// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package core import ( "fmt" "math/big" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/consensus/misc" "github.com/ethereum/go-ethereum/core/state" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/core/vm" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/params" ) // StateProcessor is a basic Processor, which takes care of transitioning // state from one point to another. // // StateProcessor implements Processor. type StateProcessor struct { config *params.ChainConfig // Chain configuration options chain *HeaderChain // Canonical header chain } // NewStateProcessor initialises a new StateProcessor. func NewStateProcessor(config *params.ChainConfig, chain *HeaderChain) *StateProcessor { return &StateProcessor{ config: config, chain: chain, } } // Process processes the state changes according to the Ethereum rules by running // the transaction messages using the statedb and applying any rewards to both // the processor (coinbase) and any included uncles. // // Process returns the receipts and logs accumulated during the process and // returns the amount of gas that was used in the process. If any of the // transactions failed to execute due to insufficient gas it will return an error. func (p *StateProcessor) Process(block *types.Block, statedb *state.StateDB, cfg vm.Config) (*ProcessResult, error) { var ( receipts types.Receipts usedGas = new(uint64) header = block.Header() blockHash = block.Hash() blockNumber = block.Number() allLogs []*types.Log gp = new(GasPool).AddGas(block.GasLimit()) ) // Mutate the block and state according to any hard-fork specs if p.config.DAOForkSupport && p.config.DAOForkBlock != nil && p.config.DAOForkBlock.Cmp(block.Number()) == 0 { misc.ApplyDAOHardFork(statedb) } var ( context vm.BlockContext signer = types.MakeSigner(p.config, header.Number, header.Time) ) // Apply pre-execution system calls. context = NewEVMBlockContext(header, p.chain, nil) vmenv := vm.NewEVM(context, vm.TxContext{}, statedb, p.config, cfg) if beaconRoot := block.BeaconRoot(); beaconRoot != nil { ProcessBeaconBlockRoot(*beaconRoot, vmenv, statedb) } if p.config.IsPrague(block.Number(), block.Time()) { ProcessParentBlockHash(block.ParentHash(), vmenv, statedb) } // Iterate over and process the individual transactions for i, tx := range block.Transactions() { msg, err := TransactionToMessage(tx, signer, header.BaseFee) if err != nil { return nil, fmt.Errorf("could not apply tx %d [%v]: %w", i, tx.Hash().Hex(), err) } statedb.SetTxContext(tx.Hash(), i) receipt, err := ApplyTransactionWithEVM(msg, p.config, gp, statedb, blockNumber, blockHash, tx, usedGas, vmenv) if err != nil { return nil, fmt.Errorf("could not apply tx %d [%v]: %w", i, tx.Hash().Hex(), err) } receipts = append(receipts, receipt) allLogs = append(allLogs, receipt.Logs...) } // Read requests if Prague is enabled. var requests [][]byte if p.config.IsPrague(block.Number(), block.Time()) { depositRequests, err := ParseDepositLogs(allLogs, p.config) if err != nil { return nil, err } requests = append(requests, depositRequests) } // Finalize the block, applying any consensus engine specific extras (e.g. block rewards) p.chain.engine.Finalize(p.chain, header, statedb, block.Body()) return &ProcessResult{ Receipts: receipts, Requests: requests, Logs: allLogs, GasUsed: *usedGas, }, nil } // ApplyTransactionWithEVM attempts to apply a transaction to the given state database // and uses the input parameters for its environment similar to ApplyTransaction. However, // this method takes an already created EVM instance as input. func ApplyTransactionWithEVM(msg *Message, config *params.ChainConfig, gp *GasPool, statedb *state.StateDB, blockNumber *big.Int, blockHash common.Hash, tx *types.Transaction, usedGas *uint64, evm *vm.EVM) (receipt *types.Receipt, err error) { if evm.Config.Tracer != nil && evm.Config.Tracer.OnTxStart != nil { evm.Config.Tracer.OnTxStart(evm.GetVMContext(), tx, msg.From) if evm.Config.Tracer.OnTxEnd != nil { defer func() { evm.Config.Tracer.OnTxEnd(receipt, err) }() } } // Create a new context to be used in the EVM environment. txContext := NewEVMTxContext(msg) evm.Reset(txContext, statedb) // Apply the transaction to the current state (included in the env). result, err := ApplyMessage(evm, msg, gp) if err != nil { return nil, err } // Update the state with pending changes. var root []byte if config.IsByzantium(blockNumber) { statedb.Finalise(true) } else { root = statedb.IntermediateRoot(config.IsEIP158(blockNumber)).Bytes() } *usedGas += result.UsedGas return MakeReceipt(evm, result, statedb, blockNumber, blockHash, tx, *usedGas, root), nil } // MakeReceipt generates the receipt object for a transaction given its execution result. func MakeReceipt(evm *vm.EVM, result *ExecutionResult, statedb *state.StateDB, blockNumber *big.Int, blockHash common.Hash, tx *types.Transaction, usedGas uint64, root []byte) *types.Receipt { // Create a new receipt for the transaction, storing the intermediate root and gas used // by the tx. receipt := &types.Receipt{Type: tx.Type(), PostState: root, CumulativeGasUsed: usedGas} if result.Failed() { receipt.Status = types.ReceiptStatusFailed } else { receipt.Status = types.ReceiptStatusSuccessful } receipt.TxHash = tx.Hash() receipt.GasUsed = result.UsedGas if tx.Type() == types.BlobTxType { receipt.BlobGasUsed = uint64(len(tx.BlobHashes()) * params.BlobTxBlobGasPerBlob) receipt.BlobGasPrice = evm.Context.BlobBaseFee } // If the transaction created a contract, store the creation address in the receipt. if tx.To() == nil { receipt.ContractAddress = crypto.CreateAddress(evm.TxContext.Origin, tx.Nonce()) } // Merge the tx-local access event into the "block-local" one, in order to collect // all values, so that the witness can be built. if statedb.GetTrie().IsVerkle() { statedb.AccessEvents().Merge(evm.AccessEvents) } // Set the receipt logs and create the bloom filter. receipt.Logs = statedb.GetLogs(tx.Hash(), blockNumber.Uint64(), blockHash) receipt.Bloom = types.CreateBloom(types.Receipts{receipt}) receipt.BlockHash = blockHash receipt.BlockNumber = blockNumber receipt.TransactionIndex = uint(statedb.TxIndex()) return receipt } // ApplyTransaction attempts to apply a transaction to the given state database // and uses the input parameters for its environment. It returns the receipt // for the transaction, gas used and an error if the transaction failed, // indicating the block was invalid. func ApplyTransaction(config *params.ChainConfig, bc ChainContext, author *common.Address, gp *GasPool, statedb *state.StateDB, header *types.Header, tx *types.Transaction, usedGas *uint64, cfg vm.Config) (*types.Receipt, error) { msg, err := TransactionToMessage(tx, types.MakeSigner(config, header.Number, header.Time), header.BaseFee) if err != nil { return nil, err } // Create a new context to be used in the EVM environment blockContext := NewEVMBlockContext(header, bc, author) txContext := NewEVMTxContext(msg) vmenv := vm.NewEVM(blockContext, txContext, statedb, config, cfg) return ApplyTransactionWithEVM(msg, config, gp, statedb, header.Number, header.Hash(), tx, usedGas, vmenv) } // ProcessBeaconBlockRoot applies the EIP-4788 system call to the beacon block root // contract. This method is exported to be used in tests. func ProcessBeaconBlockRoot(beaconRoot common.Hash, vmenv *vm.EVM, statedb *state.StateDB) { if tracer := vmenv.Config.Tracer; tracer != nil { if tracer.OnSystemCallStart != nil { tracer.OnSystemCallStart() } if tracer.OnSystemCallEnd != nil { defer tracer.OnSystemCallEnd() } } // If EIP-4788 is enabled, we need to invoke the beaconroot storage contract with // the new root msg := &Message{ From: params.SystemAddress, GasLimit: 30_000_000, GasPrice: common.Big0, GasFeeCap: common.Big0, GasTipCap: common.Big0, To: ¶ms.BeaconRootsAddress, Data: beaconRoot[:], } vmenv.Reset(NewEVMTxContext(msg), statedb) statedb.AddAddressToAccessList(params.BeaconRootsAddress) _, _, _ = vmenv.Call(vm.AccountRef(msg.From), *msg.To, msg.Data, 30_000_000, common.U2560) statedb.Finalise(true) } // ProcessParentBlockHash stores the parent block hash in the history storage contract // as per EIP-2935. func ProcessParentBlockHash(prevHash common.Hash, vmenv *vm.EVM, statedb *state.StateDB) { if tracer := vmenv.Config.Tracer; tracer != nil { if tracer.OnSystemCallStart != nil { tracer.OnSystemCallStart() } if tracer.OnSystemCallEnd != nil { defer tracer.OnSystemCallEnd() } } msg := &Message{ From: params.SystemAddress, GasLimit: 30_000_000, GasPrice: common.Big0, GasFeeCap: common.Big0, GasTipCap: common.Big0, To: ¶ms.HistoryStorageAddress, Data: prevHash.Bytes(), } vmenv.Reset(NewEVMTxContext(msg), statedb) statedb.AddAddressToAccessList(params.HistoryStorageAddress) _, _, _ = vmenv.Call(vm.AccountRef(msg.From), *msg.To, msg.Data, 30_000_000, common.U2560) statedb.Finalise(true) } // ParseDepositLogs extracts the EIP-6110 deposit values from logs emitted by // BeaconDepositContract. func ParseDepositLogs(logs []*types.Log, config *params.ChainConfig) ([]byte, error) { deposits := make([]byte, 1) // note: first byte is 0x00 (== deposit request type) for _, log := range logs { if log.Address == config.DepositContractAddress { request, err := types.DepositLogToRequest(log.Data) if err != nil { return nil, fmt.Errorf("unable to parse deposit data: %v", err) } deposits = append(deposits, request...) } } return deposits, nil }