rescheduled s.lock.Unlock() return nil } // Response is valid, but check if peer is signalling that it does not have // the requested data. For bytecode range queries that means the peer is not // yet synced. if len(bytecodes) == 0 { logger.Debug("Peer rejected bytecode request") s.statelessPeers[peer.ID()] = struct{}{} s.lock.Unlock() // Signal this request as failed, and ready for rescheduling s.scheduleRevertBytecodeRequest(req) return nil } s.lock.Unlock() // Cross reference the requested bytecodes with the response to find gaps // that the serving node is missing hasher := sha3.NewLegacyKeccak256().(crypto.KeccakState) hash := make([]byte, 32) codes := make([][]byte, len(req.hashes)) for i, j := 0, 0; i < len(bytecodes); i++ { // Find the next hash that we've been served, leaving misses with nils hasher.Reset() hasher.Write(bytecodes[i]) hasher.Read(hash) for j < len(req.hashes) && !bytes.Equal(hash, req.hashes[j][:]) { j++ } if j < len(req.hashes) { codes[j] = bytecodes[i] j++ continue } // We've either ran out of hashes, or got unrequested data logger.Warn("Unexpected bytecodes", "count", len(bytecodes)-i) // Signal this request as failed, and ready for rescheduling s.scheduleRevertBytecodeRequest(req) return errors.New("unexpected bytecode") } // Response validated, send it to the scheduler for filling response := &bytecodeResponse{ task: req.task, hashes: req.hashes, codes: codes, } select { case req.deliver <- response: case <-req.cancel: case <-req.stale: } return nil } // OnStorage is a callback method to invoke when ranges of storage slots // are received from a remote peer. func (s *Syncer) OnStorage(peer SyncPeer, id uint64, hashes [][]common.Hash, slots [][][]byte, proof [][]byte) error { // Gather some trace stats to aid in debugging issues var ( hashCount int slotCount int size common.StorageSize ) for _, hashset := range hashes { size += common.StorageSize(common.HashLength * len(hashset)) hashCount += len(hashset) } for _, slotset := range slots { for _, slot := range slotset { size += common.StorageSize(len(slot)) } slotCount += len(slotset) } for _, node := range proof { size += common.StorageSize(len(node)) } logger := peer.Log().New("reqid", id) logger.Trace("Delivering ranges of storage slots", "accounts", len(hashes), "hashes", hashCount, "slots", slotCount, "proofs", len(proof), "size", size) // Whether or not the response is valid, we can mark the peer as idle and // notify the scheduler to assign a new task. If the response is invalid, // we'll drop the peer in a bit. defer func() { s.lock.Lock() defer s.lock.Unlock() if _, ok := s.peers[peer.ID()]; ok { s.storageIdlers[peer.ID()] = struct{}{} } select { case s.update <- struct{}{}: default: } }() s.lock.Lock() // Ensure the response is for a valid request req, ok := s.storageReqs[id] if !ok { // Request stale, perhaps the peer timed out but came through in the end logger.Warn("Unexpected storage ranges packet") s.lock.Unlock() return nil } delete(s.storageReqs, id) s.rates.Update(peer.ID(), StorageRangesMsg, time.Since(req.time), int(size)) // Clean up the request timeout timer, we'll see how to proceed further based // on the actual delivered content if !req.timeout.Stop() { // The timeout is already triggered, and this request will be reverted+rescheduled s.lock.Unlock() return nil } // Reject the response if the hash sets and slot sets don't match, or if the // peer sent more data than requested. if len(hashes) != len(slots) { s.lock.Unlock() s.scheduleRevertStorageRequest(req) // reschedule request logger.Warn("Hash and slot set size mismatch", "hashset", len(hashes), "slotset", len(slots)) return errors.New("hash and slot set size mismatch") } if len(hashes) > len(req.accounts) { s.lock.Unlock() s.scheduleRevertStorageRequest(req) // reschedule request logger.Warn("Hash set larger than requested", "hashset", len(hashes), "requested", len(req.accounts)) return errors.New("hash set larger than requested") } // Response is valid, but check if peer is signalling that it does not have // the requested data. For storage range queries that means the state being // retrieved was either already pruned remotely, or the peer is not yet // synced to our head. if len(hashes) == 0 && len(proof) == 0 { logger.Debug("Peer rejected storage request") s.statelessPeers[peer.ID()] = struct{}{} s.lock.Unlock() s.scheduleRevertStorageRequest(req) // reschedule request return nil } s.lock.Unlock() // Reconstruct the partial tries from the response and verify them var cont bool // If a proof was attached while the response is empty, it indicates that the // requested range specified with 'origin' is empty. Construct an empty state // response locally to finalize the range. if len(hashes) == 0 && len(proof) > 0 { hashes = append(hashes, []common.Hash{}) slots = append(slots, [][]byte{}) } for i := 0; i < len(hashes); i++ { // Convert the keys and proofs into an internal format keys := make([][]byte, len(hashes[i])) for j, key := range hashes[i] { keys[j] = common.CopyBytes(key[:]) } nodes := make(trienode.ProofList, 0, len(proof)) if i == len(hashes)-1 { for _, node := range proof { nodes = append(nodes, node) } } var err error if len(nodes) == 0 { // No proof has been attached, the response must cover the entire key // space and hash to the origin root. _, err = trie.VerifyRangeProof(req.roots[i], nil, keys, slots[i], nil) if err != nil { s.scheduleRevertStorageRequest(req) // reschedule request logger.Warn("Storage slots failed proof", "err", err) return err } } else { // A proof was attached, the response is only partial, check that the // returned data is indeed part of the storage trie proofdb := nodes.Set() cont, err = trie.VerifyRangeProof(req.roots[i], req.origin[:], keys, slots[i], proofdb) if err != nil { s.scheduleRevertStorageRequest(req) // reschedule request logger.Warn("Storage range failed proof", "err", err) return err } } } // Partial tries reconstructed, send them to the scheduler for storage filling response := &storageResponse{ mainTask: req.mainTask, subTask: req.subTask, accounts: req.accounts, roots: req.roots, hashes: hashes, slots: slots, cont: cont, } select { case req.deliver <- response: case <-req.cancel: case <-req.stale: } return nil } // OnTrieNodes is a callback method to invoke when a batch of trie nodes // are received from a remote peer. func (s *Syncer) OnTrieNodes(peer SyncPeer, id uint64, trienodes [][]byte) error { var size common.StorageSize for _, node := range trienodes { size += common.StorageSize(len(node)) } logger := peer.Log().New("reqid", id) logger.Trace("Delivering set of healing trienodes", "trienodes", len(trienodes), "bytes", size) // Whether or not the response is valid, we can mark the peer as idle and // notify the scheduler to assign a new task. If the response is invalid, // we'll drop the peer in a bit. defer func() { s.lock.Lock() defer s.lock.Unlock() if _, ok := s.peers[peer.ID()]; ok { s.trienodeHealIdlers[peer.ID()] = struct{}{} } select { case s.update <- struct{}{}: default: } }() s.lock.Lock() // Ensure the response is for a valid request req, ok := s.trienodeHealReqs[id] if !ok { // Request stale, perhaps the peer timed out but came through in the end logger.Warn("Unexpected trienode heal packet") s.lock.Unlock() return nil } delete(s.trienodeHealReqs, id) s.rates.Update(peer.ID(), TrieNodesMsg, time.Since(req.time), len(trienodes)) // Clean up the request timeout timer, we'll see how to proceed further based // on the actual delivered content if !req.timeout.Stop() { // The timeout is already triggered, and this request will be reverted+rescheduled s.lock.Unlock() return nil } // Response is valid, but check if peer is signalling that it does not have // the requested data. For bytecode range queries that means the peer is not // yet synced. if len(trienodes) == 0 { logger.Debug("Peer rejected trienode heal request") s.statelessPeers[peer.ID()] = struct{}{} s.lock.Unlock() // Signal this request as failed, and ready for rescheduling s.scheduleRevertTrienodeHealRequest(req) return nil } s.lock.Unlock() // Cross reference the requested trienodes with the response to find gaps // that the serving node is missing var ( hasher = sha3.NewLegacyKeccak256().(crypto.KeccakState) hash = make([]byte, 32) nodes = make([][]byte, len(req.hashes)) fills uint64 ) for i, j := 0, 0; i < len(trienodes); i++ { // Find the next hash that we've been served, leaving misses with nils hasher.Reset() hasher.Write(trienodes[i]) hasher.Read(hash) for j < len(req.hashes) && !bytes.Equal(hash, req.hashes[j][:]) { j++ } if j < len(req.hashes) { nodes[j] = trienodes[i] fills++ j++ continue } // We've either ran out of hashes, or got unrequested data logger.Warn("Unexpected healing trienodes", "count", len(trienodes)-i) // Signal this request as failed, and ready for rescheduling s.scheduleRevertTrienodeHealRequest(req) return errors.New("unexpected healing trienode") } // Response validated, send it to the scheduler for filling s.trienodeHealPend.Add(fills) defer func() { s.trienodeHealPend.Add(^(fills - 1)) }() response := &trienodeHealResponse{ paths: req.paths, task: req.task, hashes: req.hashes, nodes: nodes, } select { case req.deliver <- response: case <-req.cancel: case <-req.stale: } return nil } // onHealByteCodes is a callback method to invoke when a batch of contract // bytes codes are received from a remote peer in the healing phase. func (s *Syncer) onHealByteCodes(peer SyncPeer, id uint64, bytecodes [][]byte) error { var size common.StorageSize for _, code := range bytecodes { size += common.StorageSize(len(code)) } logger := peer.Log().New("reqid", id) logger.Trace("Delivering set of healing bytecodes", "bytecodes", len(bytecodes), "bytes", size) // Whether or not the response is valid, we can mark the peer as idle and // notify the scheduler to assign a new task. If the response is invalid, // we'll drop the peer in a bit. defer func() { s.lock.Lock() defer s.lock.Unlock() if _, ok := s.peers[peer.ID()]; ok { s.bytecodeHealIdlers[peer.ID()] = struct{}{} } select { case s.update <- struct{}{}: default: } }() s.lock.Lock() // Ensure the response is for a valid request req, ok := s.bytecodeHealReqs[id] if !ok { // Request stale, perhaps the peer timed out but came through in the end logger.Warn("Unexpected bytecode heal packet") s.lock.Unlock() return nil } delete(s.bytecodeHealReqs, id) s.rates.Update(peer.ID(), ByteCodesMsg, time.Since(req.time), len(bytecodes)) // Clean up the request timeout timer, we'll see how to proceed further based // on the actual delivered content if !req.timeout.Stop() { // The timeout is already triggered, and this request will be reverted+rescheduled s.lock.Unlock() return nil } // Response is valid, but check if peer is signalling that it does not have // the requested data. For bytecode range queries that means the peer is not // yet synced. if len(bytecodes) == 0 { logger.Debug("Peer rejected bytecode heal request") s.statelessPeers[peer.ID()] = struct{}{} s.lock.Unlock() // Signal this request as failed, and ready for rescheduling s.scheduleRevertBytecodeHealRequest(req) return nil } s.lock.Unlock() // Cross reference the requested bytecodes with the response to find gaps // that the serving node is missing hasher := sha3.NewLegacyKeccak256().(crypto.KeccakState) hash := make([]byte, 32) codes := make([][]byte, len(req.hashes)) for i, j := 0, 0; i < len(bytecodes); i++ { // Find the next hash that we've been served, leaving misses with nils hasher.Reset() hasher.Write(bytecodes[i]) hasher.Read(hash) for j < len(req.hashes) && !bytes.Equal(hash, req.hashes[j][:]) { j++ } if j < len(req.hashes) { codes[j] = bytecodes[i] j++ continue } // We've either ran out of hashes, or got unrequested data logger.Warn("Unexpected healing bytecodes", "count", len(bytecodes)-i) // Signal this request as failed, and ready for rescheduling s.scheduleRevertBytecodeHealRequest(req) return errors.New("unexpected healing bytecode") } // Response validated, send it to the scheduler for filling response := &bytecodeHealResponse{ task: req.task, hashes: req.hashes, codes: codes, } select { case req.deliver <- response: case <-req.cancel: case <-req.stale: } return nil } // onHealState is a callback method to invoke when a flat state(account // or storage slot) is downloaded during the healing stage. The flat states // can be persisted blindly and can be fixed later in the generation stage. // Note it's not concurrent safe, please handle the concurrent issue outside. func (s *Syncer) onHealState(paths [][]byte, value []byte) error { if len(paths) == 1 { var account types.StateAccount if err := rlp.DecodeBytes(value, &account); err != nil { return nil // Returning the error here would drop the remote peer } blob := types.SlimAccountRLP(account) rawdb.WriteAccountSnapshot(s.stateWriter, common.BytesToHash(paths[0]), blob) s.accountHealed += 1 s.accountHealedBytes += common.StorageSize(1 + common.HashLength + len(blob)) } if len(paths) == 2 { rawdb.WriteStorageSnapshot(s.stateWriter, common.BytesToHash(paths[0]), common.BytesToHash(paths[1]), value) s.storageHealed += 1 s.storageHealedBytes += common.StorageSize(1 + 2*common.HashLength + len(value)) } if s.stateWriter.ValueSize() > ethdb.IdealBatchSize { s.stateWriter.Write() // It's fine to ignore the error here s.stateWriter.Reset() } return nil } // hashSpace is the total size of the 256 bit hash space for accounts. var hashSpace = new(big.Int).Exp(common.Big2, common.Big256, nil) // report calculates various status reports and provides it to the user. func (s *Syncer) report(force bool) { if len(s.tasks) > 0 { s.reportSyncProgress(force) return } s.reportHealProgress(force) } // reportSyncProgress calculates various status reports and provides it to the user. func (s *Syncer) reportSyncProgress(force bool) { // Don't report all the events, just occasionally if !force && time.Since(s.logTime) < 8*time.Second { return } // Don't report anything until we have a meaningful progress synced := s.accountBytes + s.bytecodeBytes + s.storageBytes if synced == 0 { return } accountGaps := new(big.Int) for _, task := range s.tasks { accountGaps.Add(accountGaps, new(big.Int).Sub(task.Last.Big(), task.Next.Big())) } accountFills := new(big.Int).Sub(hashSpace, accountGaps) if accountFills.BitLen() == 0 { return } s.logTime = time.Now() estBytes := float64(new(big.Int).Div( new(big.Int).Mul(new(big.Int).SetUint64(uint64(synced)), hashSpace), accountFills, ).Uint64()) // Don't report anything until we have a meaningful progress if estBytes < 1.0 { return } elapsed := time.Since(s.startTime) estTime := elapsed / time.Duration(synced) * time.Duration(estBytes) // Create a mega progress report var ( progress = fmt.Sprintf("%.2f%%", float64(synced)*100/estBytes) accounts = fmt.Sprintf("%v@%v", log.FormatLogfmtUint64(s.accountSynced), s.accountBytes.TerminalString()) storage = fmt.Sprintf("%v@%v", log.FormatLogfmtUint64(s.storageSynced), s.storageBytes.TerminalString()) bytecode = fmt.Sprintf("%v@%v", log.FormatLogfmtUint64(s.bytecodeSynced), s.bytecodeBytes.TerminalString()) ) log.Info("Syncing: state download in progress", "synced", progress, "state", synced, "accounts", accounts, "slots", storage, "codes", bytecode, "eta", common.PrettyDuration(estTime-elapsed)) } // reportHealProgress calculates various status reports and provides it to the user. func (s *Syncer) reportHealProgress(force bool) { // Don't report all the events, just occasionally if !force && time.Since(s.logTime) < 8*time.Second { return } s.logTime = time.Now() // Create a mega progress report var ( trienode = fmt.Sprintf("%v@%v", log.FormatLogfmtUint64(s.trienodeHealSynced), s.trienodeHealBytes.TerminalString()) bytecode = fmt.Sprintf("%v@%v", log.FormatLogfmtUint64(s.bytecodeHealSynced), s.bytecodeHealBytes.TerminalString()) accounts = fmt.Sprintf("%v@%v", log.FormatLogfmtUint64(s.accountHealed), s.accountHealedBytes.TerminalString()) storage = fmt.Sprintf("%v@%v", log.FormatLogfmtUint64(s.storageHealed), s.storageHealedBytes.TerminalString()) ) log.Info("Syncing: state healing in progress", "accounts", accounts, "slots", storage, "codes", bytecode, "nodes", trienode, "pending", s.healer.scheduler.Pending()) } // estimateRemainingSlots tries to determine roughly how many slots are left in // a contract storage, based on the number of keys and the last hash. This method // assumes that the hashes are lexicographically ordered and evenly distributed. func estimateRemainingSlots(hashes int, last common.Hash) (uint64, error) { if last == (common.Hash{}) { return 0, errors.New("last hash empty") } space := new(big.Int).Mul(math.MaxBig256, big.NewInt(int64(hashes))) space.Div(space, last.Big()) if !space.IsUint64() { // Gigantic address space probably due to too few or malicious slots return 0, errors.New("too few slots for estimation") } return space.Uint64() - uint64(hashes), nil } // capacitySort implements the Sort interface, allowing sorting by peer message // throughput. Note, callers should use sort.Reverse to get the desired effect // of highest capacity being at the front. type capacitySort struct { ids []string caps []int } func (s *capacitySort) Len() int { return len(s.ids) } func (s *capacitySort) Less(i, j int) bool { return s.caps[i] < s.caps[j] } func (s *capacitySort) Swap(i, j int) { s.ids[i], s.ids[j] = s.ids[j], s.ids[i] s.caps[i], s.caps[j] = s.caps[j], s.caps[i] } // healRequestSort implements the Sort interface, allowing sorting trienode // heal requests, which is a prerequisite for merging storage-requests. type healRequestSort struct { paths []string hashes []common.Hash syncPaths []trie.SyncPath } func (t *healRequestSort) Len() int { return len(t.hashes) } func (t *healRequestSort) Less(i, j int) bool { a := t.syncPaths[i] b := t.syncPaths[j] switch bytes.Compare(a[0], b[0]) { case -1: return true case 1: return false } // identical first part if len(a) < len(b) { return true } if len(b) < len(a) { return false } if len(a) == 2 { return bytes.Compare(a[1], b[1]) < 0 } return false } func (t *healRequestSort) Swap(i, j int) { t.paths[i], t.paths[j] = t.paths[j], t.paths[i] t.hashes[i], t.hashes[j] = t.hashes[j], t.hashes[i] t.syncPaths[i], t.syncPaths[j] = t.syncPaths[j], t.syncPaths[i] } // Merge merges the pathsets, so that several storage requests concerning the // same account are merged into one, to reduce bandwidth. // OBS: This operation is moot if t has not first been sorted. func (t *healRequestSort) Merge() []TrieNodePathSet { var result []TrieNodePathSet for _, path := range t.syncPaths { pathset := TrieNodePathSet(path) if len(path) == 1 { // It's an account reference. result = append(result, pathset) } else { // It's a storage reference. end := len(result) - 1 if len(result) == 0 || !bytes.Equal(pathset[0], result[end][0]) { // The account doesn't match last, create a new entry. result = append(result, pathset) } else { // It's the same account as the previous one, add to the storage // paths of that request. result[end] = append(result[end], pathset[1]) } } } return result } // sortByAccountPath takes hashes and paths, and sorts them. After that, it generates // the TrieNodePaths and merges paths which belongs to the same account path. func sortByAccountPath(paths []string, hashes []common.Hash) ([]string, []common.Hash, []trie.SyncPath, []TrieNodePathSet) { var syncPaths []trie.SyncPath for _, path := range paths { syncPaths = append(syncPaths, trie.NewSyncPath([]byte(path))) } n := &healRequestSort{paths, hashes, syncPaths} sort.Sort(n) pathsets := n.Merge() return n.paths, n.hashes, n.syncPaths, pathsets }