// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package vm

import (
	"errors"
	"math/big"
	"sync/atomic"

	"github.com/ethereum/go-ethereum/common"
	"github.com/ethereum/go-ethereum/core/state"
	"github.com/ethereum/go-ethereum/core/tracing"
	"github.com/ethereum/go-ethereum/core/types"
	"github.com/ethereum/go-ethereum/crypto"
	"github.com/ethereum/go-ethereum/params"
	"github.com/holiman/uint256"
)

type (
	// CanTransferFunc is the signature of a transfer guard function
	CanTransferFunc func(StateDB, common.Address, *uint256.Int) bool
	// TransferFunc is the signature of a transfer function
	TransferFunc func(StateDB, common.Address, common.Address, *uint256.Int)
	// GetHashFunc returns the n'th block hash in the blockchain
	// and is used by the BLOCKHASH EVM op code.
	GetHashFunc func(uint64) common.Hash
)

func (evm *EVM) precompile(addr common.Address) (PrecompiledContract, bool) {
	var precompiles map[common.Address]PrecompiledContract
	switch {
	case evm.chainRules.IsVerkle:
		precompiles = PrecompiledContractsVerkle
	case evm.chainRules.IsPrague:
		precompiles = PrecompiledContractsPrague
	case evm.chainRules.IsCancun:
		precompiles = PrecompiledContractsCancun
	case evm.chainRules.IsBerlin:
		precompiles = PrecompiledContractsBerlin
	case evm.chainRules.IsIstanbul:
		precompiles = PrecompiledContractsIstanbul
	case evm.chainRules.IsByzantium:
		precompiles = PrecompiledContractsByzantium
	default:
		precompiles = PrecompiledContractsHomestead
	}
	p, ok := precompiles[addr]
	return p, ok
}

// BlockContext provides the EVM with auxiliary information. Once provided
// it shouldn't be modified.
type BlockContext struct {
	// CanTransfer returns whether the account contains
	// sufficient ether to transfer the value
	CanTransfer CanTransferFunc
	// Transfer transfers ether from one account to the other
	Transfer TransferFunc
	// GetHash returns the hash corresponding to n
	GetHash GetHashFunc

	// Block information
	Coinbase    common.Address // Provides information for COINBASE
	GasLimit    uint64         // Provides information for GASLIMIT
	BlockNumber *big.Int       // Provides information for NUMBER
	Time        uint64         // Provides information for TIME
	Difficulty  *big.Int       // Provides information for DIFFICULTY
	BaseFee     *big.Int       // Provides information for BASEFEE (0 if vm runs with NoBaseFee flag and 0 gas price)
	BlobBaseFee *big.Int       // Provides information for BLOBBASEFEE (0 if vm runs with NoBaseFee flag and 0 blob gas price)
	Random      *common.Hash   // Provides information for PREVRANDAO
}

// TxContext provides the EVM with information about a transaction.
// All fields can change between transactions.
type TxContext struct {
	// Message information
	Origin       common.Address      // Provides information for ORIGIN
	GasPrice     *big.Int            // Provides information for GASPRICE (and is used to zero the basefee if NoBaseFee is set)
	BlobHashes   []common.Hash       // Provides information for BLOBHASH
	BlobFeeCap   *big.Int            // Is used to zero the blobbasefee if NoBaseFee is set
	AccessEvents *state.AccessEvents // Capture all state accesses for this tx
}

// EVM is the Ethereum Virtual Machine base object and provides
// the necessary tools to run a contract on the given state with
// the provided context. It should be noted that any error
// generated through any of the calls should be considered a
// revert-state-and-consume-all-gas operation, no checks on
// specific errors should ever be performed. The interpreter makes
// sure that any errors generated are to be considered faulty code.
//
// The EVM should never be reused and is not thread safe.
type EVM struct {
	// Context provides auxiliary blockchain related information
	Context BlockContext
	TxContext
	// StateDB gives access to the underlying state
	StateDB StateDB
	// Depth is the current call stack
	depth int

	// chainConfig contains information about the current chain
	chainConfig *params.ChainConfig
	// chain rules contains the chain rules for the current epoch
	chainRules params.Rules
	// virtual machine configuration options used to initialise the
	// evm.
	Config Config
	// global (to this context) ethereum virtual machine
	// used throughout the execution of the tx.
	interpreter *EVMInterpreter
	// abort is used to abort the EVM calling operations
	abort atomic.Bool
	// callGasTemp holds the gas available for the current call. This is needed because the
	// available gas is calculated in gasCall* according to the 63/64 rule and later
	// applied in opCall*.
	callGasTemp uint64
}

// NewEVM returns a new EVM. The returned EVM is not thread safe and should
// only ever be used *once*.
func NewEVM(blockCtx BlockContext, txCtx TxContext, statedb StateDB, chainConfig *params.ChainConfig, config Config) *EVM {
	// If basefee tracking is disabled (eth_call, eth_estimateGas, etc), and no
	// gas prices were specified, lower the basefee to 0 to avoid breaking EVM
	// invariants (basefee < feecap)
	if config.NoBaseFee {
		if txCtx.GasPrice.BitLen() == 0 {
			blockCtx.BaseFee = new(big.Int)
		}
		if txCtx.BlobFeeCap != nil && txCtx.BlobFeeCap.BitLen() == 0 {
			blockCtx.BlobBaseFee = new(big.Int)
		}
	}
	evm := &EVM{
		Context:     blockCtx,
		TxContext:   txCtx,
		StateDB:     statedb,
		Config:      config,
		chainConfig: chainConfig,
		chainRules:  chainConfig.Rules(blockCtx.BlockNumber, blockCtx.Random != nil, blockCtx.Time),
	}
	evm.interpreter = NewEVMInterpreter(evm)
	return evm
}

// Reset resets the EVM with a new transaction context.Reset
// This is not threadsafe and should only be done very cautiously.
func (evm *EVM) Reset(txCtx TxContext, statedb StateDB) {
	if evm.chainRules.IsEIP4762 {
		txCtx.AccessEvents = state.NewAccessEvents(statedb.PointCache())
	}
	evm.TxContext = txCtx
	evm.StateDB = statedb
}

// Cancel cancels any running EVM operation. This may be called concurrently and
// it's safe to be called multiple times.
func (evm *EVM) Cancel() {
	evm.abort.Store(true)
}

// Cancelled returns true if Cancel has been called
func (evm *EVM) Cancelled() bool {
	return evm.abort.Load()
}

// Interpreter returns the current interpreter
func (evm *EVM) Interpreter() *EVMInterpreter {
	return evm.interpreter
}

// Call executes the contract associated with the addr with the given input as
// parameters. It also handles any necessary value transfer required and takes
// the necessary steps to create accounts and reverses the state in case of an
// execution error or failed value transfer.
func (evm *EVM) Call(caller ContractRef, addr common.Address, input []byte, gas uint64, value *uint256.Int) (ret []byte, leftOverGas uint64, err error) {
	// Capture the tracer start/end events in debug mode
	if evm.Config.Tracer != nil {
		evm.captureBegin(evm.depth, CALL, caller.Address(), addr, input, gas, value.ToBig())
		defer func(startGas uint64) {
			evm.captureEnd(evm.depth, startGas, leftOverGas, ret, err)
		}(gas)
	}
	// Fail if we're trying to execute above the call depth limit
	if evm.depth > int(params.CallCreateDepth) {
		return nil, gas, ErrDepth
	}
	// Fail if we're trying to transfer more than the available balance
	if !value.IsZero() && !evm.Context.CanTransfer(evm.StateDB, caller.Address(), value) {
		return nil, gas, ErrInsufficientBalance
	}
	snapshot := evm.StateDB.Snapshot()
	p, isPrecompile := evm.precompile(addr)

	if !evm.StateDB.Exist(addr) {
		if !isPrecompile && evm.chainRules.IsEIP4762 {
			// add proof of absence to witness
			wgas := evm.AccessEvents.AddAccount(addr, false)
			if gas < wgas {
				evm.StateDB.RevertToSnapshot(snapshot)
				return nil, 0, ErrOutOfGas
			}
			gas -= wgas
		}

		if !isPrecompile && evm.chainRules.IsEIP158 && value.IsZero() {
			// Calling a non-existing account, don't do anything.
			return nil, gas, nil
		}
		evm.StateDB.CreateAccount(addr)
	}
	evm.Context.Transfer(evm.StateDB, caller.Address(), addr, value)

	if isPrecompile {
		ret, gas, err = RunPrecompiledContract(p, input, gas, evm.Config.Tracer)
	} else {
		// Initialise a new contract and set the code that is to be used by the EVM.
		// The contract is a scoped environment for this execution context only.
		code := evm.StateDB.GetCode(addr)
		if len(code) == 0 {
			ret, err = nil, nil // gas is unchanged
		} else {
			addrCopy := addr
			// If the account has no code, we can abort here
			// The depth-check is already done, and precompiles handled above
			contract := NewContract(caller, AccountRef(addrCopy), value, gas)
			contract.SetCallCode(&addrCopy, evm.StateDB.GetCodeHash(addrCopy), code)
			ret, err = evm.interpreter.Run(contract, input, false)
			gas = contract.Gas
		}
	}
	// When an error was returned by the EVM or when setting the creation code
	// above we revert to the snapshot and consume any gas remaining. Additionally,
	// when we're in homestead this also counts for code storage gas errors.
	if err != nil {
		evm.StateDB.RevertToSnapshot(snapshot)
		if err != ErrExecutionReverted {
			if evm.Config.Tracer != nil && evm.Config.Tracer.OnGasChange != nil {
				evm.Config.Tracer.OnGasChange(gas, 0, tracing.GasChangeCallFailedExecution)
			}

			gas = 0
		}
		// TODO: consider clearing up unused snapshots:
		//} else {
		//	evm.StateDB.DiscardSnapshot(snapshot)
	}
	return ret, gas, err
}

// CallCode executes the contract associated with the addr with the given input
// as parameters. It also handles any necessary value transfer required and takes
// the necessary steps to create accounts and reverses the state in case of an
// execution error or failed value transfer.
//
// CallCode differs from Call in the sense that it executes the given address'
// code with the caller as context.
func (evm *EVM) CallCode(caller ContractRef, addr common.Address, input []byte, gas uint64, value *uint256.Int) (ret []byte, leftOverGas uint64, err error) {
	// Invoke tracer hooks that signal entering/exiting a call frame
	if evm.Config.Tracer != nil {
		evm.captureBegin(evm.depth, CALLCODE, caller.Address(), addr, input, gas, value.ToBig())
		defer func(startGas uint64) {
			evm.captureEnd(evm.depth, startGas, leftOverGas, ret, err)
		}(gas)
	}
	// Fail if we're trying to execute above the call depth limit
	if evm.depth > int(params.CallCreateDepth) {
		return nil, gas, ErrDepth
	}
	// Fail if we're trying to transfer more than the available balance
	// Note although it's noop to transfer X ether to caller itself. But
	// if caller doesn't have enough balance, it would be an error to allow
	// over-charging itself. So the check here is necessary.
	if !evm.Context.CanTransfer(evm.StateDB, caller.Address(), value) {
		return nil, gas, ErrInsufficientBalance
	}
	var snapshot = evm.StateDB.Snapshot()

	// It is allowed to call precompiles, even via delegatecall
	if p, isPrecompile := evm.precompile(addr); isPrecompile {
		ret, gas, err = RunPrecompiledContract(p, input, gas, evm.Config.Tracer)
	} else {
		addrCopy := addr
		// Initialise a new contract and set the code that is to be used by the EVM.
		// The contract is a scoped environment for this execution context only.
		contract := NewContract(caller, AccountRef(caller.Address()), value, gas)
		contract.SetCallCode(&addrCopy, evm.StateDB.GetCodeHash(addrCopy), evm.StateDB.GetCode(addrCopy))
		ret, err = evm.interpreter.Run(contract, input, false)
		gas = contract.Gas
	}
	if err != nil {
		evm.StateDB.RevertToSnapshot(snapshot)
		if err != ErrExecutionReverted {
			if evm.Config.Tracer != nil && evm.Config.Tracer.OnGasChange != nil {
				evm.Config.Tracer.OnGasChange(gas, 0, tracing.GasChangeCallFailedExecution)
			}

			gas = 0
		}
	}
	return ret, gas, err
}

// DelegateCall executes the contract associated with the addr with the given input
// as parameters. It reverses the state in case of an execution error.
//
// DelegateCall differs from CallCode in the sense that it executes the given address'
// code with the caller as context and the caller is set to the caller of the caller.
func (evm *EVM) DelegateCall(caller ContractRef, addr common.Address, input []byte, gas uint64) (ret []byte, leftOverGas uint64, err error) {
	// Invoke tracer hooks that signal entering/exiting a call frame
	if evm.Config.Tracer != nil {
		// NOTE: caller must, at all times be a contract. It should never happen
		// that caller is something other than a Contract.
		parent := caller.(*Contract)
		// DELEGATECALL inherits value from parent call
		evm.captureBegin(evm.depth, DELEGATECALL, caller.Address(), addr, input, gas, parent.value.ToBig())
		defer func(startGas uint64) {
			evm.captureEnd(evm.depth, startGas, leftOverGas, ret, err)
		}(gas)
	}
	// Fail if we're trying to execute above the call depth limit
	if evm.depth > int(params.CallCreateDepth) {
		return nil, gas, ErrDepth
	}
	var snapshot = evm.StateDB.Snapshot()

	// It is allowed to call precompiles, even via delegatecall
	if p, isPrecompile := evm.precompile(addr); isPrecompile {
		ret, gas, err = RunPrecompiledContract(p, input, gas, evm.Config.Tracer)
	} else {
		addrCopy := addr
		// Initialise a new contract and make initialise the delegate values
		contract := NewContract(caller, AccountRef(caller.Address()), nil, gas).AsDelegate()
		contract.SetCallCode(&addrCopy, evm.StateDB.GetCodeHash(addrCopy), evm.StateDB.GetCode(addrCopy))
		ret, err = evm.interpreter.Run(contract, input, false)
		gas = contract.Gas
	}
	if err != nil {
		evm.StateDB.RevertToSnapshot(snapshot)
		if err != ErrExecutionReverted {
			if evm.Config.Tracer != nil && evm.Config.Tracer.OnGasChange != nil {
				evm.Config.Tracer.OnGasChange(gas, 0, tracing.GasChangeCallFailedExecution)
			}
			gas = 0
		}
	}
	return ret, gas, err
}

// StaticCall executes the contract associated with the addr with the given input
// as parameters while disallowing any modifications to the state during the call.
// Opcodes that attempt to perform such modifications will result in exceptions
// instead of performing the modifications.
func (evm *EVM) StaticCall(caller ContractRef, addr common.Address, input []byte, gas uint64) (ret []byte, leftOverGas uint64, err error) {
	// Invoke tracer hooks that signal entering/exiting a call frame
	if evm.Config.Tracer != nil {
		evm.captureBegin(evm.depth, STATICCALL, caller.Address(), addr, input, gas, nil)
		defer func(startGas uint64) {
			evm.captureEnd(evm.depth, startGas, leftOverGas, ret, err)
		}(gas)
	}
	// Fail if we're trying to execute above the call depth limit
	if evm.depth > int(params.CallCreateDepth) {
		return nil, gas, ErrDepth
	}
	// We take a snapshot here. This is a bit counter-intuitive, and could probably be skipped.
	// However, even a staticcall is considered a 'touch'. On mainnet, static calls were introduced
	// after all empty accounts were deleted, so this is not required. However, if we omit this,
	// then certain tests start failing; stRevertTest/RevertPrecompiledTouchExactOOG.json.
	// We could change this, but for now it's left for legacy reasons
	var snapshot = evm.StateDB.Snapshot()

	// We do an AddBalance of zero here, just in order to trigger a touch.
	// This doesn't matter on Mainnet, where all empties are gone at the time of Byzantium,
	// but is the correct thing to do and matters on other networks, in tests, and potential
	// future scenarios
	evm.StateDB.AddBalance(addr, new(uint256.Int), tracing.BalanceChangeTouchAccount)

	if p, isPrecompile := evm.precompile(addr); isPrecompile {
		ret, gas, err = RunPrecompiledContract(p, input, gas, evm.Config.Tracer)
	} else {
		// At this point, we use a copy of address. If we don't, the go compiler will
		// leak the 'contract' to the outer scope, and make allocation for 'contract'
		// even if the actual execution ends on RunPrecompiled above.
		addrCopy := addr
		// Initialise a new contract and set the code that is to be used by the EVM.
		// The contract is a scoped environment for this execution context only.
		contract := NewContract(caller, AccountRef(addrCopy), new(uint256.Int), gas)
		contract.SetCallCode(&addrCopy, evm.StateDB.GetCodeHash(addrCopy), evm.StateDB.GetCode(addrCopy))
		// When an error was returned by the EVM or when setting the creation code
		// above we revert to the snapshot and consume any gas remaining. Additionally
		// when we're in Homestead this also counts for code storage gas errors.
		ret, err = evm.interpreter.Run(contract, input, true)
		gas = contract.Gas
	}
	if err != nil {
		evm.StateDB.RevertToSnapshot(snapshot)
		if err != ErrExecutionReverted {
			if evm.Config.Tracer != nil && evm.Config.Tracer.OnGasChange != nil {
				evm.Config.Tracer.OnGasChange(gas, 0, tracing.GasChangeCallFailedExecution)
			}

			gas = 0
		}
	}
	return ret, gas, err
}

type codeAndHash struct {
	code []byte
	hash common.Hash
}

func (c *codeAndHash) Hash() common.Hash {
	if c.hash == (common.Hash{}) {
		c.hash = crypto.Keccak256Hash(c.code)
	}
	return c.hash
}

// create creates a new contract using code as deployment code.
func (evm *EVM) create(caller ContractRef, codeAndHash *codeAndHash, gas uint64, value *uint256.Int, address common.Address, typ OpCode) (ret []byte, createAddress common.Address, leftOverGas uint64, err error) {
	if evm.Config.Tracer != nil {
		evm.captureBegin(evm.depth, typ, caller.Address(), address, codeAndHash.code, gas, value.ToBig())
		defer func(startGas uint64) {
			evm.captureEnd(evm.depth, startGas, leftOverGas, ret, err)
		}(gas)
	}
	// Depth check execution. Fail if we're trying to execute above the
	// limit.
	if evm.depth > int(params.CallCreateDepth) {
		return nil, common.Address{}, gas, ErrDepth
	}
	if !evm.Context.CanTransfer(evm.StateDB, caller.Address(), value) {
		return nil, common.Address{}, gas, ErrInsufficientBalance
	}
	nonce := evm.StateDB.GetNonce(caller.Address())
	if nonce+1 < nonce {
		return nil, common.Address{}, gas, ErrNonceUintOverflow
	}
	evm.StateDB.SetNonce(caller.Address(), nonce+1)

	// We add this to the access list _before_ taking a snapshot. Even if the
	// creation fails, the access-list change should not be rolled back.
	if evm.chainRules.IsEIP2929 {
		evm.StateDB.AddAddressToAccessList(address)
	}
	// Ensure there's no existing contract already at the designated address.
	// Account is regarded as existent if any of these three conditions is met:
	// - the nonce is non-zero
	// - the code is non-empty
	// - the storage is non-empty
	contractHash := evm.StateDB.GetCodeHash(address)
	storageRoot := evm.StateDB.GetStorageRoot(address)
	if evm.StateDB.GetNonce(address) != 0 ||
		(contractHash != (common.Hash{}) && contractHash != types.EmptyCodeHash) || // non-empty code
		(storageRoot != (common.Hash{}) && storageRoot != types.EmptyRootHash) { // non-empty storage
		if evm.Config.Tracer != nil && evm.Config.Tracer.OnGasChange != nil {
			evm.Config.Tracer.OnGasChange(gas, 0, tracing.GasChangeCallFailedExecution)
		}
		return nil, common.Address{}, 0, ErrContractAddressCollision
	}
	// Create a new account on the state only if the object was not present.
	// It might be possible the contract code is deployed to a pre-existent
	// account with non-zero balance.
	snapshot := evm.StateDB.Snapshot()
	if !evm.StateDB.Exist(address) {
		evm.StateDB.CreateAccount(address)
	}
	// CreateContract means that regardless of whether the account previously existed
	// in the state trie or not, it _now_ becomes created as a _contract_ account.
	// This is performed _prior_ to executing the initcode,  since the initcode
	// acts inside that account.
	evm.StateDB.CreateContract(address)

	if evm.chainRules.IsEIP158 {
		evm.StateDB.SetNonce(address, 1)
	}
	evm.Context.Transfer(evm.StateDB, caller.Address(), address, value)

	// Initialise a new contract and set the code that is to be used by the EVM.
	// The contract is a scoped environment for this execution context only.
	contract := NewContract(caller, AccountRef(address), value, gas)
	contract.SetCodeOptionalHash(&address, codeAndHash)
	contract.IsDeployment = true

	// Charge the contract creation init gas in verkle mode
	if evm.chainRules.IsEIP4762 {
		if !contract.UseGas(evm.AccessEvents.ContractCreateInitGas(address, value.Sign() != 0), evm.Config.Tracer, tracing.GasChangeWitnessContractInit) {
			err = ErrOutOfGas
		}
	}

	if err == nil {
		ret, err = evm.interpreter.Run(contract, nil, false)
	}

	// Check whether the max code size has been exceeded, assign err if the case.
	if err == nil && evm.chainRules.IsEIP158 && len(ret) > params.MaxCodeSize {
		err = ErrMaxCodeSizeExceeded
	}

	// Reject code starting with 0xEF if EIP-3541 is enabled.
	if err == nil && len(ret) >= 1 && ret[0] == 0xEF && evm.chainRules.IsLondon {
		err = ErrInvalidCode
	}

	// if the contract creation ran successfully and no errors were returned
	// calculate the gas required to store the code. If the code could not
	// be stored due to not enough gas set an error and let it be handled
	// by the error checking condition below.
	if err == nil {
		if !evm.chainRules.IsEIP4762 {
			createDataGas := uint64(len(ret)) * params.CreateDataGas
			if !contract.UseGas(createDataGas, evm.Config.Tracer, tracing.GasChangeCallCodeStorage) {
				err = ErrCodeStoreOutOfGas
			}
		} else {
			// Contract creation completed, touch the missing fields in the contract
			if !contract.UseGas(evm.AccessEvents.AddAccount(address, true), evm.Config.Tracer, tracing.GasChangeWitnessContractCreation) {
				err = ErrCodeStoreOutOfGas
			}

			if err == nil && len(ret) > 0 && !contract.UseGas(evm.AccessEvents.CodeChunksRangeGas(address, 0, uint64(len(ret)), uint64(len(ret)), true), evm.Config.Tracer, tracing.GasChangeWitnessCodeChunk) {
				err = ErrCodeStoreOutOfGas
			}
		}

		if err == nil {
			evm.StateDB.SetCode(address, ret)
		}
	}

	// When an error was returned by the EVM or when setting the creation code
	// above we revert to the snapshot and consume any gas remaining. Additionally,
	// when we're in homestead this also counts for code storage gas errors.
	if err != nil && (evm.chainRules.IsHomestead || err != ErrCodeStoreOutOfGas) {
		evm.StateDB.RevertToSnapshot(snapshot)
		if err != ErrExecutionReverted {
			contract.UseGas(contract.Gas, evm.Config.Tracer, tracing.GasChangeCallFailedExecution)
		}
	}

	return ret, address, contract.Gas, err
}

// Create creates a new contract using code as deployment code.
func (evm *EVM) Create(caller ContractRef, code []byte, gas uint64, value *uint256.Int) (ret []byte, contractAddr common.Address, leftOverGas uint64, err error) {
	contractAddr = crypto.CreateAddress(caller.Address(), evm.StateDB.GetNonce(caller.Address()))
	return evm.create(caller, &codeAndHash{code: code}, gas, value, contractAddr, CREATE)
}

// Create2 creates a new contract using code as deployment code.
//
// The different between Create2 with Create is Create2 uses keccak256(0xff ++ msg.sender ++ salt ++ keccak256(init_code))[12:]
// instead of the usual sender-and-nonce-hash as the address where the contract is initialized at.
func (evm *EVM) Create2(caller ContractRef, code []byte, gas uint64, endowment *uint256.Int, salt *uint256.Int) (ret []byte, contractAddr common.Address, leftOverGas uint64, err error) {
	codeAndHash := &codeAndHash{code: code}
	contractAddr = crypto.CreateAddress2(caller.Address(), salt.Bytes32(), codeAndHash.Hash().Bytes())
	return evm.create(caller, codeAndHash, gas, endowment, contractAddr, CREATE2)
}

// ChainConfig returns the environment's chain configuration
func (evm *EVM) ChainConfig() *params.ChainConfig { return evm.chainConfig }

func (evm *EVM) captureBegin(depth int, typ OpCode, from common.Address, to common.Address, input []byte, startGas uint64, value *big.Int) {
	tracer := evm.Config.Tracer
	if tracer.OnEnter != nil {
		tracer.OnEnter(depth, byte(typ), from, to, input, startGas, value)
	}
	if tracer.OnGasChange != nil {
		tracer.OnGasChange(0, startGas, tracing.GasChangeCallInitialBalance)
	}
}

func (evm *EVM) captureEnd(depth int, startGas uint64, leftOverGas uint64, ret []byte, err error) {
	tracer := evm.Config.Tracer
	if leftOverGas != 0 && tracer.OnGasChange != nil {
		tracer.OnGasChange(leftOverGas, 0, tracing.GasChangeCallLeftOverReturned)
	}
	var reverted bool
	if err != nil {
		reverted = true
	}
	if !evm.chainRules.IsHomestead && errors.Is(err, ErrCodeStoreOutOfGas) {
		reverted = false
	}
	if tracer.OnExit != nil {
		tracer.OnExit(depth, ret, startGas-leftOverGas, VMErrorFromErr(err), reverted)
	}
}

// GetVMContext provides context about the block being executed as well as state
// to the tracers.
func (evm *EVM) GetVMContext() *tracing.VMContext {
	return &tracing.VMContext{
		Coinbase:    evm.Context.Coinbase,
		BlockNumber: evm.Context.BlockNumber,
		Time:        evm.Context.Time,
		Random:      evm.Context.Random,
		GasPrice:    evm.TxContext.GasPrice,
		ChainConfig: evm.ChainConfig(),
		StateDB:     evm.StateDB,
	}
}