// Copyright 2023 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package gasestimator import ( "context" "errors" "fmt" "math" "math/big" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core" "github.com/ethereum/go-ethereum/core/state" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/core/vm" "github.com/ethereum/go-ethereum/internal/ethapi/override" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/params" ) // Options are the contextual parameters to execute the requested call. // // Whilst it would be possible to pass a blockchain object that aggregates all // these together, it would be excessively hard to test. Splitting the parts out // allows testing without needing a proper live chain. type Options struct { Config *params.ChainConfig // Chain configuration for hard fork selection Chain core.ChainContext // Chain context to access past block hashes Header *types.Header // Header defining the block context to execute in State *state.StateDB // Pre-state on top of which to estimate the gas BlockOverrides *override.BlockOverrides // Block overrides to apply during the estimation ErrorRatio float64 // Allowed overestimation ratio for faster estimation termination } // Estimate returns the lowest possible gas limit that allows the transaction to // run successfully with the provided context options. It returns an error if the // transaction would always revert, or if there are unexpected failures. func Estimate(ctx context.Context, call *core.Message, opts *Options, gasCap uint64) (uint64, []byte, error) { // Binary search the gas limit, as it may need to be higher than the amount used var ( lo uint64 // lowest-known gas limit where tx execution fails hi uint64 // lowest-known gas limit where tx execution succeeds ) // Determine the highest gas limit can be used during the estimation. hi = opts.Header.GasLimit if call.GasLimit >= params.TxGas { hi = call.GasLimit } // Normalize the max fee per gas the call is willing to spend. var feeCap *big.Int if call.GasFeeCap != nil { feeCap = call.GasFeeCap } else if call.GasPrice != nil { feeCap = call.GasPrice } else { feeCap = common.Big0 } // Recap the highest gas limit with account's available balance. if feeCap.BitLen() != 0 { balance := opts.State.GetBalance(call.From).ToBig() available := balance if call.Value != nil { if call.Value.Cmp(available) >= 0 { return 0, nil, core.ErrInsufficientFundsForTransfer } available.Sub(available, call.Value) } if opts.Config.IsCancun(opts.Header.Number, opts.Header.Time) && len(call.BlobHashes) > 0 { blobGasPerBlob := new(big.Int).SetInt64(params.BlobTxBlobGasPerBlob) blobBalanceUsage := new(big.Int).SetInt64(int64(len(call.BlobHashes))) blobBalanceUsage.Mul(blobBalanceUsage, blobGasPerBlob) blobBalanceUsage.Mul(blobBalanceUsage, call.BlobGasFeeCap) if blobBalanceUsage.Cmp(available) >= 0 { return 0, nil, core.ErrInsufficientFunds } available.Sub(available, blobBalanceUsage) } allowance := new(big.Int).Div(available, feeCap) // If the allowance is larger than maximum uint64, skip checking if allowance.IsUint64() && hi > allowance.Uint64() { transfer := call.Value if transfer == nil { transfer = new(big.Int) } log.Debug("Gas estimation capped by limited funds", "original", hi, "balance", balance, "sent", transfer, "maxFeePerGas", feeCap, "fundable", allowance) hi = allowance.Uint64() } } // Recap the highest gas allowance with specified gascap. if gasCap != 0 && hi > gasCap { log.Debug("Caller gas above allowance, capping", "requested", hi, "cap", gasCap) hi = gasCap } // If the transaction is a plain value transfer, short circuit estimation and // directly try 21000. Returning 21000 without any execution is dangerous as // some tx field combos might bump the price up even for plain transfers (e.g. // unused access list items). Ever so slightly wasteful, but safer overall. if len(call.Data) == 0 { if call.To != nil && opts.State.GetCodeSize(*call.To) == 0 { failed, _, err := execute(ctx, call, opts, params.TxGas) if !failed && err == nil { return params.TxGas, nil, nil } } } // We first execute the transaction at the highest allowable gas limit, since if this fails we // can return error immediately. failed, result, err := execute(ctx, call, opts, hi) if err != nil { return 0, nil, err } if failed { if result != nil && !errors.Is(result.Err, vm.ErrOutOfGas) { return 0, result.Revert(), result.Err } return 0, nil, fmt.Errorf("gas required exceeds allowance (%d)", hi) } // For almost any transaction, the gas consumed by the unconstrained execution // above lower-bounds the gas limit required for it to succeed. One exception // is those that explicitly check gas remaining in order to execute within a // given limit, but we probably don't want to return the lowest possible gas // limit for these cases anyway. lo = result.UsedGas - 1 // There's a fairly high chance for the transaction to execute successfully // with gasLimit set to the first execution's usedGas + gasRefund. Explicitly // check that gas amount and use as a limit for the binary search. optimisticGasLimit := (result.UsedGas + result.RefundedGas + params.CallStipend) * 64 / 63 if optimisticGasLimit < hi { failed, _, err = execute(ctx, call, opts, optimisticGasLimit) if err != nil { // This should not happen under normal conditions since if we make it this far the // transaction had run without error at least once before. log.Error("Execution error in estimate gas", "err", err) return 0, nil, err } if failed { lo = optimisticGasLimit } else { hi = optimisticGasLimit } } // Binary search for the smallest gas limit that allows the tx to execute successfully. for lo+1 < hi { if opts.ErrorRatio > 0 { // It is a bit pointless to return a perfect estimation, as changing // network conditions require the caller to bump it up anyway. Since // wallets tend to use 20-25% bump, allowing a small approximation // error is fine (as long as it's upwards). if float64(hi-lo)/float64(hi) < opts.ErrorRatio { break } } mid := (hi + lo) / 2 if mid > lo*2 { // Most txs don't need much higher gas limit than their gas used, and most txs don't // require near the full block limit of gas, so the selection of where to bisect the // range here is skewed to favor the low side. mid = lo * 2 } failed, _, err = execute(ctx, call, opts, mid) if err != nil { // This should not happen under normal conditions since if we make it this far the // transaction had run without error at least once before. log.Error("Execution error in estimate gas", "err", err) return 0, nil, err } if failed { lo = mid } else { hi = mid } } return hi, nil, nil } // execute is a helper that executes the transaction under a given gas limit and // returns true if the transaction fails for a reason that might be related to // not enough gas. A non-nil error means execution failed due to reasons unrelated // to the gas limit. func execute(ctx context.Context, call *core.Message, opts *Options, gasLimit uint64) (bool, *core.ExecutionResult, error) { // Configure the call for this specific execution (and revert the change after) defer func(gas uint64) { call.GasLimit = gas }(call.GasLimit) call.GasLimit = gasLimit // Execute the call and separate execution faults caused by a lack of gas or // other non-fixable conditions result, err := run(ctx, call, opts) if err != nil { if errors.Is(err, core.ErrIntrinsicGas) { return true, nil, nil // Special case, raise gas limit } return true, nil, err // Bail out } return result.Failed(), result, nil } // run assembles the EVM as defined by the consensus rules and runs the requested // call invocation. func run(ctx context.Context, call *core.Message, opts *Options) (*core.ExecutionResult, error) { // Assemble the call and the call context var ( evmContext = core.NewEVMBlockContext(opts.Header, opts.Chain, nil) dirtyState = opts.State.Copy() ) if opts.BlockOverrides != nil { opts.BlockOverrides.Apply(&evmContext) } // Lower the basefee to 0 to avoid breaking EVM // invariants (basefee < feecap). if call.GasPrice.Sign() == 0 { evmContext.BaseFee = new(big.Int) } if call.BlobGasFeeCap != nil && call.BlobGasFeeCap.BitLen() == 0 { evmContext.BlobBaseFee = new(big.Int) } evm := vm.NewEVM(evmContext, dirtyState, opts.Config, vm.Config{NoBaseFee: true}) // Monitor the outer context and interrupt the EVM upon cancellation. To avoid // a dangling goroutine until the outer estimation finishes, create an internal // context for the lifetime of this method call. ctx, cancel := context.WithCancel(ctx) defer cancel() go func() { <-ctx.Done() evm.Cancel() }() // Execute the call, returning a wrapped error or the result result, err := core.ApplyMessage(evm, call, new(core.GasPool).AddGas(math.MaxUint64)) if vmerr := dirtyState.Error(); vmerr != nil { return nil, vmerr } if err != nil { return result, fmt.Errorf("failed with %d gas: %w", call.GasLimit, err) } return result, nil }