package metrics import ( "math" "math/rand" "slices" "sync" "time" ) const rescaleThreshold = time.Hour // Sample maintains a statistically-significant selection of values from // a stream. type Sample interface { Snapshot() *sampleSnapshot Clear() Update(int64) } var ( _ Sample = (*ExpDecaySample)(nil) _ Sample = (*UniformSample)(nil) _ Sample = (*resettingSample)(nil) ) // sampleSnapshot is a read-only copy of a Sample. type sampleSnapshot struct { count int64 values []int64 max int64 min int64 mean float64 sum int64 variance float64 } // newSampleSnapshotPrecalculated creates a read-only sampleSnapShot, using // precalculated sums to avoid iterating the values func newSampleSnapshotPrecalculated(count int64, values []int64, min, max, sum int64) *sampleSnapshot { if len(values) == 0 { return &sampleSnapshot{ count: count, values: values, } } return &sampleSnapshot{ count: count, values: values, max: max, min: min, mean: float64(sum) / float64(len(values)), sum: sum, } } // newSampleSnapshot creates a read-only sampleSnapShot, and calculates some // numbers. func newSampleSnapshot(count int64, values []int64) *sampleSnapshot { var ( max int64 = math.MinInt64 min int64 = math.MaxInt64 sum int64 ) for _, v := range values { sum += v if v > max { max = v } if v < min { min = v } } return newSampleSnapshotPrecalculated(count, values, min, max, sum) } // Count returns the count of inputs at the time the snapshot was taken. func (s *sampleSnapshot) Count() int64 { return s.count } // Max returns the maximal value at the time the snapshot was taken. func (s *sampleSnapshot) Max() int64 { return s.max } // Mean returns the mean value at the time the snapshot was taken. func (s *sampleSnapshot) Mean() float64 { return s.mean } // Min returns the minimal value at the time the snapshot was taken. func (s *sampleSnapshot) Min() int64 { return s.min } // Percentile returns an arbitrary percentile of values at the time the // snapshot was taken. func (s *sampleSnapshot) Percentile(p float64) float64 { return SamplePercentile(s.values, p) } // Percentiles returns a slice of arbitrary percentiles of values at the time // the snapshot was taken. func (s *sampleSnapshot) Percentiles(ps []float64) []float64 { return CalculatePercentiles(s.values, ps) } // Size returns the size of the sample at the time the snapshot was taken. func (s *sampleSnapshot) Size() int { return len(s.values) } // StdDev returns the standard deviation of values at the time the snapshot was // taken. func (s *sampleSnapshot) StdDev() float64 { if s.variance == 0.0 { s.variance = SampleVariance(s.mean, s.values) } return math.Sqrt(s.variance) } // Sum returns the sum of values at the time the snapshot was taken. func (s *sampleSnapshot) Sum() int64 { return s.sum } // Values returns a copy of the values in the sample. func (s *sampleSnapshot) Values() []int64 { return slices.Clone(s.values) } // Variance returns the variance of values at the time the snapshot was taken. func (s *sampleSnapshot) Variance() float64 { if s.variance == 0.0 { s.variance = SampleVariance(s.mean, s.values) } return s.variance } // ExpDecaySample is an exponentially-decaying sample using a forward-decaying // priority reservoir. See Cormode et al's "Forward Decay: A Practical Time // Decay Model for Streaming Systems". // // type ExpDecaySample struct { alpha float64 count int64 mutex sync.Mutex reservoirSize int t0, t1 time.Time values *expDecaySampleHeap rand *rand.Rand } // NewExpDecaySample constructs a new exponentially-decaying sample with the // given reservoir size and alpha. func NewExpDecaySample(reservoirSize int, alpha float64) Sample { s := &ExpDecaySample{ alpha: alpha, reservoirSize: reservoirSize, t0: time.Now(), values: newExpDecaySampleHeap(reservoirSize), } s.t1 = s.t0.Add(rescaleThreshold) return s } // SetRand sets the random source (useful in tests) func (s *ExpDecaySample) SetRand(prng *rand.Rand) Sample { s.rand = prng return s } // Clear clears all samples. func (s *ExpDecaySample) Clear() { s.mutex.Lock() defer s.mutex.Unlock() s.count = 0 s.t0 = time.Now() s.t1 = s.t0.Add(rescaleThreshold) s.values.Clear() } // Snapshot returns a read-only copy of the sample. func (s *ExpDecaySample) Snapshot() *sampleSnapshot { s.mutex.Lock() defer s.mutex.Unlock() var ( samples = s.values.Values() values = make([]int64, len(samples)) max int64 = math.MinInt64 min int64 = math.MaxInt64 sum int64 ) for i, item := range samples { v := item.v values[i] = v sum += v if v > max { max = v } if v < min { min = v } } return newSampleSnapshotPrecalculated(s.count, values, min, max, sum) } // Update samples a new value. func (s *ExpDecaySample) Update(v int64) { if !metricsEnabled { return } s.update(time.Now(), v) } // update samples a new value at a particular timestamp. This is a method all // its own to facilitate testing. func (s *ExpDecaySample) update(t time.Time, v int64) { s.mutex.Lock() defer s.mutex.Unlock() s.count++ if s.values.Size() == s.reservoirSize { s.values.Pop() } var f64 float64 if s.rand != nil { f64 = s.rand.Float64() } else { f64 = rand.Float64() } s.values.Push(expDecaySample{ k: math.Exp(t.Sub(s.t0).Seconds()*s.alpha) / f64, v: v, }) if t.After(s.t1) { values := s.values.Values() t0 := s.t0 s.values.Clear() s.t0 = t s.t1 = s.t0.Add(rescaleThreshold) for _, v := range values { v.k = v.k * math.Exp(-s.alpha*s.t0.Sub(t0).Seconds()) s.values.Push(v) } } } // SamplePercentile returns an arbitrary percentile of the slice of int64. func SamplePercentile(values []int64, p float64) float64 { return CalculatePercentiles(values, []float64{p})[0] } // CalculatePercentiles returns a slice of arbitrary percentiles of the slice of // int64. This method returns interpolated results, so e.g. if there are only two // values, [0, 10], a 50% percentile will land between them. // // Note: As a side-effect, this method will also sort the slice of values. // Note2: The input format for percentiles is NOT percent! To express 50%, use 0.5, not 50. func CalculatePercentiles(values []int64, ps []float64) []float64 { scores := make([]float64, len(ps)) size := len(values) if size == 0 { return scores } slices.Sort(values) for i, p := range ps { pos := p * float64(size+1) if pos < 1.0 { scores[i] = float64(values[0]) } else if pos >= float64(size) { scores[i] = float64(values[size-1]) } else { lower := float64(values[int(pos)-1]) upper := float64(values[int(pos)]) scores[i] = lower + (pos-math.Floor(pos))*(upper-lower) } } return scores } // SampleVariance returns the variance of the slice of int64. func SampleVariance(mean float64, values []int64) float64 { if len(values) == 0 { return 0.0 } var sum float64 for _, v := range values { d := float64(v) - mean sum += d * d } return sum / float64(len(values)) } // UniformSample implements a uniform sample using Vitter's Algorithm R. // // type UniformSample struct { count int64 mutex sync.Mutex reservoirSize int values []int64 rand *rand.Rand } // NewUniformSample constructs a new uniform sample with the given reservoir // size. func NewUniformSample(reservoirSize int) Sample { return &UniformSample{ reservoirSize: reservoirSize, values: make([]int64, 0, reservoirSize), } } // SetRand sets the random source (useful in tests) func (s *UniformSample) SetRand(prng *rand.Rand) Sample { s.rand = prng return s } // Clear clears all samples. func (s *UniformSample) Clear() { s.mutex.Lock() defer s.mutex.Unlock() s.count = 0 clear(s.values) } // Snapshot returns a read-only copy of the sample. func (s *UniformSample) Snapshot() *sampleSnapshot { s.mutex.Lock() values := slices.Clone(s.values) count := s.count s.mutex.Unlock() return newSampleSnapshot(count, values) } // Update samples a new value. func (s *UniformSample) Update(v int64) { if !metricsEnabled { return } s.mutex.Lock() defer s.mutex.Unlock() s.count++ if len(s.values) < s.reservoirSize { s.values = append(s.values, v) return } var r int64 if s.rand != nil { r = s.rand.Int63n(s.count) } else { r = rand.Int63n(s.count) } if r < int64(len(s.values)) { s.values[int(r)] = v } } // expDecaySample represents an individual sample in a heap. type expDecaySample struct { k float64 v int64 } func newExpDecaySampleHeap(reservoirSize int) *expDecaySampleHeap { return &expDecaySampleHeap{make([]expDecaySample, 0, reservoirSize)} } // expDecaySampleHeap is a min-heap of expDecaySamples. // The internal implementation is copied from the standard library's container/heap type expDecaySampleHeap struct { s []expDecaySample } func (h *expDecaySampleHeap) Clear() { h.s = h.s[:0] } func (h *expDecaySampleHeap) Push(s expDecaySample) { n := len(h.s) h.s = h.s[0 : n+1] h.s[n] = s h.up(n) } func (h *expDecaySampleHeap) Pop() expDecaySample { n := len(h.s) - 1 h.s[0], h.s[n] = h.s[n], h.s[0] h.down(0, n) n = len(h.s) s := h.s[n-1] h.s = h.s[0 : n-1] return s } func (h *expDecaySampleHeap) Size() int { return len(h.s) } func (h *expDecaySampleHeap) Values() []expDecaySample { return h.s } func (h *expDecaySampleHeap) up(j int) { for { i := (j - 1) / 2 // parent if i == j || !(h.s[j].k < h.s[i].k) { break } h.s[i], h.s[j] = h.s[j], h.s[i] j = i } } func (h *expDecaySampleHeap) down(i, n int) { for { j1 := 2*i + 1 if j1 >= n || j1 < 0 { // j1 < 0 after int overflow break } j := j1 // left child if j2 := j1 + 1; j2 < n && !(h.s[j1].k < h.s[j2].k) { j = j2 // = 2*i + 2 // right child } if !(h.s[j].k < h.s[i].k) { break } h.s[i], h.s[j] = h.s[j], h.s[i] i = j } }