// Copyright 2014 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package vm import ( "crypto/sha256" "errors" "math/big" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/common/math" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/crypto/bn256" "github.com/ethereum/go-ethereum/params" "golang.org/x/crypto/ripemd160" ) // PrecompiledContract is the basic interface for native Go contracts. The implementation // requires a deterministic gas count based on the input size of the Run method of the // contract. type PrecompiledContract interface { RequiredGas(input []byte) uint64 // RequiredPrice calculates the contract gas use Run(input []byte) ([]byte, error) // Run runs the precompiled contract } // PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum // contracts used in the Frontier and Homestead releases. var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{ common.BytesToAddress([]byte{1}): &ecrecover{}, common.BytesToAddress([]byte{2}): &sha256hash{}, common.BytesToAddress([]byte{3}): &ripemd160hash{}, common.BytesToAddress([]byte{4}): &dataCopy{}, } // PrecompiledContractsMetropolis contains the default set of pre-compiled Ethereum // contracts used in the Metropolis release. var PrecompiledContractsMetropolis = map[common.Address]PrecompiledContract{ common.BytesToAddress([]byte{1}): &ecrecover{}, common.BytesToAddress([]byte{2}): &sha256hash{}, common.BytesToAddress([]byte{3}): &ripemd160hash{}, common.BytesToAddress([]byte{4}): &dataCopy{}, common.BytesToAddress([]byte{5}): &bigModExp{}, common.BytesToAddress([]byte{6}): &bn256Add{}, common.BytesToAddress([]byte{7}): &bn256ScalarMul{}, common.BytesToAddress([]byte{8}): &bn256Pairing{}, } // RunPrecompiledContract runs and evaluates the output of a precompiled contract. func RunPrecompiledContract(p PrecompiledContract, input []byte, contract *Contract) (ret []byte, err error) { gas := p.RequiredGas(input) if contract.UseGas(gas) { return p.Run(input) } return nil, ErrOutOfGas } // ECRECOVER implemented as a native contract. type ecrecover struct{} func (c *ecrecover) RequiredGas(input []byte) uint64 { return params.EcrecoverGas } func (c *ecrecover) Run(input []byte) ([]byte, error) { const ecRecoverInputLength = 128 input = common.RightPadBytes(input, ecRecoverInputLength) // "input" is (hash, v, r, s), each 32 bytes // but for ecrecover we want (r, s, v) r := new(big.Int).SetBytes(input[64:96]) s := new(big.Int).SetBytes(input[96:128]) v := input[63] - 27 // tighter sig s values input homestead only apply to tx sigs if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) { return nil, nil } // v needs to be at the end for libsecp256k1 pubKey, err := crypto.Ecrecover(input[:32], append(input[64:128], v)) // make sure the public key is a valid one if err != nil { return nil, nil } // the first byte of pubkey is bitcoin heritage return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil } // SHA256 implemented as a native contract. type sha256hash struct{} // RequiredGas returns the gas required to execute the pre-compiled contract. // // This method does not require any overflow checking as the input size gas costs // required for anything significant is so high it's impossible to pay for. func (c *sha256hash) RequiredGas(input []byte) uint64 { return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas } func (c *sha256hash) Run(input []byte) ([]byte, error) { h := sha256.Sum256(input) return h[:], nil } // RIPMED160 implemented as a native contract. type ripemd160hash struct{} // RequiredGas returns the gas required to execute the pre-compiled contract. // // This method does not require any overflow checking as the input size gas costs // required for anything significant is so high it's impossible to pay for. func (c *ripemd160hash) RequiredGas(input []byte) uint64 { return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas } func (c *ripemd160hash) Run(input []byte) ([]byte, error) { ripemd := ripemd160.New() ripemd.Write(input) return common.LeftPadBytes(ripemd.Sum(nil), 32), nil } // data copy implemented as a native contract. type dataCopy struct{} // RequiredGas returns the gas required to execute the pre-compiled contract. // // This method does not require any overflow checking as the input size gas costs // required for anything significant is so high it's impossible to pay for. func (c *dataCopy) RequiredGas(input []byte) uint64 { return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas } func (c *dataCopy) Run(in []byte) ([]byte, error) { return in, nil } // bigModExp implements a native big integer exponential modular operation. type bigModExp struct{} // RequiredGas returns the gas required to execute the pre-compiled contract. func (c *bigModExp) RequiredGas(input []byte) uint64 { // Pad the input with zeroes to the minimum size to read the field lengths input = common.RightPadBytes(input, 96) var ( baseLen = new(big.Int).SetBytes(input[:32]) expLen = new(big.Int).SetBytes(input[32:64]) modLen = new(big.Int).SetBytes(input[64:96]) ) input = input[96:] // Retrieve the head 32 bytes of exp for the adjusted exponent length var expHead *big.Int if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 { expHead = new(big.Int) } else { offset := int(baseLen.Uint64()) input = common.RightPadBytes(input, offset+32) if expLen.Cmp(big.NewInt(32)) > 0 { expHead = new(big.Int).SetBytes(input[offset : offset+32]) } else { expHead = new(big.Int).SetBytes(input[offset : offset+int(expLen.Uint64())]) } } // Calculate the adjusted exponent length var msb int if bitlen := expHead.BitLen(); bitlen > 0 { msb = bitlen - 1 } adjExpLen := new(big.Int) if expLen.Cmp(big.NewInt(32)) > 0 { adjExpLen.Sub(expLen, big.NewInt(32)) adjExpLen.Mul(big.NewInt(8), adjExpLen) } adjExpLen.Add(adjExpLen, big.NewInt(int64(msb))) // Calculate the gas cost of the operation gas := new(big.Int).Set(math.BigMax(modLen, baseLen)) switch { case gas.Cmp(big.NewInt(64)) <= 0: gas.Mul(gas, gas) case gas.Cmp(big.NewInt(1024)) <= 0: gas = new(big.Int).Add( new(big.Int).Div(new(big.Int).Mul(gas, gas), big.NewInt(4)), new(big.Int).Sub(new(big.Int).Mul(big.NewInt(96), gas), big.NewInt(3072)), ) default: gas = new(big.Int).Add( new(big.Int).Div(new(big.Int).Mul(gas, gas), big.NewInt(16)), new(big.Int).Sub(new(big.Int).Mul(big.NewInt(480), gas), big.NewInt(199680)), ) } gas.Mul(gas, math.BigMax(adjExpLen, big.NewInt(1))) gas.Div(gas, new(big.Int).SetUint64(params.ModExpQuadCoeffDiv)) if gas.BitLen() > 64 { return math.MaxUint64 } return gas.Uint64() } func (c *bigModExp) Run(input []byte) ([]byte, error) { // Pad the input with zeroes to the minimum size to read the field lengths input = common.RightPadBytes(input, 96) var ( baseLen = new(big.Int).SetBytes(input[:32]).Uint64() expLen = new(big.Int).SetBytes(input[32:64]).Uint64() modLen = new(big.Int).SetBytes(input[64:96]).Uint64() ) input = input[96:] // Pad the input with zeroes to the minimum size to read the field contents input = common.RightPadBytes(input, int(baseLen+expLen+modLen)) var ( base = new(big.Int).SetBytes(input[:baseLen]) exp = new(big.Int).SetBytes(input[baseLen : baseLen+expLen]) mod = new(big.Int).SetBytes(input[baseLen+expLen : baseLen+expLen+modLen]) ) if mod.BitLen() == 0 { // Modulo 0 is undefined, return zero return common.LeftPadBytes([]byte{}, int(modLen)), nil } return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil } var ( // errNotOnCurve is returned if a point being unmarshalled as a bn256 elliptic // curve point is not on the curve. errNotOnCurve = errors.New("point not on elliptic curve") // errInvalidCurvePoint is returned if a point being unmarshalled as a bn256 // elliptic curve point is invalid. errInvalidCurvePoint = errors.New("invalid elliptic curve point") ) // newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point, // returning it, or an error if the point is invalid. func newCurvePoint(blob []byte) (*bn256.G1, error) { p, onCurve := new(bn256.G1).Unmarshal(blob) if !onCurve { return nil, errNotOnCurve } gx, gy, _, _ := p.CurvePoints() if gx.Cmp(bn256.P) >= 0 || gy.Cmp(bn256.P) >= 0 { return nil, errInvalidCurvePoint } return p, nil } // newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point, // returning it, or an error if the point is invalid. func newTwistPoint(blob []byte) (*bn256.G2, error) { p, onCurve := new(bn256.G2).Unmarshal(blob) if !onCurve { return nil, errNotOnCurve } x2, y2, _, _ := p.CurvePoints() if x2.Real().Cmp(bn256.P) >= 0 || x2.Imag().Cmp(bn256.P) >= 0 || y2.Real().Cmp(bn256.P) >= 0 || y2.Imag().Cmp(bn256.P) >= 0 { return nil, errInvalidCurvePoint } return p, nil } // bn256Add implements a native elliptic curve point addition. type bn256Add struct{} // RequiredGas returns the gas required to execute the pre-compiled contract. func (c *bn256Add) RequiredGas(input []byte) uint64 { return params.Bn256AddGas } func (c *bn256Add) Run(input []byte) ([]byte, error) { // Ensure we have enough data to operate on input = common.RightPadBytes(input, 128) x, err := newCurvePoint(input[:64]) if err != nil { return nil, err } y, err := newCurvePoint(input[64:128]) if err != nil { return nil, err } x.Add(x, y) return x.Marshal(), nil } // bn256ScalarMul implements a native elliptic curve scalar multiplication. type bn256ScalarMul struct{} // RequiredGas returns the gas required to execute the pre-compiled contract. func (c *bn256ScalarMul) RequiredGas(input []byte) uint64 { return params.Bn256ScalarMulGas } func (c *bn256ScalarMul) Run(input []byte) ([]byte, error) { // Ensure we have enough data to operate on input = common.RightPadBytes(input, 96) p, err := newCurvePoint(input[:64]) if err != nil { return nil, err } p.ScalarMult(p, new(big.Int).SetBytes(input[64:96])) return p.Marshal(), nil } var ( // true32Byte is returned if the bn256 pairing check succeeds. true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1} // false32Byte is returned if the bn256 pairing check fails. false32Byte = make([]byte, 32) // errBadPairingInput is returned if the bn256 pairing input is invalid. errBadPairingInput = errors.New("bad elliptic curve pairing size") ) // bn256Pairing implements a pairing pre-compile for the bn256 curve type bn256Pairing struct{} // RequiredGas returns the gas required to execute the pre-compiled contract. func (c *bn256Pairing) RequiredGas(input []byte) uint64 { return params.Bn256PairingBaseGas + uint64(len(input)/192)*params.Bn256PairingPerPointGas } func (c *bn256Pairing) Run(input []byte) ([]byte, error) { // Handle some corner cases cheaply if len(input)%192 > 0 { return nil, errBadPairingInput } // Convert the input into a set of coordinates var ( cs []*bn256.G1 ts []*bn256.G2 ) for i := 0; i < len(input); i += 192 { c, err := newCurvePoint(input[i : i+64]) if err != nil { return nil, err } t, err := newTwistPoint(input[i+64 : i+192]) if err != nil { return nil, err } cs = append(cs, c) ts = append(ts, t) } // Execute the pairing checks and return the results ok := bn256.PairingCheck(cs, ts) if ok { return true32Byte, nil } return false32Byte, nil }