// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package trie import ( "bytes" "errors" "fmt" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/log" ) // Prove constructs a merkle proof for key. The result contains all encoded nodes // on the path to the value at key. The value itself is also included in the last // node and can be retrieved by verifying the proof. // // If the trie does not contain a value for key, the returned proof contains all // nodes of the longest existing prefix of the key (at least the root node), ending // with the node that proves the absence of the key. func (t *Trie) Prove(key []byte, proofDb ethdb.KeyValueWriter) error { // Short circuit if the trie is already committed and not usable. if t.committed { return ErrCommitted } // Collect all nodes on the path to key. var ( prefix []byte nodes []node tn = t.root ) key = keybytesToHex(key) for len(key) > 0 && tn != nil { switch n := tn.(type) { case *shortNode: if !bytes.HasPrefix(key, n.Key) { // The trie doesn't contain the key. tn = nil } else { tn = n.Val prefix = append(prefix, n.Key...) key = key[len(n.Key):] } nodes = append(nodes, n) case *fullNode: tn = n.Children[key[0]] prefix = append(prefix, key[0]) key = key[1:] nodes = append(nodes, n) case hashNode: // Retrieve the specified node from the underlying node reader. // trie.resolveAndTrack is not used since in that function the // loaded blob will be tracked, while it's not required here since // all loaded nodes won't be linked to trie at all and track nodes // may lead to out-of-memory issue. blob, err := t.reader.node(prefix, common.BytesToHash(n)) if err != nil { log.Error("Unhandled trie error in Trie.Prove", "err", err) return err } // The raw-blob format nodes are loaded either from the // clean cache or the database, they are all in their own // copy and safe to use unsafe decoder. tn = mustDecodeNodeUnsafe(n, blob) default: panic(fmt.Sprintf("%T: invalid node: %v", tn, tn)) } } hasher := newHasher(false) defer returnHasherToPool(hasher) for i, n := range nodes { var hn node n, hn = hasher.proofHash(n) if hash, ok := hn.(hashNode); ok || i == 0 { // If the node's database encoding is a hash (or is the // root node), it becomes a proof element. enc := nodeToBytes(n) if !ok { hash = hasher.hashData(enc) } proofDb.Put(hash, enc) } } return nil } // Prove constructs a merkle proof for key. The result contains all encoded nodes // on the path to the value at key. The value itself is also included in the last // node and can be retrieved by verifying the proof. // // If the trie does not contain a value for key, the returned proof contains all // nodes of the longest existing prefix of the key (at least the root node), ending // with the node that proves the absence of the key. func (t *StateTrie) Prove(key []byte, proofDb ethdb.KeyValueWriter) error { return t.trie.Prove(key, proofDb) } // VerifyProof checks merkle proofs. The given proof must contain the value for // key in a trie with the given root hash. VerifyProof returns an error if the // proof contains invalid trie nodes or the wrong value. func VerifyProof(rootHash common.Hash, key []byte, proofDb ethdb.KeyValueReader) (value []byte, err error) { key = keybytesToHex(key) wantHash := rootHash for i := 0; ; i++ { buf, _ := proofDb.Get(wantHash[:]) if buf == nil { return nil, fmt.Errorf("proof node %d (hash %064x) missing", i, wantHash) } n, err := decodeNode(wantHash[:], buf) if err != nil { return nil, fmt.Errorf("bad proof node %d: %v", i, err) } keyrest, cld := get(n, key, true) switch cld := cld.(type) { case nil: // The trie doesn't contain the key. return nil, nil case hashNode: key = keyrest copy(wantHash[:], cld) case valueNode: return cld, nil } } } // proofToPath converts a merkle proof to trie node path. The main purpose of // this function is recovering a node path from the merkle proof stream. All // necessary nodes will be resolved and leave the remaining as hashnode. // // The given edge proof is allowed to be an existent or non-existent proof. func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ethdb.KeyValueReader, allowNonExistent bool) (node, []byte, error) { // resolveNode retrieves and resolves trie node from merkle proof stream resolveNode := func(hash common.Hash) (node, error) { buf, _ := proofDb.Get(hash[:]) if buf == nil { return nil, fmt.Errorf("proof node (hash %064x) missing", hash) } n, err := decodeNode(hash[:], buf) if err != nil { return nil, fmt.Errorf("bad proof node %v", err) } return n, err } // If the root node is empty, resolve it first. // Root node must be included in the proof. if root == nil { n, err := resolveNode(rootHash) if err != nil { return nil, nil, err } root = n } var ( err error child, parent node keyrest []byte valnode []byte ) key, parent = keybytesToHex(key), root for { keyrest, child = get(parent, key, false) switch cld := child.(type) { case nil: // The trie doesn't contain the key. It's possible // the proof is a non-existing proof, but at least // we can prove all resolved nodes are correct, it's // enough for us to prove range. if allowNonExistent { return root, nil, nil } return nil, nil, errors.New("the node is not contained in trie") case *shortNode: key, parent = keyrest, child // Already resolved continue case *fullNode: key, parent = keyrest, child // Already resolved continue case hashNode: child, err = resolveNode(common.BytesToHash(cld)) if err != nil { return nil, nil, err } case valueNode: valnode = cld } // Link the parent and child. switch pnode := parent.(type) { case *shortNode: pnode.Val = child case *fullNode: pnode.Children[key[0]] = child default: panic(fmt.Sprintf("%T: invalid node: %v", pnode, pnode)) } if len(valnode) > 0 { return root, valnode, nil // The whole path is resolved } key, parent = keyrest, child } } // unsetInternal removes all internal node references(hashnode, embedded node). // It should be called after a trie is constructed with two edge paths. Also // the given boundary keys must be the one used to construct the edge paths. // // It's the key step for range proof. All visited nodes should be marked dirty // since the node content might be modified. Besides it can happen that some // fullnodes only have one child which is disallowed. But if the proof is valid, // the missing children will be filled, otherwise it will be thrown anyway. // // Note we have the assumption here the given boundary keys are different // and right is larger than left. func unsetInternal(n node, left []byte, right []byte) (bool, error) { left, right = keybytesToHex(left), keybytesToHex(right) // Step down to the fork point. There are two scenarios can happen: // - the fork point is a shortnode: either the key of left proof or // right proof doesn't match with shortnode's key. // - the fork point is a fullnode: both two edge proofs are allowed // to point to a non-existent key. var ( pos = 0 parent node // fork indicator, 0 means no fork, -1 means proof is less, 1 means proof is greater shortForkLeft, shortForkRight int ) findFork: for { switch rn := (n).(type) { case *shortNode: rn.flags = nodeFlag{dirty: true} // If either the key of left proof or right proof doesn't match with // shortnode, stop here and the forkpoint is the shortnode. if len(left)-pos < len(rn.Key) { shortForkLeft = bytes.Compare(left[pos:], rn.Key) } else { shortForkLeft = bytes.Compare(left[pos:pos+len(rn.Key)], rn.Key) } if len(right)-pos < len(rn.Key) { shortForkRight = bytes.Compare(right[pos:], rn.Key) } else { shortForkRight = bytes.Compare(right[pos:pos+len(rn.Key)], rn.Key) } if shortForkLeft != 0 || shortForkRight != 0 { break findFork } parent = n n, pos = rn.Val, pos+len(rn.Key) case *fullNode: rn.flags = nodeFlag{dirty: true} // If either the node pointed by left proof or right proof is nil, // stop here and the forkpoint is the fullnode. leftnode, rightnode := rn.Children[left[pos]], rn.Children[right[pos]] if leftnode == nil || rightnode == nil || leftnode != rightnode { break findFork } parent = n n, pos = rn.Children[left[pos]], pos+1 default: panic(fmt.Sprintf("%T: invalid node: %v", n, n)) } } switch rn := n.(type) { case *shortNode: // There can have these five scenarios: // - both proofs are less than the trie path => no valid range // - both proofs are greater than the trie path => no valid range // - left proof is less and right proof is greater => valid range, unset the shortnode entirely // - left proof points to the shortnode, but right proof is greater // - right proof points to the shortnode, but left proof is less if shortForkLeft == -1 && shortForkRight == -1 { return false, errors.New("empty range") } if shortForkLeft == 1 && shortForkRight == 1 { return false, errors.New("empty range") } if shortForkLeft != 0 && shortForkRight != 0 { // The fork point is root node, unset the entire trie if parent == nil { return true, nil } parent.(*fullNode).Children[left[pos-1]] = nil return false, nil } // Only one proof points to non-existent key. if shortForkRight != 0 { if _, ok := rn.Val.(valueNode); ok { // The fork point is root node, unset the entire trie if parent == nil { return true, nil } parent.(*fullNode).Children[left[pos-1]] = nil return false, nil } return false, unset(rn, rn.Val, left[pos:], len(rn.Key), false) } if shortForkLeft != 0 { if _, ok := rn.Val.(valueNode); ok { // The fork point is root node, unset the entire trie if parent == nil { return true, nil } parent.(*fullNode).Children[right[pos-1]] = nil return false, nil } return false, unset(rn, rn.Val, right[pos:], len(rn.Key), true) } return false, nil case *fullNode: // unset all internal nodes in the forkpoint for i := left[pos] + 1; i < right[pos]; i++ { rn.Children[i] = nil } if err := unset(rn, rn.Children[left[pos]], left[pos:], 1, false); err != nil { return false, err } if err := unset(rn, rn.Children[right[pos]], right[pos:], 1, true); err != nil { return false, err } return false, nil default: panic(fmt.Sprintf("%T: invalid node: %v", n, n)) } } // unset removes all internal node references either the left most or right most. // It can meet these scenarios: // // - The given path is existent in the trie, unset the associated nodes with the // specific direction // - The given path is non-existent in the trie // - the fork point is a fullnode, the corresponding child pointed by path // is nil, return // - the fork point is a shortnode, the shortnode is included in the range, // keep the entire branch and return. // - the fork point is a shortnode, the shortnode is excluded in the range, // unset the entire branch. func unset(parent node, child node, key []byte, pos int, removeLeft bool) error { switch cld := child.(type) { case *fullNode: if removeLeft { for i := 0; i < int(key[pos]); i++ { cld.Children[i] = nil } cld.flags = nodeFlag{dirty: true} } else { for i := key[pos] + 1; i < 16; i++ { cld.Children[i] = nil } cld.flags = nodeFlag{dirty: true} } return unset(cld, cld.Children[key[pos]], key, pos+1, removeLeft) case *shortNode: if !bytes.HasPrefix(key[pos:], cld.Key) { // Find the fork point, it's a non-existent branch. if removeLeft { if bytes.Compare(cld.Key, key[pos:]) < 0 { // The key of fork shortnode is less than the path // (it belongs to the range), unset the entire // branch. The parent must be a fullnode. fn := parent.(*fullNode) fn.Children[key[pos-1]] = nil } //else { // The key of fork shortnode is greater than the // path(it doesn't belong to the range), keep // it with the cached hash available. //} } else { if bytes.Compare(cld.Key, key[pos:]) > 0 { // The key of fork shortnode is greater than the // path(it belongs to the range), unset the entries // branch. The parent must be a fullnode. fn := parent.(*fullNode) fn.Children[key[pos-1]] = nil } //else { // The key of fork shortnode is less than the // path(it doesn't belong to the range), keep // it with the cached hash available. //} } return nil } if _, ok := cld.Val.(valueNode); ok { fn := parent.(*fullNode) fn.Children[key[pos-1]] = nil return nil } cld.flags = nodeFlag{dirty: true} return unset(cld, cld.Val, key, pos+len(cld.Key), removeLeft) case nil: // If the node is nil, then it's a child of the fork point // fullnode(it's a non-existent branch). return nil default: panic("it shouldn't happen") // hashNode, valueNode } } // hasRightElement returns the indicator whether there exists more elements // on the right side of the given path. The given path can point to an existent // key or a non-existent one. This function has the assumption that the whole // path should already be resolved. func hasRightElement(node node, key []byte) bool { pos, key := 0, keybytesToHex(key) for node != nil { switch rn := node.(type) { case *fullNode: for i := key[pos] + 1; i < 16; i++ { if rn.Children[i] != nil { return true } } node, pos = rn.Children[key[pos]], pos+1 case *shortNode: if !bytes.HasPrefix(key[pos:], rn.Key) { return bytes.Compare(rn.Key, key[pos:]) > 0 } node, pos = rn.Val, pos+len(rn.Key) case valueNode: return false // We have resolved the whole path default: panic(fmt.Sprintf("%T: invalid node: %v", node, node)) // hashnode } } return false } // VerifyRangeProof checks whether the given leaf nodes and edge proof // can prove the given trie leaves range is matched with the specific root. // Besides, the range should be consecutive (no gap inside) and monotonic // increasing. // // Note the given proof actually contains two edge proofs. Both of them can // be non-existent proofs. For example the first proof is for a non-existent // key 0x03, the last proof is for a non-existent key 0x10. The given batch // leaves are [0x04, 0x05, .. 0x09]. It's still feasible to prove the given // batch is valid. // // The firstKey is paired with firstProof, not necessarily the same as keys[0] // (unless firstProof is an existent proof). Similarly, lastKey and lastProof // are paired. // // Expect the normal case, this function can also be used to verify the following // range proofs: // // - All elements proof. In this case the proof can be nil, but the range should // be all the leaves in the trie. // // - One element proof. In this case no matter the edge proof is a non-existent // proof or not, we can always verify the correctness of the proof. // // - Zero element proof. In this case a single non-existent proof is enough to prove. // Besides, if there are still some other leaves available on the right side, then // an error will be returned. // // Except returning the error to indicate the proof is valid or not, the function will // also return a flag to indicate whether there exists more accounts/slots in the trie. // // Note: This method does not verify that the proof is of minimal form. If the input // proofs are 'bloated' with neighbour leaves or random data, aside from the 'useful' // data, then the proof will still be accepted. func VerifyRangeProof(rootHash common.Hash, firstKey []byte, keys [][]byte, values [][]byte, proof ethdb.KeyValueReader) (bool, error) { if len(keys) != len(values) { return false, fmt.Errorf("inconsistent proof data, keys: %d, values: %d", len(keys), len(values)) } // Ensure the received batch is monotonic increasing and contains no deletions for i := 0; i < len(keys)-1; i++ { if bytes.Compare(keys[i], keys[i+1]) >= 0 { return false, errors.New("range is not monotonically increasing") } } for _, value := range values { if len(value) == 0 { return false, errors.New("range contains deletion") } } // Special case, there is no edge proof at all. The given range is expected // to be the whole leaf-set in the trie. if proof == nil { tr := NewStackTrie(nil) for index, key := range keys { tr.Update(key, values[index]) } if have, want := tr.Hash(), rootHash; have != want { return false, fmt.Errorf("invalid proof, want hash %x, got %x", want, have) } return false, nil // No more elements } // Special case, there is a provided edge proof but zero key/value // pairs, ensure there are no more accounts / slots in the trie. if len(keys) == 0 { root, val, err := proofToPath(rootHash, nil, firstKey, proof, true) if err != nil { return false, err } if val != nil || hasRightElement(root, firstKey) { return false, errors.New("more entries available") } return false, nil } var lastKey = keys[len(keys)-1] // Special case, there is only one element and two edge keys are same. // In this case, we can't construct two edge paths. So handle it here. if len(keys) == 1 && bytes.Equal(firstKey, lastKey) { root, val, err := proofToPath(rootHash, nil, firstKey, proof, false) if err != nil { return false, err } if !bytes.Equal(firstKey, keys[0]) { return false, errors.New("correct proof but invalid key") } if !bytes.Equal(val, values[0]) { return false, errors.New("correct proof but invalid data") } return hasRightElement(root, firstKey), nil } // Ok, in all other cases, we require two edge paths available. // First check the validity of edge keys. if bytes.Compare(firstKey, lastKey) >= 0 { return false, errors.New("invalid edge keys") } // todo(rjl493456442) different length edge keys should be supported if len(firstKey) != len(lastKey) { return false, errors.New("inconsistent edge keys") } // Convert the edge proofs to edge trie paths. Then we can // have the same tree architecture with the original one. // For the first edge proof, non-existent proof is allowed. root, _, err := proofToPath(rootHash, nil, firstKey, proof, true) if err != nil { return false, err } // Pass the root node here, the second path will be merged // with the first one. For the last edge proof, non-existent // proof is also allowed. root, _, err = proofToPath(rootHash, root, lastKey, proof, true) if err != nil { return false, err } // Remove all internal references. All the removed parts should // be re-filled(or re-constructed) by the given leaves range. empty, err := unsetInternal(root, firstKey, lastKey) if err != nil { return false, err } // Rebuild the trie with the leaf stream, the shape of trie // should be same with the original one. tr := &Trie{root: root, reader: newEmptyReader(), tracer: newTracer()} if empty { tr.root = nil } for index, key := range keys { tr.Update(key, values[index]) } if tr.Hash() != rootHash { return false, fmt.Errorf("invalid proof, want hash %x, got %x", rootHash, tr.Hash()) } return hasRightElement(tr.root, keys[len(keys)-1]), nil } // get returns the child of the given node. Return nil if the // node with specified key doesn't exist at all. // // There is an additional flag `skipResolved`. If it's set then // all resolved nodes won't be returned. func get(tn node, key []byte, skipResolved bool) ([]byte, node) { for { switch n := tn.(type) { case *shortNode: if !bytes.HasPrefix(key, n.Key) { return nil, nil } tn = n.Val key = key[len(n.Key):] if !skipResolved { return key, tn } case *fullNode: tn = n.Children[key[0]] key = key[1:] if !skipResolved { return key, tn } case hashNode: return key, n case nil: return key, nil case valueNode: return nil, n default: panic(fmt.Sprintf("%T: invalid node: %v", tn, tn)) } } }