// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . // Package downloader contains the manual full chain synchronisation. package downloader import ( "errors" "fmt" "math/big" "sync" "sync/atomic" "time" "github.com/ethereum/go-ethereum" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/rawdb" "github.com/ethereum/go-ethereum/core/state/snapshot" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/eth/ethconfig" "github.com/ethereum/go-ethereum/eth/protocols/snap" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/event" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/params" "github.com/ethereum/go-ethereum/triedb" ) var ( MaxBlockFetch = 128 // Number of blocks to be fetched per retrieval request MaxHeaderFetch = 192 // Number of block headers to be fetched per retrieval request MaxReceiptFetch = 256 // Number of transaction receipts to allow fetching per request maxQueuedHeaders = 32 * 1024 // [eth/62] Maximum number of headers to queue for import (DOS protection) maxHeadersProcess = 2048 // Number of header download results to import at once into the chain maxResultsProcess = 2048 // Number of content download results to import at once into the chain fullMaxForkAncestry uint64 = params.FullImmutabilityThreshold // Maximum chain reorganisation (locally redeclared so tests can reduce it) reorgProtHeaderDelay = 2 // Number of headers to delay delivering to cover mini reorgs fsHeaderSafetyNet = 2048 // Number of headers to discard in case a chain violation is detected fsHeaderContCheck = 3 * time.Second // Time interval to check for header continuations during state download fsMinFullBlocks = 64 // Number of blocks to retrieve fully even in snap sync ) var ( errBusy = errors.New("busy") errBadPeer = errors.New("action from bad peer ignored") errTimeout = errors.New("timeout") errInvalidChain = errors.New("retrieved hash chain is invalid") errInvalidBody = errors.New("retrieved block body is invalid") errInvalidReceipt = errors.New("retrieved receipt is invalid") errCancelStateFetch = errors.New("state data download canceled (requested)") errCancelContentProcessing = errors.New("content processing canceled (requested)") errCanceled = errors.New("syncing canceled (requested)") errNoPivotHeader = errors.New("pivot header is not found") ) // SyncMode defines the sync method of the downloader. // Deprecated: use ethconfig.SyncMode instead type SyncMode = ethconfig.SyncMode const ( // Deprecated: use ethconfig.FullSync FullSync = ethconfig.FullSync // Deprecated: use ethconfig.SnapSync SnapSync = ethconfig.SnapSync ) // peerDropFn is a callback type for dropping a peer detected as malicious. type peerDropFn func(id string) // badBlockFn is a callback for the async beacon sync to notify the caller that // the origin header requested to sync to, produced a chain with a bad block. type badBlockFn func(invalid *types.Header, origin *types.Header) // headerTask is a set of downloaded headers to queue along with their precomputed // hashes to avoid constant rehashing. type headerTask struct { headers []*types.Header hashes []common.Hash } type Downloader struct { mode atomic.Uint32 // Synchronisation mode defining the strategy used (per sync cycle), use d.getMode() to get the SyncMode mux *event.TypeMux // Event multiplexer to announce sync operation events queue *queue // Scheduler for selecting the hashes to download peers *peerSet // Set of active peers from which download can proceed stateDB ethdb.Database // Database to state sync into (and deduplicate via) // Statistics syncStatsChainOrigin uint64 // Origin block number where syncing started at syncStatsChainHeight uint64 // Highest block number known when syncing started syncStatsLock sync.RWMutex // Lock protecting the sync stats fields blockchain BlockChain // Callbacks dropPeer peerDropFn // Drops a peer for misbehaving badBlock badBlockFn // Reports a block as rejected by the chain // Status synchronising atomic.Bool notified atomic.Bool committed atomic.Bool ancientLimit uint64 // The maximum block number which can be regarded as ancient data. // Channels headerProcCh chan *headerTask // Channel to feed the header processor new tasks // Skeleton sync skeleton *skeleton // Header skeleton to backfill the chain with (eth2 mode) // State sync pivotHeader *types.Header // Pivot block header to dynamically push the syncing state root pivotLock sync.RWMutex // Lock protecting pivot header reads from updates SnapSyncer *snap.Syncer // TODO(karalabe): make private! hack for now stateSyncStart chan *stateSync // Cancellation and termination cancelCh chan struct{} // Channel to cancel mid-flight syncs cancelLock sync.RWMutex // Lock to protect the cancel channel and peer in delivers cancelWg sync.WaitGroup // Make sure all fetcher goroutines have exited. quitCh chan struct{} // Quit channel to signal termination quitLock sync.Mutex // Lock to prevent double closes // Testing hooks bodyFetchHook func([]*types.Header) // Method to call upon starting a block body fetch receiptFetchHook func([]*types.Header) // Method to call upon starting a receipt fetch chainInsertHook func([]*fetchResult) // Method to call upon inserting a chain of blocks (possibly in multiple invocations) // Progress reporting metrics syncStartBlock uint64 // Head snap block when Geth was started syncStartTime time.Time // Time instance when chain sync started syncLogTime time.Time // Time instance when status was last reported } // BlockChain encapsulates functions required to sync a (full or snap) blockchain. type BlockChain interface { // HasHeader verifies a header's presence in the local chain. HasHeader(common.Hash, uint64) bool // GetHeaderByHash retrieves a header from the local chain. GetHeaderByHash(common.Hash) *types.Header // CurrentHeader retrieves the head header from the local chain. CurrentHeader() *types.Header // GetTd returns the total difficulty of a local block. GetTd(common.Hash, uint64) *big.Int // InsertHeaderChain inserts a batch of headers into the local chain. InsertHeaderChain([]*types.Header) (int, error) // SetHead rewinds the local chain to a new head. SetHead(uint64) error // HasBlock verifies a block's presence in the local chain. HasBlock(common.Hash, uint64) bool // HasFastBlock verifies a snap block's presence in the local chain. HasFastBlock(common.Hash, uint64) bool // GetBlockByHash retrieves a block from the local chain. GetBlockByHash(common.Hash) *types.Block // CurrentBlock retrieves the head block from the local chain. CurrentBlock() *types.Header // CurrentSnapBlock retrieves the head snap block from the local chain. CurrentSnapBlock() *types.Header // SnapSyncCommitHead directly commits the head block to a certain entity. SnapSyncCommitHead(common.Hash) error // InsertChain inserts a batch of blocks into the local chain. InsertChain(types.Blocks) (int, error) // InsertReceiptChain inserts a batch of receipts into the local chain. InsertReceiptChain(types.Blocks, []types.Receipts, uint64) (int, error) // Snapshots returns the blockchain snapshot tree to paused it during sync. Snapshots() *snapshot.Tree // TrieDB retrieves the low level trie database used for interacting // with trie nodes. TrieDB() *triedb.Database } // New creates a new downloader to fetch hashes and blocks from remote peers. func New(stateDb ethdb.Database, mux *event.TypeMux, chain BlockChain, dropPeer peerDropFn, success func()) *Downloader { dl := &Downloader{ stateDB: stateDb, mux: mux, queue: newQueue(blockCacheMaxItems, blockCacheInitialItems), peers: newPeerSet(), blockchain: chain, dropPeer: dropPeer, headerProcCh: make(chan *headerTask, 1), quitCh: make(chan struct{}), SnapSyncer: snap.NewSyncer(stateDb, chain.TrieDB().Scheme()), stateSyncStart: make(chan *stateSync), syncStartBlock: chain.CurrentSnapBlock().Number.Uint64(), } // Create the post-merge skeleton syncer and start the process dl.skeleton = newSkeleton(stateDb, dl.peers, dropPeer, newBeaconBackfiller(dl, success)) go dl.stateFetcher() return dl } // Progress retrieves the synchronisation boundaries, specifically the origin // block where synchronisation started at (may have failed/suspended); the block // or header sync is currently at; and the latest known block which the sync targets. // // In addition, during the state download phase of snap synchronisation the number // of processed and the total number of known states are also returned. Otherwise // these are zero. func (d *Downloader) Progress() ethereum.SyncProgress { // Lock the current stats and return the progress d.syncStatsLock.RLock() defer d.syncStatsLock.RUnlock() current := uint64(0) mode := d.getMode() switch mode { case ethconfig.FullSync: current = d.blockchain.CurrentBlock().Number.Uint64() case ethconfig.SnapSync: current = d.blockchain.CurrentSnapBlock().Number.Uint64() default: log.Error("Unknown downloader mode", "mode", mode) } progress, pending := d.SnapSyncer.Progress() return ethereum.SyncProgress{ StartingBlock: d.syncStatsChainOrigin, CurrentBlock: current, HighestBlock: d.syncStatsChainHeight, SyncedAccounts: progress.AccountSynced, SyncedAccountBytes: uint64(progress.AccountBytes), SyncedBytecodes: progress.BytecodeSynced, SyncedBytecodeBytes: uint64(progress.BytecodeBytes), SyncedStorage: progress.StorageSynced, SyncedStorageBytes: uint64(progress.StorageBytes), HealedTrienodes: progress.TrienodeHealSynced, HealedTrienodeBytes: uint64(progress.TrienodeHealBytes), HealedBytecodes: progress.BytecodeHealSynced, HealedBytecodeBytes: uint64(progress.BytecodeHealBytes), HealingTrienodes: pending.TrienodeHeal, HealingBytecode: pending.BytecodeHeal, } } // RegisterPeer injects a new download peer into the set of block source to be // used for fetching hashes and blocks from. func (d *Downloader) RegisterPeer(id string, version uint, peer Peer) error { var logger log.Logger if len(id) < 16 { // Tests use short IDs, don't choke on them logger = log.New("peer", id) } else { logger = log.New("peer", id[:8]) } logger.Trace("Registering sync peer") if err := d.peers.Register(newPeerConnection(id, version, peer, logger)); err != nil { logger.Error("Failed to register sync peer", "err", err) return err } return nil } // UnregisterPeer remove a peer from the known list, preventing any action from // the specified peer. An effort is also made to return any pending fetches into // the queue. func (d *Downloader) UnregisterPeer(id string) error { // Unregister the peer from the active peer set and revoke any fetch tasks var logger log.Logger if len(id) < 16 { // Tests use short IDs, don't choke on them logger = log.New("peer", id) } else { logger = log.New("peer", id[:8]) } logger.Trace("Unregistering sync peer") if err := d.peers.Unregister(id); err != nil { logger.Error("Failed to unregister sync peer", "err", err) return err } d.queue.Revoke(id) return nil } // synchronise will select the peer and use it for synchronising. If an empty string is given // it will use the best peer possible and synchronize if its TD is higher than our own. If any of the // checks fail an error will be returned. This method is synchronous func (d *Downloader) synchronise(mode SyncMode, beaconPing chan struct{}) error { // The beacon header syncer is async. It will start this synchronization and // will continue doing other tasks. However, if synchronization needs to be // cancelled, the syncer needs to know if we reached the startup point (and // inited the cancel channel) or not yet. Make sure that we'll signal even in // case of a failure. if beaconPing != nil { defer func() { select { case <-beaconPing: // already notified default: close(beaconPing) // weird exit condition, notify that it's safe to cancel (the nothing) } }() } // Make sure only one goroutine is ever allowed past this point at once if !d.synchronising.CompareAndSwap(false, true) { return errBusy } defer d.synchronising.Store(false) // Post a user notification of the sync (only once per session) if d.notified.CompareAndSwap(false, true) { log.Info("Block synchronisation started") } if mode == ethconfig.SnapSync { // Snap sync will directly modify the persistent state, making the entire // trie database unusable until the state is fully synced. To prevent any // subsequent state reads, explicitly disable the trie database and state // syncer is responsible to address and correct any state missing. if d.blockchain.TrieDB().Scheme() == rawdb.PathScheme { if err := d.blockchain.TrieDB().Disable(); err != nil { return err } } // Snap sync uses the snapshot namespace to store potentially flaky data until // sync completely heals and finishes. Pause snapshot maintenance in the mean- // time to prevent access. if snapshots := d.blockchain.Snapshots(); snapshots != nil { // Only nil in tests snapshots.Disable() } } // Reset the queue, peer set and wake channels to clean any internal leftover state d.queue.Reset(blockCacheMaxItems, blockCacheInitialItems) d.peers.Reset() for _, ch := range []chan bool{d.queue.blockWakeCh, d.queue.receiptWakeCh} { select { case <-ch: default: } } for empty := false; !empty; { select { case <-d.headerProcCh: default: empty = true } } // Create cancel channel for aborting mid-flight and mark the master peer d.cancelLock.Lock() d.cancelCh = make(chan struct{}) d.cancelLock.Unlock() defer d.Cancel() // No matter what, we can't leave the cancel channel open // Atomically set the requested sync mode d.mode.Store(uint32(mode)) if beaconPing != nil { close(beaconPing) } return d.syncToHead() } func (d *Downloader) getMode() SyncMode { return SyncMode(d.mode.Load()) } // syncToHead starts a block synchronization based on the hash chain from // the specified head hash. func (d *Downloader) syncToHead() (err error) { d.mux.Post(StartEvent{}) defer func() { // reset on error if err != nil { d.mux.Post(FailedEvent{err}) } else { latest := d.blockchain.CurrentHeader() d.mux.Post(DoneEvent{latest}) } }() mode := d.getMode() log.Debug("Backfilling with the network", "mode", mode) defer func(start time.Time) { log.Debug("Synchronisation terminated", "elapsed", common.PrettyDuration(time.Since(start))) }(time.Now()) // Look up the sync boundaries: the common ancestor and the target block var latest, pivot, final *types.Header latest, _, final, err = d.skeleton.Bounds() if err != nil { return err } if latest.Number.Uint64() > uint64(fsMinFullBlocks) { number := latest.Number.Uint64() - uint64(fsMinFullBlocks) // Retrieve the pivot header from the skeleton chain segment but // fallback to local chain if it's not found in skeleton space. if pivot = d.skeleton.Header(number); pivot == nil { _, oldest, _, _ := d.skeleton.Bounds() // error is already checked if number < oldest.Number.Uint64() { count := int(oldest.Number.Uint64() - number) // it's capped by fsMinFullBlocks headers := d.readHeaderRange(oldest, count) if len(headers) == count { pivot = headers[len(headers)-1] log.Warn("Retrieved pivot header from local", "number", pivot.Number, "hash", pivot.Hash(), "latest", latest.Number, "oldest", oldest.Number) } } } // Print an error log and return directly in case the pivot header // is still not found. It means the skeleton chain is not linked // correctly with local chain. if pivot == nil { log.Error("Pivot header is not found", "number", number) return errNoPivotHeader } } // If no pivot block was returned, the head is below the min full block // threshold (i.e. new chain). In that case we won't really snap sync // anyway, but still need a valid pivot block to avoid some code hitting // nil panics on access. if mode == ethconfig.SnapSync && pivot == nil { pivot = d.blockchain.CurrentBlock() } height := latest.Number.Uint64() // In beacon mode, use the skeleton chain for the ancestor lookup origin, err := d.findBeaconAncestor() if err != nil { return err } d.syncStatsLock.Lock() if d.syncStatsChainHeight <= origin || d.syncStatsChainOrigin > origin { d.syncStatsChainOrigin = origin } d.syncStatsChainHeight = height d.syncStatsLock.Unlock() // Ensure our origin point is below any snap sync pivot point if mode == ethconfig.SnapSync { if height <= uint64(fsMinFullBlocks) { origin = 0 } else { pivotNumber := pivot.Number.Uint64() if pivotNumber <= origin { origin = pivotNumber - 1 } // Write out the pivot into the database so a rollback beyond it will // reenable snap sync rawdb.WriteLastPivotNumber(d.stateDB, pivotNumber) } } d.committed.Store(true) if mode == ethconfig.SnapSync && pivot.Number.Uint64() != 0 { d.committed.Store(false) } if mode == ethconfig.SnapSync { // Set the ancient data limitation. If we are running snap sync, all block // data older than ancientLimit will be written to the ancient store. More // recent data will be written to the active database and will wait for the // freezer to migrate. // // If the network is post-merge, use either the last announced finalized // block as the ancient limit, or if we haven't yet received one, the head- // a max fork ancestry limit. One quirky case if we've already passed the // finalized block, in which case the skeleton.Bounds will return nil and // we'll revert to head - 90K. That's fine, we're finishing sync anyway. // // For non-merged networks, if there is a checkpoint available, then calculate // the ancientLimit through that. Otherwise calculate the ancient limit through // the advertised height of the remote peer. This most is mostly a fallback for // legacy networks, but should eventually be dropped. TODO(karalabe). // // Beacon sync, use the latest finalized block as the ancient limit // or a reasonable height if no finalized block is yet announced. if final != nil { d.ancientLimit = final.Number.Uint64() } else if height > fullMaxForkAncestry+1 { d.ancientLimit = height - fullMaxForkAncestry - 1 } else { d.ancientLimit = 0 } frozen, _ := d.stateDB.Ancients() // Ignore the error here since light client can also hit here. // If a part of blockchain data has already been written into active store, // disable the ancient style insertion explicitly. if origin >= frozen && frozen != 0 { d.ancientLimit = 0 log.Info("Disabling direct-ancient mode", "origin", origin, "ancient", frozen-1) } else if d.ancientLimit > 0 { log.Debug("Enabling direct-ancient mode", "ancient", d.ancientLimit) } // Rewind the ancient store and blockchain if reorg happens. if origin+1 < frozen { if err := d.blockchain.SetHead(origin); err != nil { return err } log.Info("Truncated excess ancient chain segment", "oldhead", frozen-1, "newhead", origin) } } // Initiate the sync using a concurrent header and content retrieval algorithm d.queue.Prepare(origin+1, mode) // In beacon mode, headers are served by the skeleton syncer fetchers := []func() error{ func() error { return d.fetchHeaders(origin + 1) }, // Headers are always retrieved func() error { return d.fetchBodies(origin + 1) }, // Bodies are retrieved during normal and snap sync func() error { return d.fetchReceipts(origin + 1) }, // Receipts are retrieved during snap sync func() error { return d.processHeaders(origin + 1) }, } if mode == ethconfig.SnapSync { d.pivotLock.Lock() d.pivotHeader = pivot d.pivotLock.Unlock() fetchers = append(fetchers, func() error { return d.processSnapSyncContent() }) } else if mode == ethconfig.FullSync { fetchers = append(fetchers, func() error { return d.processFullSyncContent() }) } return d.spawnSync(fetchers) } // spawnSync runs d.process and all given fetcher functions to completion in // separate goroutines, returning the first error that appears. func (d *Downloader) spawnSync(fetchers []func() error) error { errc := make(chan error, len(fetchers)) d.cancelWg.Add(len(fetchers)) for _, fn := range fetchers { go func() { defer d.cancelWg.Done(); errc <- fn() }() } // Wait for the first error, then terminate the others. var err error for i := 0; i < len(fetchers); i++ { if i == len(fetchers)-1 { // Close the queue when all fetchers have exited. // This will cause the block processor to end when // it has processed the queue. d.queue.Close() } if got := <-errc; got != nil { err = got if got != errCanceled { break // receive a meaningful error, bubble it up } } } d.queue.Close() d.Cancel() return err } // cancel aborts all of the operations and resets the queue. However, cancel does // not wait for the running download goroutines to finish. This method should be // used when cancelling the downloads from inside the downloader. func (d *Downloader) cancel() { // Close the current cancel channel d.cancelLock.Lock() defer d.cancelLock.Unlock() if d.cancelCh != nil { select { case <-d.cancelCh: // Channel was already closed default: close(d.cancelCh) } } } // Cancel aborts all of the operations and waits for all download goroutines to // finish before returning. func (d *Downloader) Cancel() { d.cancel() d.cancelWg.Wait() } // Terminate interrupts the downloader, canceling all pending operations. // The downloader cannot be reused after calling Terminate. func (d *Downloader) Terminate() { // Close the termination channel (make sure double close is allowed) d.quitLock.Lock() select { case <-d.quitCh: default: close(d.quitCh) // Terminate the internal beacon syncer d.skeleton.Terminate() } d.quitLock.Unlock() // Cancel any pending download requests d.Cancel() } // fetchBodies iteratively downloads the scheduled block bodies, taking any // available peers, reserving a chunk of blocks for each, waiting for delivery // and also periodically checking for timeouts. func (d *Downloader) fetchBodies(from uint64) error { log.Debug("Downloading block bodies", "origin", from) err := d.concurrentFetch((*bodyQueue)(d)) log.Debug("Block body download terminated", "err", err) return err } // fetchReceipts iteratively downloads the scheduled block receipts, taking any // available peers, reserving a chunk of receipts for each, waiting for delivery // and also periodically checking for timeouts. func (d *Downloader) fetchReceipts(from uint64) error { log.Debug("Downloading receipts", "origin", from) err := d.concurrentFetch((*receiptQueue)(d)) log.Debug("Receipt download terminated", "err", err) return err } // processHeaders takes batches of retrieved headers from an input channel and // keeps processing and scheduling them into the header chain and downloader's // queue until the stream ends or a failure occurs. func (d *Downloader) processHeaders(origin uint64) error { var ( mode = d.getMode() timer = time.NewTimer(time.Second) ) defer timer.Stop() for { select { case <-d.cancelCh: return errCanceled case task := <-d.headerProcCh: // Terminate header processing if we synced up if task == nil || len(task.headers) == 0 { // Notify everyone that headers are fully processed for _, ch := range []chan bool{d.queue.blockWakeCh, d.queue.receiptWakeCh} { select { case ch <- false: case <-d.cancelCh: } } return nil } // Otherwise split the chunk of headers into batches and process them headers, hashes := task.headers, task.hashes for len(headers) > 0 { // Terminate if something failed in between processing chunks select { case <-d.cancelCh: return errCanceled default: } // Select the next chunk of headers to import limit := maxHeadersProcess if limit > len(headers) { limit = len(headers) } chunkHeaders := headers[:limit] chunkHashes := hashes[:limit] // In case of header only syncing, validate the chunk immediately if mode == ethconfig.SnapSync { // Although the received headers might be all valid, a legacy // PoW/PoA sync must not accept post-merge headers. Make sure // that any transition is rejected at this point. if len(chunkHeaders) > 0 { if n, err := d.blockchain.InsertHeaderChain(chunkHeaders); err != nil { log.Warn("Invalid header encountered", "number", chunkHeaders[n].Number, "hash", chunkHashes[n], "parent", chunkHeaders[n].ParentHash, "err", err) return fmt.Errorf("%w: %v", errInvalidChain, err) } } } // If we've reached the allowed number of pending headers, stall a bit for d.queue.PendingBodies() >= maxQueuedHeaders || d.queue.PendingReceipts() >= maxQueuedHeaders { timer.Reset(time.Second) select { case <-d.cancelCh: return errCanceled case <-timer.C: } } // Otherwise insert the headers for content retrieval inserts := d.queue.Schedule(chunkHeaders, chunkHashes, origin) if len(inserts) != len(chunkHeaders) { return fmt.Errorf("%w: stale headers", errBadPeer) } headers = headers[limit:] hashes = hashes[limit:] origin += uint64(limit) } // Update the highest block number we know if a higher one is found. d.syncStatsLock.Lock() if d.syncStatsChainHeight < origin { d.syncStatsChainHeight = origin - 1 } d.syncStatsLock.Unlock() // Signal the content downloaders of the availability of new tasks for _, ch := range []chan bool{d.queue.blockWakeCh, d.queue.receiptWakeCh} { select { case ch <- true: default: } } } } } // processFullSyncContent takes fetch results from the queue and imports them into the chain. func (d *Downloader) processFullSyncContent() error { for { results := d.queue.Results(true) if len(results) == 0 { return nil } if d.chainInsertHook != nil { d.chainInsertHook(results) } if err := d.importBlockResults(results); err != nil { return err } } } func (d *Downloader) importBlockResults(results []*fetchResult) error { // Check for any early termination requests if len(results) == 0 { return nil } select { case <-d.quitCh: return errCancelContentProcessing default: } // Retrieve a batch of results to import first, last := results[0].Header, results[len(results)-1].Header log.Debug("Inserting downloaded chain", "items", len(results), "firstnum", first.Number, "firsthash", first.Hash(), "lastnum", last.Number, "lasthash", last.Hash(), ) blocks := make([]*types.Block, len(results)) for i, result := range results { blocks[i] = types.NewBlockWithHeader(result.Header).WithBody(result.body()) } // Downloaded blocks are always regarded as trusted after the // transition. Because the downloaded chain is guided by the // consensus-layer. if index, err := d.blockchain.InsertChain(blocks); err != nil { if index < len(results) { log.Debug("Downloaded item processing failed", "number", results[index].Header.Number, "hash", results[index].Header.Hash(), "err", err) // In post-merge, notify the engine API of encountered bad chains if d.badBlock != nil { head, _, _, err := d.skeleton.Bounds() if err != nil { log.Error("Failed to retrieve beacon bounds for bad block reporting", "err", err) } else { d.badBlock(blocks[index].Header(), head) } } } else { // The InsertChain method in blockchain.go will sometimes return an out-of-bounds index, // when it needs to preprocess blocks to import a sidechain. // The importer will put together a new list of blocks to import, which is a superset // of the blocks delivered from the downloader, and the indexing will be off. log.Debug("Downloaded item processing failed on sidechain import", "index", index, "err", err) } return fmt.Errorf("%w: %v", errInvalidChain, err) } return nil } // processSnapSyncContent takes fetch results from the queue and writes them to the // database. It also controls the synchronisation of state nodes of the pivot block. func (d *Downloader) processSnapSyncContent() error { // Start syncing state of the reported head block. This should get us most of // the state of the pivot block. d.pivotLock.RLock() sync := d.syncState(d.pivotHeader.Root) d.pivotLock.RUnlock() defer func() { // The `sync` object is replaced every time the pivot moves. We need to // defer close the very last active one, hence the lazy evaluation vs. // calling defer sync.Cancel() !!! sync.Cancel() }() closeOnErr := func(s *stateSync) { if err := s.Wait(); err != nil && err != errCancelStateFetch && err != errCanceled && err != snap.ErrCancelled { d.queue.Close() // wake up Results } } go closeOnErr(sync) // To cater for moving pivot points, track the pivot block and subsequently // accumulated download results separately. // // These will be nil up to the point where we reach the pivot, and will only // be set temporarily if the synced blocks are piling up, but the pivot is // still busy downloading. In that case, we need to occasionally check for // pivot moves, so need to unblock the loop. These fields will accumulate // the results in the meantime. // // Note, there's no issue with memory piling up since after 64 blocks the // pivot will forcefully move so these accumulators will be dropped. var ( oldPivot *fetchResult // Locked in pivot block, might change eventually oldTail []*fetchResult // Downloaded content after the pivot timer = time.NewTimer(time.Second) ) defer timer.Stop() for { // Wait for the next batch of downloaded data to be available. If we have // not yet reached the pivot point, wait blockingly as there's no need to // spin-loop check for pivot moves. If we reached the pivot but have not // yet processed it, check for results async, so we might notice pivot // moves while state syncing. If the pivot was passed fully, block again // as there's no more reason to check for pivot moves at all. results := d.queue.Results(oldPivot == nil) if len(results) == 0 { // If pivot sync is done, stop if d.committed.Load() { d.reportSnapSyncProgress(true) return sync.Cancel() } // If sync failed, stop select { case <-d.cancelCh: sync.Cancel() return errCanceled default: } } if d.chainInsertHook != nil { d.chainInsertHook(results) } d.reportSnapSyncProgress(false) // If we haven't downloaded the pivot block yet, check pivot staleness // notifications from the header downloader d.pivotLock.RLock() pivot := d.pivotHeader d.pivotLock.RUnlock() if oldPivot == nil { // no results piling up, we can move the pivot if !d.committed.Load() { // not yet passed the pivot, we can move the pivot if pivot.Root != sync.root { // pivot position changed, we can move the pivot sync.Cancel() sync = d.syncState(pivot.Root) go closeOnErr(sync) } } } else { // results already piled up, consume before handling pivot move results = append(append([]*fetchResult{oldPivot}, oldTail...), results...) } // Split around the pivot block and process the two sides via snap/full sync if !d.committed.Load() { latest := results[len(results)-1].Header // If the height is above the pivot block by 2 sets, it means the pivot // become stale in the network, and it was garbage collected, move to a // new pivot. // // Note, we have `reorgProtHeaderDelay` number of blocks withheld, Those // need to be taken into account, otherwise we're detecting the pivot move // late and will drop peers due to unavailable state!!! if height := latest.Number.Uint64(); height >= pivot.Number.Uint64()+2*uint64(fsMinFullBlocks)-uint64(reorgProtHeaderDelay) { log.Warn("Pivot became stale, moving", "old", pivot.Number.Uint64(), "new", height-uint64(fsMinFullBlocks)+uint64(reorgProtHeaderDelay)) pivot = results[len(results)-1-fsMinFullBlocks+reorgProtHeaderDelay].Header // must exist as lower old pivot is uncommitted d.pivotLock.Lock() d.pivotHeader = pivot d.pivotLock.Unlock() // Write out the pivot into the database so a rollback beyond it will // reenable snap sync rawdb.WriteLastPivotNumber(d.stateDB, pivot.Number.Uint64()) } } P, beforeP, afterP := splitAroundPivot(pivot.Number.Uint64(), results) if err := d.commitSnapSyncData(beforeP, sync); err != nil { return err } if P != nil { // If new pivot block found, cancel old state retrieval and restart if oldPivot != P { sync.Cancel() sync = d.syncState(P.Header.Root) go closeOnErr(sync) oldPivot = P } // Wait for completion, occasionally checking for pivot staleness timer.Reset(time.Second) select { case <-sync.done: if sync.err != nil { return sync.err } if err := d.commitPivotBlock(P); err != nil { return err } oldPivot = nil case <-timer.C: oldTail = afterP continue } } // Fast sync done, pivot commit done, full import if err := d.importBlockResults(afterP); err != nil { return err } } } func splitAroundPivot(pivot uint64, results []*fetchResult) (p *fetchResult, before, after []*fetchResult) { if len(results) == 0 { return nil, nil, nil } if lastNum := results[len(results)-1].Header.Number.Uint64(); lastNum < pivot { // the pivot is somewhere in the future return nil, results, nil } // This can also be optimized, but only happens very seldom for _, result := range results { num := result.Header.Number.Uint64() switch { case num < pivot: before = append(before, result) case num == pivot: p = result default: after = append(after, result) } } return p, before, after } func (d *Downloader) commitSnapSyncData(results []*fetchResult, stateSync *stateSync) error { // Check for any early termination requests if len(results) == 0 { return nil } select { case <-d.quitCh: return errCancelContentProcessing case <-stateSync.done: if err := stateSync.Wait(); err != nil { return err } default: } // Retrieve the batch of results to import first, last := results[0].Header, results[len(results)-1].Header log.Debug("Inserting snap-sync blocks", "items", len(results), "firstnum", first.Number, "firsthash", first.Hash(), "lastnumn", last.Number, "lasthash", last.Hash(), ) blocks := make([]*types.Block, len(results)) receipts := make([]types.Receipts, len(results)) for i, result := range results { blocks[i] = types.NewBlockWithHeader(result.Header).WithBody(result.body()) receipts[i] = result.Receipts } if index, err := d.blockchain.InsertReceiptChain(blocks, receipts, d.ancientLimit); err != nil { log.Debug("Downloaded item processing failed", "number", results[index].Header.Number, "hash", results[index].Header.Hash(), "err", err) return fmt.Errorf("%w: %v", errInvalidChain, err) } return nil } func (d *Downloader) commitPivotBlock(result *fetchResult) error { block := types.NewBlockWithHeader(result.Header).WithBody(result.body()) log.Debug("Committing snap sync pivot as new head", "number", block.Number(), "hash", block.Hash()) // Commit the pivot block as the new head, will require full sync from here on if _, err := d.blockchain.InsertReceiptChain([]*types.Block{block}, []types.Receipts{result.Receipts}, d.ancientLimit); err != nil { return err } if err := d.blockchain.SnapSyncCommitHead(block.Hash()); err != nil { return err } d.committed.Store(true) return nil } // DeliverSnapPacket is invoked from a peer's message handler when it transmits a // data packet for the local node to consume. func (d *Downloader) DeliverSnapPacket(peer *snap.Peer, packet snap.Packet) error { switch packet := packet.(type) { case *snap.AccountRangePacket: hashes, accounts, err := packet.Unpack() if err != nil { return err } return d.SnapSyncer.OnAccounts(peer, packet.ID, hashes, accounts, packet.Proof) case *snap.StorageRangesPacket: hashset, slotset := packet.Unpack() return d.SnapSyncer.OnStorage(peer, packet.ID, hashset, slotset, packet.Proof) case *snap.ByteCodesPacket: return d.SnapSyncer.OnByteCodes(peer, packet.ID, packet.Codes) case *snap.TrieNodesPacket: return d.SnapSyncer.OnTrieNodes(peer, packet.ID, packet.Nodes) default: return fmt.Errorf("unexpected snap packet type: %T", packet) } } // readHeaderRange returns a list of headers, using the given last header as the base, // and going backwards towards genesis. This method assumes that the caller already has // placed a reasonable cap on count. func (d *Downloader) readHeaderRange(last *types.Header, count int) []*types.Header { var ( current = last headers []*types.Header ) for { parent := d.blockchain.GetHeaderByHash(current.ParentHash) if parent == nil { break // The chain is not continuous, or the chain is exhausted } headers = append(headers, parent) if len(headers) >= count { break } current = parent } return headers } // reportSnapSyncProgress calculates various status reports and provides it to the user. func (d *Downloader) reportSnapSyncProgress(force bool) { // Initialize the sync start time if it's the first time we're reporting if d.syncStartTime.IsZero() { d.syncStartTime = time.Now().Add(-time.Millisecond) // -1ms offset to avoid division by zero } // Don't report all the events, just occasionally if !force && time.Since(d.syncLogTime) < 8*time.Second { return } // Don't report anything until we have a meaningful progress var ( headerBytes, _ = d.stateDB.AncientSize(rawdb.ChainFreezerHeaderTable) bodyBytes, _ = d.stateDB.AncientSize(rawdb.ChainFreezerBodiesTable) receiptBytes, _ = d.stateDB.AncientSize(rawdb.ChainFreezerReceiptTable) ) syncedBytes := common.StorageSize(headerBytes + bodyBytes + receiptBytes) if syncedBytes == 0 { return } var ( header = d.blockchain.CurrentHeader() block = d.blockchain.CurrentSnapBlock() ) syncedBlocks := block.Number.Uint64() - d.syncStartBlock if syncedBlocks == 0 { return } // Retrieve the current chain head and calculate the ETA latest, _, _, err := d.skeleton.Bounds() if err != nil { // We're going to cheat for non-merged networks, but that's fine latest = d.pivotHeader } if latest == nil { // This should really never happen, but add some defensive code for now. // TODO(karalabe): Remove it eventually if we don't see it blow. log.Error("Nil latest block in sync progress report") return } var ( left = latest.Number.Uint64() - block.Number.Uint64() eta = time.Since(d.syncStartTime) / time.Duration(syncedBlocks) * time.Duration(left) progress = fmt.Sprintf("%.2f%%", float64(block.Number.Uint64())*100/float64(latest.Number.Uint64())) headers = fmt.Sprintf("%v@%v", log.FormatLogfmtUint64(header.Number.Uint64()), common.StorageSize(headerBytes).TerminalString()) bodies = fmt.Sprintf("%v@%v", log.FormatLogfmtUint64(block.Number.Uint64()), common.StorageSize(bodyBytes).TerminalString()) receipts = fmt.Sprintf("%v@%v", log.FormatLogfmtUint64(block.Number.Uint64()), common.StorageSize(receiptBytes).TerminalString()) ) log.Info("Syncing: chain download in progress", "synced", progress, "chain", syncedBytes, "headers", headers, "bodies", bodies, "receipts", receipts, "eta", common.PrettyDuration(eta)) d.syncLogTime = time.Now() }