// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package abi import ( "errors" "fmt" "reflect" "regexp" "strconv" "strings" "unicode" "unicode/utf8" "github.com/ethereum/go-ethereum/common" ) // Type enumerator const ( IntTy byte = iota UintTy BoolTy StringTy SliceTy ArrayTy TupleTy AddressTy FixedBytesTy BytesTy HashTy FixedPointTy FunctionTy ) // Type is the reflection of the supported argument type. type Type struct { Elem *Type Size int T byte // Our own type checking stringKind string // holds the unparsed string for deriving signatures // Tuple relative fields TupleRawName string // Raw struct name defined in source code, may be empty. TupleElems []*Type // Type information of all tuple fields TupleRawNames []string // Raw field name of all tuple fields TupleType reflect.Type // Underlying struct of the tuple } var ( // typeRegex parses the abi sub types typeRegex = regexp.MustCompile("([a-zA-Z]+)(([0-9]+)(x([0-9]+))?)?") // sliceSizeRegex grab the slice size sliceSizeRegex = regexp.MustCompile("[0-9]+") ) // NewType creates a new reflection type of abi type given in t. func NewType(t string, internalType string, components []ArgumentMarshaling) (typ Type, err error) { // check that array brackets are equal if they exist if strings.Count(t, "[") != strings.Count(t, "]") { return Type{}, errors.New("invalid arg type in abi") } typ.stringKind = t // if there are brackets, get ready to go into slice/array mode and // recursively create the type if strings.Count(t, "[") != 0 { // Note internalType can be empty here. subInternal := internalType if i := strings.LastIndex(internalType, "["); i != -1 { subInternal = subInternal[:i] } // recursively embed the type i := strings.LastIndex(t, "[") embeddedType, err := NewType(t[:i], subInternal, components) if err != nil { return Type{}, err } // grab the last cell and create a type from there sliced := t[i:] // grab the slice size with regexp intz := sliceSizeRegex.FindAllString(sliced, -1) if len(intz) == 0 { // is a slice typ.T = SliceTy typ.Elem = &embeddedType typ.stringKind = embeddedType.stringKind + sliced } else if len(intz) == 1 { // is an array typ.T = ArrayTy typ.Elem = &embeddedType typ.Size, err = strconv.Atoi(intz[0]) if err != nil { return Type{}, fmt.Errorf("abi: error parsing variable size: %v", err) } typ.stringKind = embeddedType.stringKind + sliced } else { return Type{}, errors.New("invalid formatting of array type") } return typ, err } // parse the type and size of the abi-type. matches := typeRegex.FindAllStringSubmatch(t, -1) if len(matches) == 0 { return Type{}, fmt.Errorf("invalid type '%v'", t) } parsedType := matches[0] // varSize is the size of the variable var varSize int if len(parsedType[3]) > 0 { var err error varSize, err = strconv.Atoi(parsedType[2]) if err != nil { return Type{}, fmt.Errorf("abi: error parsing variable size: %v", err) } } else { if parsedType[0] == "uint" || parsedType[0] == "int" { // this should fail because it means that there's something wrong with // the abi type (the compiler should always format it to the size...always) return Type{}, fmt.Errorf("unsupported arg type: %s", t) } } // varType is the parsed abi type switch varType := parsedType[1]; varType { case "int": typ.Size = varSize typ.T = IntTy case "uint": typ.Size = varSize typ.T = UintTy case "bool": typ.T = BoolTy case "address": typ.Size = 20 typ.T = AddressTy case "string": typ.T = StringTy case "bytes": if varSize == 0 { typ.T = BytesTy } else { if varSize > 32 { return Type{}, fmt.Errorf("unsupported arg type: %s", t) } typ.T = FixedBytesTy typ.Size = varSize } case "tuple": var ( fields []reflect.StructField elems []*Type names []string expression string // canonical parameter expression used = make(map[string]bool) ) expression += "(" for idx, c := range components { cType, err := NewType(c.Type, c.InternalType, c.Components) if err != nil { return Type{}, err } name := ToCamelCase(c.Name) if name == "" { return Type{}, errors.New("abi: purely anonymous or underscored field is not supported") } fieldName := ResolveNameConflict(name, func(s string) bool { return used[s] }) used[fieldName] = true if !isValidFieldName(fieldName) { return Type{}, fmt.Errorf("field %d has invalid name", idx) } fields = append(fields, reflect.StructField{ Name: fieldName, // reflect.StructOf will panic for any exported field. Type: cType.GetType(), Tag: reflect.StructTag("json:\"" + c.Name + "\""), }) elems = append(elems, &cType) names = append(names, c.Name) expression += cType.stringKind if idx != len(components)-1 { expression += "," } } expression += ")" typ.TupleType = reflect.StructOf(fields) typ.TupleElems = elems typ.TupleRawNames = names typ.T = TupleTy typ.stringKind = expression const structPrefix = "struct " // After solidity 0.5.10, a new field of abi "internalType" // is introduced. From that we can obtain the struct name // user defined in the source code. if internalType != "" && strings.HasPrefix(internalType, structPrefix) { // Foo.Bar type definition is not allowed in golang, // convert the format to FooBar typ.TupleRawName = strings.ReplaceAll(internalType[len(structPrefix):], ".", "") } case "function": typ.T = FunctionTy typ.Size = 24 default: return Type{}, fmt.Errorf("unsupported arg type: %s", t) } return } // GetType returns the reflection type of the ABI type. func (t Type) GetType() reflect.Type { switch t.T { case IntTy: return reflectIntType(false, t.Size) case UintTy: return reflectIntType(true, t.Size) case BoolTy: return reflect.TypeOf(false) case StringTy: return reflect.TypeOf("") case SliceTy: return reflect.SliceOf(t.Elem.GetType()) case ArrayTy: return reflect.ArrayOf(t.Size, t.Elem.GetType()) case TupleTy: return t.TupleType case AddressTy: return reflect.TypeOf(common.Address{}) case FixedBytesTy: return reflect.ArrayOf(t.Size, reflect.TypeOf(byte(0))) case BytesTy: return reflect.SliceOf(reflect.TypeOf(byte(0))) case HashTy: // hashtype currently not used return reflect.ArrayOf(32, reflect.TypeOf(byte(0))) case FixedPointTy: // fixedpoint type currently not used return reflect.ArrayOf(32, reflect.TypeOf(byte(0))) case FunctionTy: return reflect.ArrayOf(24, reflect.TypeOf(byte(0))) default: panic("Invalid type") } } // String implements Stringer. func (t Type) String() (out string) { return t.stringKind } func (t Type) pack(v reflect.Value) ([]byte, error) { // dereference pointer first if it's a pointer v = indirect(v) if err := typeCheck(t, v); err != nil { return nil, err } switch t.T { case SliceTy, ArrayTy: var ret []byte if t.requiresLengthPrefix() { // append length ret = append(ret, packNum(reflect.ValueOf(v.Len()))...) } // calculate offset if any offset := 0 offsetReq := isDynamicType(*t.Elem) if offsetReq { offset = getTypeSize(*t.Elem) * v.Len() } var tail []byte for i := 0; i < v.Len(); i++ { val, err := t.Elem.pack(v.Index(i)) if err != nil { return nil, err } if !offsetReq { ret = append(ret, val...) continue } ret = append(ret, packNum(reflect.ValueOf(offset))...) offset += len(val) tail = append(tail, val...) } return append(ret, tail...), nil case TupleTy: // (T1,...,Tk) for k >= 0 and any types T1, …, Tk // enc(X) = head(X(1)) ... head(X(k)) tail(X(1)) ... tail(X(k)) // where X = (X(1), ..., X(k)) and head and tail are defined for Ti being a static // type as // head(X(i)) = enc(X(i)) and tail(X(i)) = "" (the empty string) // and as // head(X(i)) = enc(len(head(X(1)) ... head(X(k)) tail(X(1)) ... tail(X(i-1)))) // tail(X(i)) = enc(X(i)) // otherwise, i.e. if Ti is a dynamic type. fieldmap, err := mapArgNamesToStructFields(t.TupleRawNames, v) if err != nil { return nil, err } // Calculate prefix occupied size. offset := 0 for _, elem := range t.TupleElems { offset += getTypeSize(*elem) } var ret, tail []byte for i, elem := range t.TupleElems { field := v.FieldByName(fieldmap[t.TupleRawNames[i]]) if !field.IsValid() { return nil, fmt.Errorf("field %s for tuple not found in the given struct", t.TupleRawNames[i]) } val, err := elem.pack(field) if err != nil { return nil, err } if isDynamicType(*elem) { ret = append(ret, packNum(reflect.ValueOf(offset))...) tail = append(tail, val...) offset += len(val) } else { ret = append(ret, val...) } } return append(ret, tail...), nil default: return packElement(t, v) } } // requiresLengthPrefix returns whether the type requires any sort of length // prefixing. func (t Type) requiresLengthPrefix() bool { return t.T == StringTy || t.T == BytesTy || t.T == SliceTy } // isDynamicType returns true if the type is dynamic. // The following types are called “dynamic”: // * bytes // * string // * T[] for any T // * T[k] for any dynamic T and any k >= 0 // * (T1,...,Tk) if Ti is dynamic for some 1 <= i <= k func isDynamicType(t Type) bool { if t.T == TupleTy { for _, elem := range t.TupleElems { if isDynamicType(*elem) { return true } } return false } return t.T == StringTy || t.T == BytesTy || t.T == SliceTy || (t.T == ArrayTy && isDynamicType(*t.Elem)) } // getTypeSize returns the size that this type needs to occupy. // We distinguish static and dynamic types. Static types are encoded in-place // and dynamic types are encoded at a separately allocated location after the // current block. // So for a static variable, the size returned represents the size that the // variable actually occupies. // For a dynamic variable, the returned size is fixed 32 bytes, which is used // to store the location reference for actual value storage. func getTypeSize(t Type) int { if t.T == ArrayTy && !isDynamicType(*t.Elem) { // Recursively calculate type size if it is a nested array if t.Elem.T == ArrayTy || t.Elem.T == TupleTy { return t.Size * getTypeSize(*t.Elem) } return t.Size * 32 } else if t.T == TupleTy && !isDynamicType(t) { total := 0 for _, elem := range t.TupleElems { total += getTypeSize(*elem) } return total } return 32 } // isLetter reports whether a given 'rune' is classified as a Letter. // This method is copied from reflect/type.go func isLetter(ch rune) bool { return 'a' <= ch && ch <= 'z' || 'A' <= ch && ch <= 'Z' || ch == '_' || ch >= utf8.RuneSelf && unicode.IsLetter(ch) } // isValidFieldName checks if a string is a valid (struct) field name or not. // // According to the language spec, a field name should be an identifier. // // identifier = letter { letter | unicode_digit } . // letter = unicode_letter | "_" . // This method is copied from reflect/type.go func isValidFieldName(fieldName string) bool { for i, c := range fieldName { if i == 0 && !isLetter(c) { return false } if !(isLetter(c) || unicode.IsDigit(c)) { return false } } return len(fieldName) > 0 }