package main import ( "bytes" "errors" "fmt" "github.com/ethereum/ethutil-go" "github.com/obscuren/secp256k1-go" "log" "math" "math/big" "strconv" "time" ) type BlockChain struct { // Last block LastBlock *ethutil.Block // The famous, the fabulous Mister GENESIIIIIIS (block) genesisBlock *ethutil.Block // Last known total difficulty TD *big.Int } func NewBlockChain() *BlockChain { bc := &BlockChain{} bc.genesisBlock = ethutil.NewBlock(ethutil.Encode(ethutil.Genesis)) // Set the last know difficulty (might be 0x0 as initial value, Genesis) bc.TD = ethutil.BigD(ethutil.Config.Db.LastKnownTD()) // TODO get last block from the database bc.LastBlock = bc.genesisBlock return bc } func (bc *BlockChain) HasBlock(hash string) bool { data, _ := ethutil.Config.Db.Get([]byte(hash)) return len(data) != 0 } func (bc *BlockChain) GenesisBlock() *ethutil.Block { return bc.genesisBlock } type BlockManager struct { server *Server // The block chain :) bc *BlockChain // Last known block number LastBlockNumber *big.Int // Stack for processing contracts stack *Stack // non-persistent key/value memory storage mem map[string]*big.Int } func NewBlockManager(s *Server) *BlockManager { bm := &BlockManager{ server: s, bc: NewBlockChain(), stack: NewStack(), mem: make(map[string]*big.Int), } // Set the last known block number based on the blockchains last // block bm.LastBlockNumber = bm.BlockInfo(bm.bc.LastBlock).Number return bm } // Process a block. func (bm *BlockManager) ProcessBlock(block *ethutil.Block) error { // Block validation if err := bm.ValidateBlock(block); err != nil { return err } // I'm not sure, but I don't know if there should be thrown // any errors at this time. if err := bm.AccumelateRewards(block); err != nil { return err } // Get the tx count. Used to create enough channels to 'join' the go routines txCount := len(block.Transactions()) // Locking channel. When it has been fully buffered this method will return lockChan := make(chan bool, txCount) // Process each transaction/contract for _, tx := range block.Transactions() { // If there's no recipient, it's a contract if tx.IsContract() { go bm.ProcessContract(tx, block, lockChan) } else { // "finish" tx which isn't a contract lockChan <- true } } // Wait for all Tx to finish processing for i := 0; i < txCount; i++ { <-lockChan } // Calculate the new total difficulty and sync back to the db if bm.CalculateTD(block) { ethutil.Config.Db.Put(block.Hash(), block.RlpEncode()) bm.bc.LastBlock = block } return nil } // Unexported method for writing extra non-essential block info to the db func (bm *BlockManager) writeBlockInfo(block *ethutil.Block) { bi := ethutil.BlockInfo{Number: bm.LastBlockNumber.Add(bm.LastBlockNumber, big.NewInt(1))} // For now we use the block hash with the words "info" appended as key ethutil.Config.Db.Put(append(block.Hash(), []byte("Info")...), bi.RlpEncode()) } func (bm *BlockManager) BlockInfo(block *ethutil.Block) ethutil.BlockInfo { bi := ethutil.BlockInfo{} data, _ := ethutil.Config.Db.Get(append(block.Hash(), []byte("Info")...)) bi.RlpDecode(data) return bi } func (bm *BlockManager) CalculateTD(block *ethutil.Block) bool { uncleDiff := new(big.Int) for _, uncle := range block.Uncles { uncleDiff = uncleDiff.Add(uncleDiff, uncle.Difficulty) } // TD(genesis_block) = 0 and TD(B) = TD(B.parent) + sum(u.difficulty for u in B.uncles) + B.difficulty td := new(big.Int) td = td.Add(bm.bc.TD, uncleDiff) td = td.Add(td, block.Difficulty) // The new TD will only be accepted if the new difficulty is // is greater than the previous. if td.Cmp(bm.bc.TD) > 0 { bm.bc.LastBlock = block // Set the new total difficulty back to the block chain bm.bc.TD = td if Debug { log.Println("TD(block) =", td) } return true } return false } // Validates the current block. Returns an error if the block was invalid, // an uncle or anything that isn't on the current block chain. // Validation validates easy over difficult (dagger takes longer time = difficult) func (bm *BlockManager) ValidateBlock(block *ethutil.Block) error { // Genesis block if bm.bc.LastBlock == nil && block.PrevHash == "" { return nil } // TODO // 2. Check if the difficulty is correct // Check if we have the parent hash, if it isn't known we discard it // Reasons might be catching up or simply an invalid block if !bm.bc.HasBlock(block.PrevHash) { return errors.New("Block's parent unknown") } // Check each uncle's previous hash. In order for it to be valid // is if it has the same block hash as the current for _, uncle := range block.Uncles { if uncle.PrevHash != block.PrevHash { if Debug { log.Printf("Uncle prvhash mismatch %x %x\n", block.PrevHash, uncle.PrevHash) } return errors.New("Mismatching Prvhash from uncle") } } diff := block.Time - bm.bc.LastBlock.Time if diff < 0 { return fmt.Errorf("Block timestamp less then prev block %v", diff) } // New blocks must be within the 15 minute range of the last block. if diff > int64(15*time.Minute) { return errors.New("Block is too far in the future of last block (> 15 minutes)") } // Verify the nonce of the block. Return an error if it's not valid if !DaggerVerify(ethutil.BigD(block.Hash()), block.Difficulty, block.Nonce) { return errors.New("Block's nonce is invalid") } log.Println("Block validation PASSED") return nil } func (bm *BlockManager) AccumelateRewards(block *ethutil.Block) error { // Get the coinbase rlp data d := block.State().Get(block.Coinbase) ether := ethutil.NewEtherFromData([]byte(d)) // Reward amount of ether to the coinbase address ether.AddFee(ethutil.CalculateBlockReward(block, len(block.Uncles))) block.State().Update(block.Coinbase, string(ether.RlpEncode())) // TODO Reward each uncle return nil } func (bm *BlockManager) ProcessContract(tx *ethutil.Transaction, block *ethutil.Block, lockChan chan bool) { // Recovering function in case the VM had any errors defer func() { if r := recover(); r != nil { fmt.Println("Recovered from VM execution with err =", r) // Let the channel know where done even though it failed (so the execution may resume normally) lockChan <- true } }() // Process contract bm.ProcContract(tx, block, func(opType OpType) bool { // TODO turn on once big ints are in place //if !block.PayFee(tx.Hash(), StepFee.Uint64()) { // return false //} return true // Continue }) // Broadcast we're done lockChan <- true } // Contract evaluation is done here. func (bm *BlockManager) ProcContract(tx *ethutil.Transaction, block *ethutil.Block, cb TxCallback) { // Instruction pointer pc := 0 blockInfo := bm.BlockInfo(block) contract := block.GetContract(tx.Hash()) if contract == nil { fmt.Println("Contract not found") return } Pow256 := ethutil.BigPow(2, 256) //fmt.Printf("# op arg\n") out: for { // The base big int for all calculations. Use this for any results. base := new(big.Int) // XXX Should Instr return big int slice instead of string slice? // Get the next instruction from the contract //op, _, _ := Instr(contract.state.Get(string(Encode(uint32(pc))))) nb := ethutil.NumberToBytes(uint64(pc), 32) o, _, _ := ethutil.Instr(contract.State().Get(string(nb))) op := OpCode(o) if !cb(0) { break } if Debug { //fmt.Printf("%-3d %-4s\n", pc, op.String()) } switch op { case oSTOP: break out case oADD: x, y := bm.stack.Popn() // (x + y) % 2 ** 256 base.Add(x, y) base.Mod(base, Pow256) // Pop result back on the stack bm.stack.Push(base) case oSUB: x, y := bm.stack.Popn() // (x - y) % 2 ** 256 base.Sub(x, y) base.Mod(base, Pow256) // Pop result back on the stack bm.stack.Push(base) case oMUL: x, y := bm.stack.Popn() // (x * y) % 2 ** 256 base.Mul(x, y) base.Mod(base, Pow256) // Pop result back on the stack bm.stack.Push(base) case oDIV: x, y := bm.stack.Popn() // floor(x / y) base.Div(x, y) // Pop result back on the stack bm.stack.Push(base) case oSDIV: x, y := bm.stack.Popn() // n > 2**255 if x.Cmp(Pow256) > 0 { x.Sub(Pow256, x) } if y.Cmp(Pow256) > 0 { y.Sub(Pow256, y) } z := new(big.Int) z.Div(x, y) if z.Cmp(Pow256) > 0 { z.Sub(Pow256, z) } // Push result on to the stack bm.stack.Push(z) case oMOD: x, y := bm.stack.Popn() base.Mod(x, y) bm.stack.Push(base) case oSMOD: x, y := bm.stack.Popn() // n > 2**255 if x.Cmp(Pow256) > 0 { x.Sub(Pow256, x) } if y.Cmp(Pow256) > 0 { y.Sub(Pow256, y) } z := new(big.Int) z.Mod(x, y) if z.Cmp(Pow256) > 0 { z.Sub(Pow256, z) } // Push result on to the stack bm.stack.Push(z) case oEXP: x, y := bm.stack.Popn() base.Exp(x, y, Pow256) bm.stack.Push(base) case oNEG: base.Sub(Pow256, bm.stack.Pop()) bm.stack.Push(base) case oLT: x, y := bm.stack.Popn() // x < y if x.Cmp(y) < 0 { bm.stack.Push(ethutil.BigTrue) } else { bm.stack.Push(ethutil.BigFalse) } case oLE: x, y := bm.stack.Popn() // x <= y if x.Cmp(y) < 1 { bm.stack.Push(ethutil.BigTrue) } else { bm.stack.Push(ethutil.BigFalse) } case oGT: x, y := bm.stack.Popn() // x > y if x.Cmp(y) > 0 { bm.stack.Push(ethutil.BigTrue) } else { bm.stack.Push(ethutil.BigFalse) } case oGE: x, y := bm.stack.Popn() // x >= y if x.Cmp(y) > -1 { bm.stack.Push(ethutil.BigTrue) } else { bm.stack.Push(ethutil.BigFalse) } case oNOT: x, y := bm.stack.Popn() // x != y if x.Cmp(y) != 0 { bm.stack.Push(ethutil.BigTrue) } else { bm.stack.Push(ethutil.BigFalse) } // Please note that the following code contains some // ugly string casting. This will have to change to big // ints. TODO :) case oMYADDRESS: bm.stack.Push(ethutil.BigD(tx.Hash())) case oTXSENDER: bm.stack.Push(ethutil.BigD(tx.Sender())) case oTXVALUE: bm.stack.Push(tx.Value) case oTXDATAN: bm.stack.Push(big.NewInt(int64(len(tx.Data)))) case oTXDATA: v := bm.stack.Pop() // v >= len(data) if v.Cmp(big.NewInt(int64(len(tx.Data)))) >= 0 { bm.stack.Push(ethutil.Big("0")) } else { bm.stack.Push(ethutil.Big(tx.Data[v.Uint64()])) } case oBLK_PREVHASH: bm.stack.Push(ethutil.Big(block.PrevHash)) case oBLK_COINBASE: bm.stack.Push(ethutil.Big(block.Coinbase)) case oBLK_TIMESTAMP: bm.stack.Push(big.NewInt(block.Time)) case oBLK_NUMBER: bm.stack.Push(blockInfo.Number) case oBLK_DIFFICULTY: bm.stack.Push(block.Difficulty) case oBASEFEE: // e = 10^21 e := big.NewInt(0).Exp(big.NewInt(10), big.NewInt(21), big.NewInt(0)) d := new(big.Rat) d.SetInt(block.Difficulty) c := new(big.Rat) c.SetFloat64(0.5) // d = diff / 0.5 d.Quo(d, c) // base = floor(d) base.Div(d.Num(), d.Denom()) x := new(big.Int) x.Div(e, base) // x = floor(10^21 / floor(diff^0.5)) bm.stack.Push(x) case oSHA256, oSHA3, oRIPEMD160: // This is probably save // ceil(pop / 32) length := int(math.Ceil(float64(bm.stack.Pop().Uint64()) / 32.0)) // New buffer which will contain the concatenated popped items data := new(bytes.Buffer) for i := 0; i < length; i++ { // Encode the number to bytes and have it 32bytes long num := ethutil.NumberToBytes(bm.stack.Pop().Bytes(), 256) data.WriteString(string(num)) } if op == oSHA256 { bm.stack.Push(base.SetBytes(ethutil.Sha256Bin(data.Bytes()))) } else if op == oSHA3 { bm.stack.Push(base.SetBytes(ethutil.Sha3Bin(data.Bytes()))) } else { bm.stack.Push(base.SetBytes(ethutil.Ripemd160(data.Bytes()))) } case oECMUL: y := bm.stack.Pop() x := bm.stack.Pop() //n := bm.stack.Pop() //if ethutil.Big(x).Cmp(ethutil.Big(y)) { data := new(bytes.Buffer) data.WriteString(x.String()) data.WriteString(y.String()) if secp256k1.VerifyPubkeyValidity(data.Bytes()) == 1 { // TODO } else { // Invalid, push infinity bm.stack.Push(ethutil.Big("0")) bm.stack.Push(ethutil.Big("0")) } //} else { // // Invalid, push infinity // bm.stack.Push("0") // bm.stack.Push("0") //} case oECADD: case oECSIGN: case oECRECOVER: case oECVALID: case oPUSH: pc++ bm.stack.Push(bm.mem[strconv.Itoa(pc)]) case oPOP: // Pop current value of the stack bm.stack.Pop() case oDUP: // Dup top stack x := bm.stack.Pop() bm.stack.Push(x) bm.stack.Push(x) case oSWAP: // Swap two top most values x, y := bm.stack.Popn() bm.stack.Push(y) bm.stack.Push(x) case oMLOAD: x := bm.stack.Pop() bm.stack.Push(bm.mem[x.String()]) case oMSTORE: x, y := bm.stack.Popn() bm.mem[x.String()] = y case oSLOAD: // Load the value in storage and push it on the stack x := bm.stack.Pop() // decode the object as a big integer decoder := ethutil.NewRlpDecoder([]byte(contract.State().Get(x.String()))) if !decoder.IsNil() { bm.stack.Push(decoder.AsBigInt()) } else { bm.stack.Push(ethutil.BigFalse) } case oSSTORE: // Store Y at index X x, y := bm.stack.Popn() contract.State().Update(x.String(), string(ethutil.Encode(y))) case oJMP: x := int(bm.stack.Pop().Uint64()) // Set pc to x - 1 (minus one so the incrementing at the end won't effect it) pc = x pc-- case oJMPI: x := bm.stack.Pop() // Set pc to x if it's non zero if x.Cmp(ethutil.BigFalse) != 0 { pc = int(x.Uint64()) pc-- } case oIND: bm.stack.Push(big.NewInt(int64(pc))) case oEXTRO: memAddr := bm.stack.Pop() contractAddr := bm.stack.Pop().Bytes() // Push the contract's memory on to the stack bm.stack.Push(getContractMemory(block, contractAddr, memAddr)) case oBALANCE: // Pushes the balance of the popped value on to the stack d := block.State().Get(bm.stack.Pop().String()) ether := ethutil.NewEtherFromData([]byte(d)) bm.stack.Push(ether.Amount) case oMKTX: value, addr := bm.stack.Popn() from, length := bm.stack.Popn() j := 0 dataItems := make([]string, int(length.Uint64())) for i := from.Uint64(); i < length.Uint64(); i++ { dataItems[j] = string(bm.mem[strconv.Itoa(int(i))].Bytes()) j++ } // TODO sign it? tx := ethutil.NewTransaction(string(addr.Bytes()), value, dataItems) // Add the transaction to the tx pool bm.server.txPool.QueueTransaction(tx) case oSUICIDE: //addr := bm.stack.Pop() } pc++ } bm.stack.Print() } // Returns an address from the specified contract's address func getContractMemory(block *ethutil.Block, contractAddr []byte, memAddr *big.Int) *big.Int { contract := block.GetContract(contractAddr) if contract == nil { log.Panicf("invalid contract addr %x", contractAddr) } val := contract.State().Get(memAddr.String()) // decode the object as a big integer decoder := ethutil.NewRlpDecoder([]byte(val)) if decoder.IsNil() { return ethutil.BigFalse } return decoder.AsBigInt() }