// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package core import ( "bytes" "fmt" "math/big" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/state" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/logger/glog" "github.com/ethereum/go-ethereum/params" "github.com/ethereum/go-ethereum/pow" "gopkg.in/fatih/set.v0" ) var ( ExpDiffPeriod = big.NewInt(100000) big10 = big.NewInt(10) bigMinus99 = big.NewInt(-99) ) // BlockValidator is responsible for validating block headers, uncles and // processed state. // // BlockValidator implements Validator. type BlockValidator struct { config *ChainConfig // Chain configuration options bc *BlockChain // Canonical block chain Pow pow.PoW // Proof of work used for validating } // NewBlockValidator returns a new block validator which is safe for re-use func NewBlockValidator(config *ChainConfig, blockchain *BlockChain, pow pow.PoW) *BlockValidator { validator := &BlockValidator{ config: config, Pow: pow, bc: blockchain, } return validator } // ValidateBlock validates the given block's header and uncles and verifies the // the block header's transaction and uncle roots. // // ValidateBlock does not validate the header's pow. The pow work validated // separately so we can process them in parallel. // // ValidateBlock also validates and makes sure that any previous state (or present) // state that might or might not be present is checked to make sure that fast // sync has done it's job proper. This prevents the block validator form accepting // false positives where a header is present but the state is not. func (v *BlockValidator) ValidateBlock(block *types.Block) error { if v.bc.HasBlock(block.Hash()) { if _, err := state.New(block.Root(), v.bc.chainDb); err == nil { return &KnownBlockError{block.Number(), block.Hash()} } } parent := v.bc.GetBlock(block.ParentHash()) if parent == nil { return ParentError(block.ParentHash()) } if _, err := state.New(parent.Root(), v.bc.chainDb); err != nil { return ParentError(block.ParentHash()) } header := block.Header() // validate the block header if err := ValidateHeader(v.config, v.Pow, header, parent.Header(), false, false); err != nil { return err } // verify the uncles are correctly rewarded if err := v.VerifyUncles(block, parent); err != nil { return err } // Verify UncleHash before running other uncle validations unclesSha := types.CalcUncleHash(block.Uncles()) if unclesSha != header.UncleHash { return fmt.Errorf("invalid uncles root hash. received=%x calculated=%x", header.UncleHash, unclesSha) } // The transactions Trie's root (R = (Tr [[i, RLP(T1)], [i, RLP(T2)], ... [n, RLP(Tn)]])) // can be used by light clients to make sure they've received the correct Txs txSha := types.DeriveSha(block.Transactions()) if txSha != header.TxHash { return fmt.Errorf("invalid transaction root hash. received=%x calculated=%x", header.TxHash, txSha) } return nil } // ValidateState validates the various changes that happen after a state // transition, such as amount of used gas, the receipt roots and the state root // itself. ValidateState returns a database batch if the validation was a success // otherwise nil and an error is returned. func (v *BlockValidator) ValidateState(block, parent *types.Block, statedb *state.StateDB, receipts types.Receipts, usedGas *big.Int) (err error) { header := block.Header() if block.GasUsed().Cmp(usedGas) != 0 { return ValidationError(fmt.Sprintf("gas used error (%v / %v)", block.GasUsed(), usedGas)) } // Validate the received block's bloom with the one derived from the generated receipts. // For valid blocks this should always validate to true. rbloom := types.CreateBloom(receipts) if rbloom != header.Bloom { return fmt.Errorf("unable to replicate block's bloom=%x vs calculated bloom=%x", header.Bloom, rbloom) } // Tre receipt Trie's root (R = (Tr [[H1, R1], ... [Hn, R1]])) receiptSha := types.DeriveSha(receipts) if receiptSha != header.ReceiptHash { return fmt.Errorf("invalid receipt root hash. received=%x calculated=%x", header.ReceiptHash, receiptSha) } // Validate the state root against the received state root and throw // an error if they don't match. if root := statedb.IntermediateRoot(); header.Root != root { return fmt.Errorf("invalid merkle root: header=%x computed=%x", header.Root, root) } return nil } // VerifyUncles verifies the given block's uncles and applies the Ethereum // consensus rules to the various block headers included; it will return an // error if any of the included uncle headers were invalid. It returns an error // if the validation failed. func (v *BlockValidator) VerifyUncles(block, parent *types.Block) error { // validate that there at most 2 uncles included in this block if len(block.Uncles()) > 2 { return ValidationError("Block can only contain maximum 2 uncles (contained %v)", len(block.Uncles())) } uncles := set.New() ancestors := make(map[common.Hash]*types.Block) for _, ancestor := range v.bc.GetBlocksFromHash(block.ParentHash(), 7) { ancestors[ancestor.Hash()] = ancestor // Include ancestors uncles in the uncle set. Uncles must be unique. for _, uncle := range ancestor.Uncles() { uncles.Add(uncle.Hash()) } } ancestors[block.Hash()] = block uncles.Add(block.Hash()) for i, uncle := range block.Uncles() { hash := uncle.Hash() if uncles.Has(hash) { // Error not unique return UncleError("uncle[%d](%x) not unique", i, hash[:4]) } uncles.Add(hash) if ancestors[hash] != nil { branch := fmt.Sprintf(" O - %x\n |\n", block.Hash()) for h := range ancestors { branch += fmt.Sprintf(" O - %x\n |\n", h) } glog.Infoln(branch) return UncleError("uncle[%d](%x) is ancestor", i, hash[:4]) } if ancestors[uncle.ParentHash] == nil || uncle.ParentHash == parent.Hash() { return UncleError("uncle[%d](%x)'s parent is not ancestor (%x)", i, hash[:4], uncle.ParentHash[0:4]) } if err := ValidateHeader(v.config, v.Pow, uncle, ancestors[uncle.ParentHash].Header(), true, true); err != nil { return ValidationError(fmt.Sprintf("uncle[%d](%x) header invalid: %v", i, hash[:4], err)) } } return nil } // ValidateHeader validates the given header and, depending on the pow arg, // checks the proof of work of the given header. Returns an error if the // validation failed. func (v *BlockValidator) ValidateHeader(header, parent *types.Header, checkPow bool) error { // Short circuit if the parent is missing. if parent == nil { return ParentError(header.ParentHash) } // Short circuit if the header's already known or its parent missing if v.bc.HasHeader(header.Hash()) { return nil } return ValidateHeader(v.config, v.Pow, header, parent, checkPow, false) } // Validates a header. Returns an error if the header is invalid. // // See YP section 4.3.4. "Block Header Validity" func ValidateHeader(config *ChainConfig, pow pow.PoW, header *types.Header, parent *types.Header, checkPow, uncle bool) error { if big.NewInt(int64(len(header.Extra))).Cmp(params.MaximumExtraDataSize) == 1 { return fmt.Errorf("Header extra data too long (%d)", len(header.Extra)) } if uncle { if header.Time.Cmp(common.MaxBig) == 1 { return BlockTSTooBigErr } } else { if header.Time.Cmp(big.NewInt(time.Now().Unix())) == 1 { return BlockFutureErr } } if header.Time.Cmp(parent.Time) != 1 { return BlockEqualTSErr } expd := CalcDifficulty(config, header.Time.Uint64(), parent.Time.Uint64(), parent.Number, parent.Difficulty) if expd.Cmp(header.Difficulty) != 0 { return fmt.Errorf("Difficulty check failed for header %v, %v", header.Difficulty, expd) } a := new(big.Int).Set(parent.GasLimit) a = a.Sub(a, header.GasLimit) a.Abs(a) b := new(big.Int).Set(parent.GasLimit) b = b.Div(b, params.GasLimitBoundDivisor) if !(a.Cmp(b) < 0) || (header.GasLimit.Cmp(params.MinGasLimit) == -1) { return fmt.Errorf("GasLimit check failed for header %v (%v > %v)", header.GasLimit, a, b) } num := new(big.Int).Set(parent.Number) num.Sub(header.Number, num) if num.Cmp(big.NewInt(1)) != 0 { return BlockNumberErr } if checkPow { // Verify the nonce of the header. Return an error if it's not valid if !pow.Verify(types.NewBlockWithHeader(header)) { return &BlockNonceErr{header.Number, header.Hash(), header.Nonce.Uint64()} } } // If all checks passed, validate the extra-data field for hard forks return ValidateHeaderExtraData(config, header) } // ValidateHeaderExtraData validates the extra-data field of a block header to // ensure it conforms to hard-fork rules. func ValidateHeaderExtraData(config *ChainConfig, header *types.Header) error { // DAO hard-fork extension to the header validity: a) if the node is no-fork, // do not accept blocks in the [fork, fork+10) range with the fork specific // extra-data set; b) if the node is pro-fork, require blocks in the specific // range to have the unique extra-data set. if daoBlock := config.DAOForkBlock; daoBlock != nil { // Check whether the block is among the fork extra-override range limit := new(big.Int).Add(daoBlock, params.DAOForkExtraRange) if daoBlock.Cmp(header.Number) <= 0 && header.Number.Cmp(limit) < 0 { // Depending whether we support or oppose the fork, verrift the extra-data contents if config.DAOForkSupport { if bytes.Compare(header.Extra, params.DAOForkBlockExtra) != 0 { return ValidationError("DAO pro-fork bad block extra-data: 0x%x", header.Extra) } } else { if bytes.Compare(header.Extra, params.DAOForkBlockExtra) == 0 { return ValidationError("DAO no-fork bad block extra-data: 0x%x", header.Extra) } } } } return nil } // CalcDifficulty is the difficulty adjustment algorithm. It returns // the difficulty that a new block should have when created at time // given the parent block's time and difficulty. func CalcDifficulty(config *ChainConfig, time, parentTime uint64, parentNumber, parentDiff *big.Int) *big.Int { if config.IsHomestead(new(big.Int).Add(parentNumber, common.Big1)) { return calcDifficultyHomestead(time, parentTime, parentNumber, parentDiff) } else { return calcDifficultyFrontier(time, parentTime, parentNumber, parentDiff) } } func calcDifficultyHomestead(time, parentTime uint64, parentNumber, parentDiff *big.Int) *big.Int { // https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2.mediawiki // algorithm: // diff = (parent_diff + // (parent_diff / 2048 * max(1 - (block_timestamp - parent_timestamp) // 10, -99)) // ) + 2^(periodCount - 2) bigTime := new(big.Int).SetUint64(time) bigParentTime := new(big.Int).SetUint64(parentTime) // holds intermediate values to make the algo easier to read & audit x := new(big.Int) y := new(big.Int) // 1 - (block_timestamp -parent_timestamp) // 10 x.Sub(bigTime, bigParentTime) x.Div(x, big10) x.Sub(common.Big1, x) // max(1 - (block_timestamp - parent_timestamp) // 10, -99))) if x.Cmp(bigMinus99) < 0 { x.Set(bigMinus99) } // (parent_diff + parent_diff // 2048 * max(1 - (block_timestamp - parent_timestamp) // 10, -99)) y.Div(parentDiff, params.DifficultyBoundDivisor) x.Mul(y, x) x.Add(parentDiff, x) // minimum difficulty can ever be (before exponential factor) if x.Cmp(params.MinimumDifficulty) < 0 { x.Set(params.MinimumDifficulty) } // for the exponential factor periodCount := new(big.Int).Add(parentNumber, common.Big1) periodCount.Div(periodCount, ExpDiffPeriod) // the exponential factor, commonly referred to as "the bomb" // diff = diff + 2^(periodCount - 2) if periodCount.Cmp(common.Big1) > 0 { y.Sub(periodCount, common.Big2) y.Exp(common.Big2, y, nil) x.Add(x, y) } return x } func calcDifficultyFrontier(time, parentTime uint64, parentNumber, parentDiff *big.Int) *big.Int { diff := new(big.Int) adjust := new(big.Int).Div(parentDiff, params.DifficultyBoundDivisor) bigTime := new(big.Int) bigParentTime := new(big.Int) bigTime.SetUint64(time) bigParentTime.SetUint64(parentTime) if bigTime.Sub(bigTime, bigParentTime).Cmp(params.DurationLimit) < 0 { diff.Add(parentDiff, adjust) } else { diff.Sub(parentDiff, adjust) } if diff.Cmp(params.MinimumDifficulty) < 0 { diff.Set(params.MinimumDifficulty) } periodCount := new(big.Int).Add(parentNumber, common.Big1) periodCount.Div(periodCount, ExpDiffPeriod) if periodCount.Cmp(common.Big1) > 0 { // diff = diff + 2^(periodCount - 2) expDiff := periodCount.Sub(periodCount, common.Big2) expDiff.Exp(common.Big2, expDiff, nil) diff.Add(diff, expDiff) diff = common.BigMax(diff, params.MinimumDifficulty) } return diff } // CalcGasLimit computes the gas limit of the next block after parent. // The result may be modified by the caller. // This is miner strategy, not consensus protocol. func CalcGasLimit(parent *types.Block) *big.Int { // contrib = (parentGasUsed * 3 / 2) / 1024 contrib := new(big.Int).Mul(parent.GasUsed(), big.NewInt(3)) contrib = contrib.Div(contrib, big.NewInt(2)) contrib = contrib.Div(contrib, params.GasLimitBoundDivisor) // decay = parentGasLimit / 1024 -1 decay := new(big.Int).Div(parent.GasLimit(), params.GasLimitBoundDivisor) decay.Sub(decay, big.NewInt(1)) /* strategy: gasLimit of block-to-mine is set based on parent's gasUsed value. if parentGasUsed > parentGasLimit * (2/3) then we increase it, otherwise lower it (or leave it unchanged if it's right at that usage) the amount increased/decreased depends on how far away from parentGasLimit * (2/3) parentGasUsed is. */ gl := new(big.Int).Sub(parent.GasLimit(), decay) gl = gl.Add(gl, contrib) gl.Set(common.BigMax(gl, params.MinGasLimit)) // however, if we're now below the target (TargetGasLimit) we increase the // limit as much as we can (parentGasLimit / 1024 -1) if gl.Cmp(params.TargetGasLimit) < 0 { gl.Add(parent.GasLimit(), decay) gl.Set(common.BigMin(gl, params.TargetGasLimit)) } return gl }