// Copyright 2014 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package vm import ( "math" "math/big" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/logger/glog" "github.com/ethereum/go-ethereum/params" ) // Global Debug flag indicating Debug VM (full logging) var Debug bool // Type is the VM type accepted by **NewVm** type Type byte const ( StdVmTy Type = iota // Default standard VM JitVmTy // LLVM JIT VM MaxVmTy ) var ( Pow256 = common.BigPow(2, 256) // Pew256 is 2**256 U256 = common.U256 // Shortcut to common.U256 S256 = common.S256 // Shortcut to common.S256 Zero = common.Big0 // Shortcut to common.Big0 One = common.Big1 // Shortcut to common.Big1 max = big.NewInt(math.MaxInt64) // Maximum 256 bit integer ) // NewVm returns a new VM based on the Environment func NewVm(env Environment) VirtualMachine { switch env.VmType() { case JitVmTy: return NewJitVm(env) default: glog.V(0).Infoln("unsupported vm type %d", env.VmType()) fallthrough case StdVmTy: return New(env) } } // calculates the memory size required for a step func calcMemSize(off, l *big.Int) *big.Int { if l.Cmp(common.Big0) == 0 { return common.Big0 } return new(big.Int).Add(off, l) } // calculates the quadratic gas func quadMemGas(mem *Memory, newMemSize, gas *big.Int) { if newMemSize.Cmp(common.Big0) > 0 { newMemSizeWords := toWordSize(newMemSize) newMemSize.Mul(newMemSizeWords, u256(32)) if newMemSize.Cmp(u256(int64(mem.Len()))) > 0 { // be careful reusing variables here when changing. // The order has been optimised to reduce allocation oldSize := toWordSize(big.NewInt(int64(mem.Len()))) pow := new(big.Int).Exp(oldSize, common.Big2, Zero) linCoef := oldSize.Mul(oldSize, params.MemoryGas) quadCoef := new(big.Int).Div(pow, params.QuadCoeffDiv) oldTotalFee := new(big.Int).Add(linCoef, quadCoef) pow.Exp(newMemSizeWords, common.Big2, Zero) linCoef = linCoef.Mul(newMemSizeWords, params.MemoryGas) quadCoef = quadCoef.Div(pow, params.QuadCoeffDiv) newTotalFee := linCoef.Add(linCoef, quadCoef) fee := newTotalFee.Sub(newTotalFee, oldTotalFee) gas.Add(gas, fee) } } } // Simple helper func u256(n int64) *big.Int { return big.NewInt(n) } // Mainly used for print variables and passing to Print* func toValue(val *big.Int) interface{} { // Let's assume a string on right padded zero's b := val.Bytes() if b[0] != 0 && b[len(b)-1] == 0x0 && b[len(b)-2] == 0x0 { return string(b) } return val } // getData returns a slice from the data based on the start and size and pads // up to size with zero's. This function is overflow safe. func getData(data []byte, start, size *big.Int) []byte { dlen := big.NewInt(int64(len(data))) s := common.BigMin(start, dlen) e := common.BigMin(new(big.Int).Add(s, size), dlen) return common.RightPadBytes(data[s.Uint64():e.Uint64()], int(size.Uint64())) } // useGas attempts to subtract the amount of gas and returns whether it was // successful func useGas(gas, amount *big.Int) bool { if gas.Cmp(amount) < 0 { return false } // Sub the amount of gas from the remaining gas.Sub(gas, amount) return true }