package metrics import ( "math" "math/rand" "testing" "time" ) const epsilonPercentile = .00000000001 // Benchmark{Compute,Copy}{1000,1000000} demonstrate that, even for relatively // expensive computations like Variance, the cost of copying the Sample, as // approximated by a make and copy, is much greater than the cost of the // computation for small samples and only slightly less for large samples. func BenchmarkCompute1000(b *testing.B) { s := make([]int64, 1000) var sum int64 for i := 0; i < len(s); i++ { s[i] = int64(i) sum += int64(i) } mean := float64(sum) / float64(len(s)) b.ResetTimer() for i := 0; i < b.N; i++ { SampleVariance(mean, s) } } func BenchmarkCompute1000000(b *testing.B) { s := make([]int64, 1000000) var sum int64 for i := 0; i < len(s); i++ { s[i] = int64(i) sum += int64(i) } mean := float64(sum) / float64(len(s)) b.ResetTimer() for i := 0; i < b.N; i++ { SampleVariance(mean, s) } } func BenchmarkExpDecaySample257(b *testing.B) { benchmarkSample(b, NewExpDecaySample(257, 0.015)) } func BenchmarkExpDecaySample514(b *testing.B) { benchmarkSample(b, NewExpDecaySample(514, 0.015)) } func BenchmarkExpDecaySample1028(b *testing.B) { benchmarkSample(b, NewExpDecaySample(1028, 0.015)) } func BenchmarkUniformSample257(b *testing.B) { benchmarkSample(b, NewUniformSample(257)) } func BenchmarkUniformSample514(b *testing.B) { benchmarkSample(b, NewUniformSample(514)) } func BenchmarkUniformSample1028(b *testing.B) { benchmarkSample(b, NewUniformSample(1028)) } func TestExpDecaySample(t *testing.T) { for _, tc := range []struct { reservoirSize int alpha float64 updates int }{ {100, 0.99, 10}, {1000, 0.01, 100}, {100, 0.99, 1000}, } { sample := NewExpDecaySample(tc.reservoirSize, tc.alpha) for i := 0; i < tc.updates; i++ { sample.Update(int64(i)) } snap := sample.Snapshot() if have, want := int(snap.Count()), tc.updates; have != want { t.Errorf("unexpected count: have %d want %d", have, want) } if have, want := snap.Size(), min(tc.updates, tc.reservoirSize); have != want { t.Errorf("unexpected size: have %d want %d", have, want) } values := snap.values if have, want := len(values), min(tc.updates, tc.reservoirSize); have != want { t.Errorf("unexpected values length: have %d want %d", have, want) } for _, v := range values { if v > int64(tc.updates) || v < 0 { t.Errorf("out of range [0, %d]: %v", tc.updates, v) } } } } // This test makes sure that the sample's priority is not amplified by using // nanosecond duration since start rather than second duration since start. // The priority becomes +Inf quickly after starting if this is done, // effectively freezing the set of samples until a rescale step happens. func TestExpDecaySampleNanosecondRegression(t *testing.T) { sw := NewExpDecaySample(1000, 0.99) for i := 0; i < 1000; i++ { sw.Update(10) } time.Sleep(1 * time.Millisecond) for i := 0; i < 1000; i++ { sw.Update(20) } v := sw.Snapshot().values avg := float64(0) for i := 0; i < len(v); i++ { avg += float64(v[i]) } avg /= float64(len(v)) if avg > 16 || avg < 14 { t.Errorf("out of range [14, 16]: %v\n", avg) } } func TestExpDecaySampleRescale(t *testing.T) { s := NewExpDecaySample(2, 0.001).(*ExpDecaySample) s.update(time.Now(), 1) s.update(time.Now().Add(time.Hour+time.Microsecond), 1) for _, v := range s.values.Values() { if v.k == 0.0 { t.Fatal("v.k == 0.0") } } } func TestExpDecaySampleSnapshot(t *testing.T) { now := time.Now() s := NewExpDecaySample(100, 0.99).(*ExpDecaySample).SetRand(rand.New(rand.NewSource(1))) for i := 1; i <= 10000; i++ { s.(*ExpDecaySample).update(now.Add(time.Duration(i)), int64(i)) } snapshot := s.Snapshot() s.Update(1) testExpDecaySampleStatistics(t, snapshot) } func TestExpDecaySampleStatistics(t *testing.T) { now := time.Now() s := NewExpDecaySample(100, 0.99).(*ExpDecaySample).SetRand(rand.New(rand.NewSource(1))) for i := 1; i <= 10000; i++ { s.(*ExpDecaySample).update(now.Add(time.Duration(i)), int64(i)) } testExpDecaySampleStatistics(t, s.Snapshot()) } func TestUniformSample(t *testing.T) { sw := NewUniformSample(100) for i := 0; i < 1000; i++ { sw.Update(int64(i)) } s := sw.Snapshot() if size := s.Count(); size != 1000 { t.Errorf("s.Count(): 1000 != %v\n", size) } if size := s.Size(); size != 100 { t.Errorf("s.Size(): 100 != %v\n", size) } values := s.values if l := len(values); l != 100 { t.Errorf("len(s.Values()): 100 != %v\n", l) } for _, v := range values { if v > 1000 || v < 0 { t.Errorf("out of range [0, 1000]: %v\n", v) } } } func TestUniformSampleIncludesTail(t *testing.T) { sw := NewUniformSample(100) max := 100 for i := 0; i < max; i++ { sw.Update(int64(i)) } v := sw.Snapshot().values sum := 0 exp := (max - 1) * max / 2 for i := 0; i < len(v); i++ { sum += int(v[i]) } if exp != sum { t.Errorf("sum: %v != %v\n", exp, sum) } } func TestUniformSampleSnapshot(t *testing.T) { s := NewUniformSample(100).(*UniformSample).SetRand(rand.New(rand.NewSource(1))) for i := 1; i <= 10000; i++ { s.Update(int64(i)) } snapshot := s.Snapshot() s.Update(1) testUniformSampleStatistics(t, snapshot) } func TestUniformSampleStatistics(t *testing.T) { s := NewUniformSample(100).(*UniformSample).SetRand(rand.New(rand.NewSource(1))) for i := 1; i <= 10000; i++ { s.Update(int64(i)) } testUniformSampleStatistics(t, s.Snapshot()) } func benchmarkSample(b *testing.B, s Sample) { for i := 0; i < b.N; i++ { s.Update(1) } } func testExpDecaySampleStatistics(t *testing.T, s *sampleSnapshot) { if sum := s.Sum(); sum != 496598 { t.Errorf("s.Sum(): 496598 != %v\n", sum) } if count := s.Count(); count != 10000 { t.Errorf("s.Count(): 10000 != %v\n", count) } if min := s.Min(); min != 107 { t.Errorf("s.Min(): 107 != %v\n", min) } if max := s.Max(); max != 10000 { t.Errorf("s.Max(): 10000 != %v\n", max) } if mean := s.Mean(); mean != 4965.98 { t.Errorf("s.Mean(): 4965.98 != %v\n", mean) } if stdDev := s.StdDev(); stdDev != 2959.825156930727 { t.Errorf("s.StdDev(): 2959.825156930727 != %v\n", stdDev) } ps := s.Percentiles([]float64{0.5, 0.75, 0.99}) if ps[0] != 4615 { t.Errorf("median: 4615 != %v\n", ps[0]) } if ps[1] != 7672 { t.Errorf("75th percentile: 7672 != %v\n", ps[1]) } if ps[2] != 9998.99 { t.Errorf("99th percentile: 9998.99 != %v\n", ps[2]) } } func testUniformSampleStatistics(t *testing.T, s *sampleSnapshot) { if count := s.Count(); count != 10000 { t.Errorf("s.Count(): 10000 != %v\n", count) } if min := s.Min(); min != 37 { t.Errorf("s.Min(): 37 != %v\n", min) } if max := s.Max(); max != 9989 { t.Errorf("s.Max(): 9989 != %v\n", max) } if mean := s.Mean(); mean != 4748.14 { t.Errorf("s.Mean(): 4748.14 != %v\n", mean) } if stdDev := s.StdDev(); stdDev != 2826.684117548333 { t.Errorf("s.StdDev(): 2826.684117548333 != %v\n", stdDev) } ps := s.Percentiles([]float64{0.5, 0.75, 0.99}) if ps[0] != 4599 { t.Errorf("median: 4599 != %v\n", ps[0]) } if ps[1] != 7380.5 { t.Errorf("75th percentile: 7380.5 != %v\n", ps[1]) } if math.Abs(9986.429999999998-ps[2]) > epsilonPercentile { t.Errorf("99th percentile: 9986.429999999998 != %v\n", ps[2]) } } // TestUniformSampleConcurrentUpdateCount would expose data race problems with // concurrent Update and Count calls on Sample when test is called with -race // argument func TestUniformSampleConcurrentUpdateCount(t *testing.T) { if testing.Short() { t.Skip("skipping in short mode") } s := NewUniformSample(100) for i := 0; i < 100; i++ { s.Update(int64(i)) } quit := make(chan struct{}) go func() { t := time.NewTicker(10 * time.Millisecond) defer t.Stop() for { select { case <-t.C: s.Update(rand.Int63()) case <-quit: t.Stop() return } } }() for i := 0; i < 1000; i++ { s.Snapshot().Count() time.Sleep(5 * time.Millisecond) } quit <- struct{}{} } func BenchmarkCalculatePercentiles(b *testing.B) { pss := []float64{0.5, 0.75, 0.95, 0.99, 0.999, 0.9999} var vals []int64 for i := 0; i < 1000; i++ { vals = append(vals, int64(rand.Int31())) } v := make([]int64, len(vals)) b.ResetTimer() for i := 0; i < b.N; i++ { copy(v, vals) _ = CalculatePercentiles(v, pss) } }