// Copyright 2014 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package state import ( "bytes" "fmt" "maps" "slices" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/rlp" "github.com/ethereum/go-ethereum/trie/trienode" "github.com/holiman/uint256" ) type Storage map[common.Hash]common.Hash func (s Storage) Copy() Storage { return maps.Clone(s) } // stateObject represents an Ethereum account which is being modified. // // The usage pattern is as follows: // - First you need to obtain a state object. // - Account values as well as storages can be accessed and modified through the object. // - Finally, call commit to return the changes of storage trie and update account data. type stateObject struct { db *StateDB address common.Address // address of ethereum account addrHash common.Hash // hash of ethereum address of the account origin *types.StateAccount // Account original data without any change applied, nil means it was not existent data types.StateAccount // Account data with all mutations applied in the scope of block // Write caches. trie Trie // storage trie, which becomes non-nil on first access code []byte // contract bytecode, which gets set when code is loaded originStorage Storage // Storage entries that have been accessed within the current block dirtyStorage Storage // Storage entries that have been modified within the current transaction pendingStorage Storage // Storage entries that have been modified within the current block // uncommittedStorage tracks a set of storage entries that have been modified // but not yet committed since the "last commit operation", along with their // original values before mutation. // // Specifically, the commit will be performed after each transaction before // the byzantium fork, therefore the map is already reset at the transaction // boundary; however post the byzantium fork, the commit will only be performed // at the end of block, this set essentially tracks all the modifications // made within the block. uncommittedStorage Storage // Cache flags. dirtyCode bool // true if the code was updated // Flag whether the account was marked as self-destructed. The self-destructed // account is still accessible in the scope of same transaction. selfDestructed bool // This is an EIP-6780 flag indicating whether the object is eligible for // self-destruct according to EIP-6780. The flag could be set either when // the contract is just created within the current transaction, or when the // object was previously existent and is being deployed as a contract within // the current transaction. newContract bool } // empty returns whether the account is considered empty. func (s *stateObject) empty() bool { return s.data.Nonce == 0 && s.data.Balance.IsZero() && bytes.Equal(s.data.CodeHash, types.EmptyCodeHash.Bytes()) } // newObject creates a state object. func newObject(db *StateDB, address common.Address, acct *types.StateAccount) *stateObject { origin := acct if acct == nil { acct = types.NewEmptyStateAccount() } return &stateObject{ db: db, address: address, addrHash: crypto.Keccak256Hash(address[:]), origin: origin, data: *acct, originStorage: make(Storage), dirtyStorage: make(Storage), pendingStorage: make(Storage), uncommittedStorage: make(Storage), } } func (s *stateObject) markSelfdestructed() { s.selfDestructed = true } func (s *stateObject) touch() { s.db.journal.touchChange(s.address) } // getTrie returns the associated storage trie. The trie will be opened if it's // not loaded previously. An error will be returned if trie can't be loaded. // // If a new trie is opened, it will be cached within the state object to allow // subsequent reads to expand the same trie instead of reloading from disk. func (s *stateObject) getTrie() (Trie, error) { if s.trie == nil { tr, err := s.db.db.OpenStorageTrie(s.db.originalRoot, s.address, s.data.Root, s.db.trie) if err != nil { return nil, err } s.trie = tr } return s.trie, nil } // getPrefetchedTrie returns the associated trie, as populated by the prefetcher // if it's available. // // Note, opposed to getTrie, this method will *NOT* blindly cache the resulting // trie in the state object. The caller might want to do that, but it's cleaner // to break the hidden interdependency between retrieving tries from the db or // from the prefetcher. func (s *stateObject) getPrefetchedTrie() Trie { // If there's nothing to meaningfully return, let the user figure it out by // pulling the trie from disk. if (s.data.Root == types.EmptyRootHash && !s.db.db.TrieDB().IsVerkle()) || s.db.prefetcher == nil { return nil } // Attempt to retrieve the trie from the prefetcher return s.db.prefetcher.trie(s.addrHash, s.data.Root) } // GetState retrieves a value associated with the given storage key. func (s *stateObject) GetState(key common.Hash) common.Hash { value, _ := s.getState(key) return value } // getState retrieves a value associated with the given storage key, along with // its original value. func (s *stateObject) getState(key common.Hash) (common.Hash, common.Hash) { origin := s.GetCommittedState(key) value, dirty := s.dirtyStorage[key] if dirty { return value, origin } return origin, origin } // GetCommittedState retrieves the value associated with the specific key // without any mutations caused in the current execution. func (s *stateObject) GetCommittedState(key common.Hash) common.Hash { // If we have a pending write or clean cached, return that if value, pending := s.pendingStorage[key]; pending { return value } if value, cached := s.originStorage[key]; cached { return value } // If the object was destructed in *this* block (and potentially resurrected), // the storage has been cleared out, and we should *not* consult the previous // database about any storage values. The only possible alternatives are: // 1) resurrect happened, and new slot values were set -- those should // have been handles via pendingStorage above. // 2) we don't have new values, and can deliver empty response back if _, destructed := s.db.stateObjectsDestruct[s.address]; destructed { s.originStorage[key] = common.Hash{} // track the empty slot as origin value return common.Hash{} } s.db.StorageLoaded++ start := time.Now() value, err := s.db.reader.Storage(s.address, key) if err != nil { s.db.setError(err) return common.Hash{} } s.db.StorageReads += time.Since(start) // Schedule the resolved storage slots for prefetching if it's enabled. if s.db.prefetcher != nil && s.data.Root != types.EmptyRootHash { if err = s.db.prefetcher.prefetch(s.addrHash, s.origin.Root, s.address, nil, []common.Hash{key}, true); err != nil { log.Error("Failed to prefetch storage slot", "addr", s.address, "key", key, "err", err) } } s.originStorage[key] = value return value } // SetState updates a value in account storage. // It returns the previous value func (s *stateObject) SetState(key, value common.Hash) common.Hash { // If the new value is the same as old, don't set. Otherwise, track only the // dirty changes, supporting reverting all of it back to no change. prev, origin := s.getState(key) if prev == value { return prev } // New value is different, update and journal the change s.db.journal.storageChange(s.address, key, prev, origin) s.setState(key, value, origin) return prev } // setState updates a value in account dirty storage. The dirtiness will be // removed if the value being set equals to the original value. func (s *stateObject) setState(key common.Hash, value common.Hash, origin common.Hash) { // Storage slot is set back to its original value, undo the dirty marker if value == origin { delete(s.dirtyStorage, key) return } s.dirtyStorage[key] = value } // finalise moves all dirty storage slots into the pending area to be hashed or // committed later. It is invoked at the end of every transaction. func (s *stateObject) finalise() { slotsToPrefetch := make([]common.Hash, 0, len(s.dirtyStorage)) for key, value := range s.dirtyStorage { if origin, exist := s.uncommittedStorage[key]; exist && origin == value { // The slot is reverted to its original value, delete the entry // to avoid thrashing the data structures. delete(s.uncommittedStorage, key) } else if exist { // The slot is modified to another value and the slot has been // tracked for commit, do nothing here. } else { // The slot is different from its original value and hasn't been // tracked for commit yet. s.uncommittedStorage[key] = s.GetCommittedState(key) slotsToPrefetch = append(slotsToPrefetch, key) // Copy needed for closure } // Aggregate the dirty storage slots into the pending area. It might // be possible that the value of tracked slot here is same with the // one in originStorage (e.g. the slot was modified in tx_a and then // modified back in tx_b). We can't blindly remove it from pending // map as the dirty slot might have been committed already (before the // byzantium fork) and entry is necessary to modify the value back. s.pendingStorage[key] = value } if s.db.prefetcher != nil && len(slotsToPrefetch) > 0 && s.data.Root != types.EmptyRootHash { if err := s.db.prefetcher.prefetch(s.addrHash, s.data.Root, s.address, nil, slotsToPrefetch, false); err != nil { log.Error("Failed to prefetch slots", "addr", s.address, "slots", len(slotsToPrefetch), "err", err) } } if len(s.dirtyStorage) > 0 { s.dirtyStorage = make(Storage) } // Revoke the flag at the end of the transaction. It finalizes the status // of the newly-created object as it's no longer eligible for self-destruct // by EIP-6780. For non-newly-created objects, it's a no-op. s.newContract = false } // updateTrie is responsible for persisting cached storage changes into the // object's storage trie. In case the storage trie is not yet loaded, this // function will load the trie automatically. If any issues arise during the // loading or updating of the trie, an error will be returned. Furthermore, // this function will return the mutated storage trie, or nil if there is no // storage change at all. // // It assumes all the dirty storage slots have been finalized before. func (s *stateObject) updateTrie() (Trie, error) { // Short circuit if nothing was accessed, don't trigger a prefetcher warning if len(s.uncommittedStorage) == 0 { // Nothing was written, so we could stop early. Unless we have both reads // and witness collection enabled, in which case we need to fetch the trie. if s.db.witness == nil || len(s.originStorage) == 0 { return s.trie, nil } } // Retrieve a pretecher populated trie, or fall back to the database. This will // block until all prefetch tasks are done, which are needed for witnesses even // for unmodified state objects. tr := s.getPrefetchedTrie() if tr != nil { // Prefetcher returned a live trie, swap it out for the current one s.trie = tr } else { // Fetcher not running or empty trie, fallback to the database trie var err error tr, err = s.getTrie() if err != nil { s.db.setError(err) return nil, err } } // Short circuit if nothing changed, don't bother with hashing anything if len(s.uncommittedStorage) == 0 { return s.trie, nil } // Perform trie updates before deletions. This prevents resolution of unnecessary trie nodes // in circumstances similar to the following: // // Consider nodes `A` and `B` who share the same full node parent `P` and have no other siblings. // During the execution of a block: // - `A` is deleted, // - `C` is created, and also shares the parent `P`. // If the deletion is handled first, then `P` would be left with only one child, thus collapsed // into a shortnode. This requires `B` to be resolved from disk. // Whereas if the created node is handled first, then the collapse is avoided, and `B` is not resolved. var ( deletions []common.Hash used = make([]common.Hash, 0, len(s.uncommittedStorage)) ) for key, origin := range s.uncommittedStorage { // Skip noop changes, persist actual changes value, exist := s.pendingStorage[key] if value == origin { log.Error("Storage update was noop", "address", s.address, "slot", key) continue } if !exist { log.Error("Storage slot is not found in pending area", s.address, "slot", key) continue } if (value != common.Hash{}) { if err := tr.UpdateStorage(s.address, key[:], common.TrimLeftZeroes(value[:])); err != nil { s.db.setError(err) return nil, err } s.db.StorageUpdated.Add(1) } else { deletions = append(deletions, key) } // Cache the items for preloading used = append(used, key) // Copy needed for closure } for _, key := range deletions { if err := tr.DeleteStorage(s.address, key[:]); err != nil { s.db.setError(err) return nil, err } s.db.StorageDeleted.Add(1) } if s.db.prefetcher != nil { s.db.prefetcher.used(s.addrHash, s.data.Root, nil, used) } s.uncommittedStorage = make(Storage) // empties the commit markers return tr, nil } // updateRoot flushes all cached storage mutations to trie, recalculating the // new storage trie root. func (s *stateObject) updateRoot() { // Flush cached storage mutations into trie, short circuit if any error // is occurred or there is no change in the trie. tr, err := s.updateTrie() if err != nil || tr == nil { return } s.data.Root = tr.Hash() } // commitStorage overwrites the clean storage with the storage changes and // fulfills the storage diffs into the given accountUpdate struct. func (s *stateObject) commitStorage(op *accountUpdate) { var ( buf = crypto.NewKeccakState() encode = func(val common.Hash) []byte { if val == (common.Hash{}) { return nil } blob, _ := rlp.EncodeToBytes(common.TrimLeftZeroes(val[:])) return blob } ) for key, val := range s.pendingStorage { // Skip the noop storage changes, it might be possible the value // of tracked slot is same in originStorage and pendingStorage // map, e.g. the storage slot is modified in tx_a and then reset // back in tx_b. if val == s.originStorage[key] { continue } hash := crypto.HashData(buf, key[:]) if op.storages == nil { op.storages = make(map[common.Hash][]byte) } op.storages[hash] = encode(val) if op.storagesOriginByKey == nil { op.storagesOriginByKey = make(map[common.Hash][]byte) } if op.storagesOriginByHash == nil { op.storagesOriginByHash = make(map[common.Hash][]byte) } origin := encode(s.originStorage[key]) op.storagesOriginByKey[key] = origin op.storagesOriginByHash[hash] = origin // Overwrite the clean value of storage slots s.originStorage[key] = val } s.pendingStorage = make(Storage) } // commit obtains the account changes (metadata, storage slots, code) caused by // state execution along with the dirty storage trie nodes. // // Note, commit may run concurrently across all the state objects. Do not assume // thread-safe access to the statedb. func (s *stateObject) commit() (*accountUpdate, *trienode.NodeSet, error) { // commit the account metadata changes op := &accountUpdate{ address: s.address, data: types.SlimAccountRLP(s.data), } if s.origin != nil { op.origin = types.SlimAccountRLP(*s.origin) } // commit the contract code if it's modified if s.dirtyCode { op.code = &contractCode{ hash: common.BytesToHash(s.CodeHash()), blob: s.code, } s.dirtyCode = false // reset the dirty flag } // Commit storage changes and the associated storage trie s.commitStorage(op) if len(op.storages) == 0 { // nothing changed, don't bother to commit the trie s.origin = s.data.Copy() return op, nil, nil } root, nodes := s.trie.Commit(false) s.data.Root = root s.origin = s.data.Copy() return op, nodes, nil } // AddBalance adds amount to s's balance. // It is used to add funds to the destination account of a transfer. // returns the previous balance func (s *stateObject) AddBalance(amount *uint256.Int) uint256.Int { // EIP161: We must check emptiness for the objects such that the account // clearing (0,0,0 objects) can take effect. if amount.IsZero() { if s.empty() { s.touch() } return *(s.Balance()) } return s.SetBalance(new(uint256.Int).Add(s.Balance(), amount)) } // SetBalance sets the balance for the object, and returns the previous balance. func (s *stateObject) SetBalance(amount *uint256.Int) uint256.Int { prev := *s.data.Balance s.db.journal.balanceChange(s.address, s.data.Balance) s.setBalance(amount) return prev } func (s *stateObject) setBalance(amount *uint256.Int) { s.data.Balance = amount } func (s *stateObject) deepCopy(db *StateDB) *stateObject { obj := &stateObject{ db: db, address: s.address, addrHash: s.addrHash, origin: s.origin, data: s.data, code: s.code, originStorage: s.originStorage.Copy(), pendingStorage: s.pendingStorage.Copy(), dirtyStorage: s.dirtyStorage.Copy(), uncommittedStorage: s.uncommittedStorage.Copy(), dirtyCode: s.dirtyCode, selfDestructed: s.selfDestructed, newContract: s.newContract, } if s.trie != nil { obj.trie = mustCopyTrie(s.trie) } return obj } // // Attribute accessors // // Address returns the address of the contract/account func (s *stateObject) Address() common.Address { return s.address } // Code returns the contract code associated with this object, if any. func (s *stateObject) Code() []byte { if len(s.code) != 0 { return s.code } if bytes.Equal(s.CodeHash(), types.EmptyCodeHash.Bytes()) { return nil } code, err := s.db.reader.Code(s.address, common.BytesToHash(s.CodeHash())) if err != nil { s.db.setError(fmt.Errorf("can't load code hash %x: %v", s.CodeHash(), err)) } if len(code) == 0 { s.db.setError(fmt.Errorf("code is not found %x", s.CodeHash())) } s.code = code return code } // CodeSize returns the size of the contract code associated with this object, // or zero if none. This method is an almost mirror of Code, but uses a cache // inside the database to avoid loading codes seen recently. func (s *stateObject) CodeSize() int { if len(s.code) != 0 { return len(s.code) } if bytes.Equal(s.CodeHash(), types.EmptyCodeHash.Bytes()) { return 0 } size, err := s.db.reader.CodeSize(s.address, common.BytesToHash(s.CodeHash())) if err != nil { s.db.setError(fmt.Errorf("can't load code size %x: %v", s.CodeHash(), err)) } if size == 0 { s.db.setError(fmt.Errorf("code is not found %x", s.CodeHash())) } return size } func (s *stateObject) SetCode(codeHash common.Hash, code []byte) (prev []byte) { prev = slices.Clone(s.code) s.db.journal.setCode(s.address, prev) s.setCode(codeHash, code) return prev } func (s *stateObject) setCode(codeHash common.Hash, code []byte) { s.code = code s.data.CodeHash = codeHash[:] s.dirtyCode = true } func (s *stateObject) SetNonce(nonce uint64) { s.db.journal.nonceChange(s.address, s.data.Nonce) s.setNonce(nonce) } func (s *stateObject) setNonce(nonce uint64) { s.data.Nonce = nonce } func (s *stateObject) CodeHash() []byte { return s.data.CodeHash } func (s *stateObject) Balance() *uint256.Int { return s.data.Balance } func (s *stateObject) Nonce() uint64 { return s.data.Nonce } func (s *stateObject) Root() common.Hash { return s.data.Root }