// Copyright 2014 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package vm import ( "errors" "math/big" "sync/atomic" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/state" "github.com/ethereum/go-ethereum/core/tracing" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/params" "github.com/holiman/uint256" ) type ( // CanTransferFunc is the signature of a transfer guard function CanTransferFunc func(StateDB, common.Address, *uint256.Int) bool // TransferFunc is the signature of a transfer function TransferFunc func(StateDB, common.Address, common.Address, *uint256.Int) // GetHashFunc returns the n'th block hash in the blockchain // and is used by the BLOCKHASH EVM op code. GetHashFunc func(uint64) common.Hash ) func (evm *EVM) precompile(addr common.Address) (PrecompiledContract, bool) { p, ok := evm.precompiles[addr] return p, ok } // BlockContext provides the EVM with auxiliary information. Once provided // it shouldn't be modified. type BlockContext struct { // CanTransfer returns whether the account contains // sufficient ether to transfer the value CanTransfer CanTransferFunc // Transfer transfers ether from one account to the other Transfer TransferFunc // GetHash returns the hash corresponding to n GetHash GetHashFunc // Block information Coinbase common.Address // Provides information for COINBASE GasLimit uint64 // Provides information for GASLIMIT BlockNumber *big.Int // Provides information for NUMBER Time uint64 // Provides information for TIME Difficulty *big.Int // Provides information for DIFFICULTY BaseFee *big.Int // Provides information for BASEFEE (0 if vm runs with NoBaseFee flag and 0 gas price) BlobBaseFee *big.Int // Provides information for BLOBBASEFEE (0 if vm runs with NoBaseFee flag and 0 blob gas price) Random *common.Hash // Provides information for PREVRANDAO } // TxContext provides the EVM with information about a transaction. // All fields can change between transactions. type TxContext struct { // Message information Origin common.Address // Provides information for ORIGIN GasPrice *big.Int // Provides information for GASPRICE (and is used to zero the basefee if NoBaseFee is set) BlobHashes []common.Hash // Provides information for BLOBHASH BlobFeeCap *big.Int // Is used to zero the blobbasefee if NoBaseFee is set AccessEvents *state.AccessEvents // Capture all state accesses for this tx } // EVM is the Ethereum Virtual Machine base object and provides // the necessary tools to run a contract on the given state with // the provided context. It should be noted that any error // generated through any of the calls should be considered a // revert-state-and-consume-all-gas operation, no checks on // specific errors should ever be performed. The interpreter makes // sure that any errors generated are to be considered faulty code. // // The EVM should never be reused and is not thread safe. type EVM struct { // Context provides auxiliary blockchain related information Context BlockContext TxContext // StateDB gives access to the underlying state StateDB StateDB // Depth is the current call stack depth int // chainConfig contains information about the current chain chainConfig *params.ChainConfig // chain rules contains the chain rules for the current epoch chainRules params.Rules // virtual machine configuration options used to initialise the // evm. Config Config // global (to this context) ethereum virtual machine // used throughout the execution of the tx. interpreter *EVMInterpreter // abort is used to abort the EVM calling operations abort atomic.Bool // callGasTemp holds the gas available for the current call. This is needed because the // available gas is calculated in gasCall* according to the 63/64 rule and later // applied in opCall*. callGasTemp uint64 // precompiles holds the precompiled contracts for the current epoch precompiles map[common.Address]PrecompiledContract } // NewEVM constructs an EVM instance with the supplied block context, state // database and several configs. It meant to be used throughout the entire // state transition of a block, with the transaction context switched as // needed by calling evm.SetTxContext. func NewEVM(blockCtx BlockContext, statedb StateDB, chainConfig *params.ChainConfig, config Config) *EVM { evm := &EVM{ Context: blockCtx, StateDB: statedb, Config: config, chainConfig: chainConfig, chainRules: chainConfig.Rules(blockCtx.BlockNumber, blockCtx.Random != nil, blockCtx.Time), } evm.precompiles = activePrecompiledContracts(evm.chainRules) evm.interpreter = NewEVMInterpreter(evm) return evm } // SetTracer sets the tracer for following state transition. func (evm *EVM) SetTracer(tracer *tracing.Hooks) { evm.Config.Tracer = tracer } // SetPrecompiles sets the precompiled contracts for the EVM. // This method is only used through RPC calls. // It is not thread-safe. func (evm *EVM) SetPrecompiles(precompiles PrecompiledContracts) { evm.precompiles = precompiles } // SetTxContext resets the EVM with a new transaction context. // This is not threadsafe and should only be done very cautiously. func (evm *EVM) SetTxContext(txCtx TxContext) { if evm.chainRules.IsEIP4762 { txCtx.AccessEvents = state.NewAccessEvents(evm.StateDB.PointCache()) } evm.TxContext = txCtx } // Cancel cancels any running EVM operation. This may be called concurrently and // it's safe to be called multiple times. func (evm *EVM) Cancel() { evm.abort.Store(true) } // Cancelled returns true if Cancel has been called func (evm *EVM) Cancelled() bool { return evm.abort.Load() } // Interpreter returns the current interpreter func (evm *EVM) Interpreter() *EVMInterpreter { return evm.interpreter } // Call executes the contract associated with the addr with the given input as // parameters. It also handles any necessary value transfer required and takes // the necessary steps to create accounts and reverses the state in case of an // execution error or failed value transfer. func (evm *EVM) Call(caller ContractRef, addr common.Address, input []byte, gas uint64, value *uint256.Int) (ret []byte, leftOverGas uint64, err error) { // Capture the tracer start/end events in debug mode if evm.Config.Tracer != nil { evm.captureBegin(evm.depth, CALL, caller.Address(), addr, input, gas, value.ToBig()) defer func(startGas uint64) { evm.captureEnd(evm.depth, startGas, leftOverGas, ret, err) }(gas) } // Fail if we're trying to execute above the call depth limit if evm.depth > int(params.CallCreateDepth) { return nil, gas, ErrDepth } // Fail if we're trying to transfer more than the available balance if !value.IsZero() && !evm.Context.CanTransfer(evm.StateDB, caller.Address(), value) { return nil, gas, ErrInsufficientBalance } snapshot := evm.StateDB.Snapshot() p, isPrecompile := evm.precompile(addr) if !evm.StateDB.Exist(addr) { if !isPrecompile && evm.chainRules.IsEIP4762 { // add proof of absence to witness wgas := evm.AccessEvents.AddAccount(addr, false) if gas < wgas { evm.StateDB.RevertToSnapshot(snapshot) return nil, 0, ErrOutOfGas } gas -= wgas } if !isPrecompile && evm.chainRules.IsEIP158 && value.IsZero() { // Calling a non-existing account, don't do anything. return nil, gas, nil } evm.StateDB.CreateAccount(addr) } evm.Context.Transfer(evm.StateDB, caller.Address(), addr, value) if isPrecompile { ret, gas, err = RunPrecompiledContract(p, input, gas, evm.Config.Tracer) } else { // Initialise a new contract and set the code that is to be used by the EVM. // The contract is a scoped environment for this execution context only. code := evm.resolveCode(addr) if len(code) == 0 { ret, err = nil, nil // gas is unchanged } else { addrCopy := addr // If the account has no code, we can abort here // The depth-check is already done, and precompiles handled above contract := NewContract(caller, AccountRef(addrCopy), value, gas) contract.SetCallCode(&addrCopy, evm.resolveCodeHash(addrCopy), code) ret, err = evm.interpreter.Run(contract, input, false) gas = contract.Gas } } // When an error was returned by the EVM or when setting the creation code // above we revert to the snapshot and consume any gas remaining. Additionally, // when we're in homestead this also counts for code storage gas errors. if err != nil { evm.StateDB.RevertToSnapshot(snapshot) if err != ErrExecutionReverted { if evm.Config.Tracer != nil && evm.Config.Tracer.OnGasChange != nil { evm.Config.Tracer.OnGasChange(gas, 0, tracing.GasChangeCallFailedExecution) } gas = 0 } // TODO: consider clearing up unused snapshots: //} else { // evm.StateDB.DiscardSnapshot(snapshot) } return ret, gas, err } // CallCode executes the contract associated with the addr with the given input // as parameters. It also handles any necessary value transfer required and takes // the necessary steps to create accounts and reverses the state in case of an // execution error or failed value transfer. // // CallCode differs from Call in the sense that it executes the given address' // code with the caller as context. func (evm *EVM) CallCode(caller ContractRef, addr common.Address, input []byte, gas uint64, value *uint256.Int) (ret []byte, leftOverGas uint64, err error) { // Invoke tracer hooks that signal entering/exiting a call frame if evm.Config.Tracer != nil { evm.captureBegin(evm.depth, CALLCODE, caller.Address(), addr, input, gas, value.ToBig()) defer func(startGas uint64) { evm.captureEnd(evm.depth, startGas, leftOverGas, ret, err) }(gas) } // Fail if we're trying to execute above the call depth limit if evm.depth > int(params.CallCreateDepth) { return nil, gas, ErrDepth } // Fail if we're trying to transfer more than the available balance // Note although it's noop to transfer X ether to caller itself. But // if caller doesn't have enough balance, it would be an error to allow // over-charging itself. So the check here is necessary. if !evm.Context.CanTransfer(evm.StateDB, caller.Address(), value) { return nil, gas, ErrInsufficientBalance } var snapshot = evm.StateDB.Snapshot() // It is allowed to call precompiles, even via delegatecall if p, isPrecompile := evm.precompile(addr); isPrecompile { ret, gas, err = RunPrecompiledContract(p, input, gas, evm.Config.Tracer) } else { addrCopy := addr // Initialise a new contract and set the code that is to be used by the EVM. // The contract is a scoped environment for this execution context only. contract := NewContract(caller, AccountRef(caller.Address()), value, gas) contract.SetCallCode(&addrCopy, evm.resolveCodeHash(addrCopy), evm.resolveCode(addrCopy)) ret, err = evm.interpreter.Run(contract, input, false) gas = contract.Gas } if err != nil { evm.StateDB.RevertToSnapshot(snapshot) if err != ErrExecutionReverted { if evm.Config.Tracer != nil && evm.Config.Tracer.OnGasChange != nil { evm.Config.Tracer.OnGasChange(gas, 0, tracing.GasChangeCallFailedExecution) } gas = 0 } } return ret, gas, err } // DelegateCall executes the contract associated with the addr with the given input // as parameters. It reverses the state in case of an execution error. // // DelegateCall differs from CallCode in the sense that it executes the given address' // code with the caller as context and the caller is set to the caller of the caller. func (evm *EVM) DelegateCall(caller ContractRef, addr common.Address, input []byte, gas uint64) (ret []byte, leftOverGas uint64, err error) { // Invoke tracer hooks that signal entering/exiting a call frame if evm.Config.Tracer != nil { // NOTE: caller must, at all times be a contract. It should never happen // that caller is something other than a Contract. parent := caller.(*Contract) // DELEGATECALL inherits value from parent call evm.captureBegin(evm.depth, DELEGATECALL, caller.Address(), addr, input, gas, parent.value.ToBig()) defer func(startGas uint64) { evm.captureEnd(evm.depth, startGas, leftOverGas, ret, err) }(gas) } // Fail if we're trying to execute above the call depth limit if evm.depth > int(params.CallCreateDepth) { return nil, gas, ErrDepth } var snapshot = evm.StateDB.Snapshot() // It is allowed to call precompiles, even via delegatecall if p, isPrecompile := evm.precompile(addr); isPrecompile { ret, gas, err = RunPrecompiledContract(p, input, gas, evm.Config.Tracer) } else { addrCopy := addr // Initialise a new contract and make initialise the delegate values contract := NewContract(caller, AccountRef(caller.Address()), nil, gas).AsDelegate() contract.SetCallCode(&addrCopy, evm.resolveCodeHash(addrCopy), evm.resolveCode(addrCopy)) ret, err = evm.interpreter.Run(contract, input, false) gas = contract.Gas } if err != nil { evm.StateDB.RevertToSnapshot(snapshot) if err != ErrExecutionReverted { if evm.Config.Tracer != nil && evm.Config.Tracer.OnGasChange != nil { evm.Config.Tracer.OnGasChange(gas, 0, tracing.GasChangeCallFailedExecution) } gas = 0 } } return ret, gas, err } // StaticCall executes the contract associated with the addr with the given input // as parameters while disallowing any modifications to the state during the call. // Opcodes that attempt to perform such modifications will result in exceptions // instead of performing the modifications. func (evm *EVM) StaticCall(caller ContractRef, addr common.Address, input []byte, gas uint64) (ret []byte, leftOverGas uint64, err error) { // Invoke tracer hooks that signal entering/exiting a call frame if evm.Config.Tracer != nil { evm.captureBegin(evm.depth, STATICCALL, caller.Address(), addr, input, gas, nil) defer func(startGas uint64) { evm.captureEnd(evm.depth, startGas, leftOverGas, ret, err) }(gas) } // Fail if we're trying to execute above the call depth limit if evm.depth > int(params.CallCreateDepth) { return nil, gas, ErrDepth } // We take a snapshot here. This is a bit counter-intuitive, and could probably be skipped. // However, even a staticcall is considered a 'touch'. On mainnet, static calls were introduced // after all empty accounts were deleted, so this is not required. However, if we omit this, // then certain tests start failing; stRevertTest/RevertPrecompiledTouchExactOOG.json. // We could change this, but for now it's left for legacy reasons var snapshot = evm.StateDB.Snapshot() // We do an AddBalance of zero here, just in order to trigger a touch. // This doesn't matter on Mainnet, where all empties are gone at the time of Byzantium, // but is the correct thing to do and matters on other networks, in tests, and potential // future scenarios evm.StateDB.AddBalance(addr, new(uint256.Int), tracing.BalanceChangeTouchAccount) if p, isPrecompile := evm.precompile(addr); isPrecompile { ret, gas, err = RunPrecompiledContract(p, input, gas, evm.Config.Tracer) } else { // At this point, we use a copy of address. If we don't, the go compiler will // leak the 'contract' to the outer scope, and make allocation for 'contract' // even if the actual execution ends on RunPrecompiled above. addrCopy := addr // Initialise a new contract and set the code that is to be used by the EVM. // The contract is a scoped environment for this execution context only. contract := NewContract(caller, AccountRef(addrCopy), new(uint256.Int), gas) contract.SetCallCode(&addrCopy, evm.resolveCodeHash(addrCopy), evm.resolveCode(addrCopy)) // When an error was returned by the EVM or when setting the creation code // above we revert to the snapshot and consume any gas remaining. Additionally // when we're in Homestead this also counts for code storage gas errors. ret, err = evm.interpreter.Run(contract, input, true) gas = contract.Gas } if err != nil { evm.StateDB.RevertToSnapshot(snapshot) if err != ErrExecutionReverted { if evm.Config.Tracer != nil && evm.Config.Tracer.OnGasChange != nil { evm.Config.Tracer.OnGasChange(gas, 0, tracing.GasChangeCallFailedExecution) } gas = 0 } } return ret, gas, err } type codeAndHash struct { code []byte hash common.Hash } func (c *codeAndHash) Hash() common.Hash { if c.hash == (common.Hash{}) { c.hash = crypto.Keccak256Hash(c.code) } return c.hash } // create creates a new contract using code as deployment code. func (evm *EVM) create(caller ContractRef, codeAndHash *codeAndHash, gas uint64, value *uint256.Int, address common.Address, typ OpCode) (ret []byte, createAddress common.Address, leftOverGas uint64, err error) { if evm.Config.Tracer != nil { evm.captureBegin(evm.depth, typ, caller.Address(), address, codeAndHash.code, gas, value.ToBig()) defer func(startGas uint64) { evm.captureEnd(evm.depth, startGas, leftOverGas, ret, err) }(gas) } // Depth check execution. Fail if we're trying to execute above the // limit. if evm.depth > int(params.CallCreateDepth) { return nil, common.Address{}, gas, ErrDepth } if !evm.Context.CanTransfer(evm.StateDB, caller.Address(), value) { return nil, common.Address{}, gas, ErrInsufficientBalance } nonce := evm.StateDB.GetNonce(caller.Address()) if nonce+1 < nonce { return nil, common.Address{}, gas, ErrNonceUintOverflow } evm.StateDB.SetNonce(caller.Address(), nonce+1) // Charge the contract creation init gas in verkle mode if evm.chainRules.IsEIP4762 { statelessGas := evm.AccessEvents.ContractCreatePreCheckGas(address) if statelessGas > gas { return nil, common.Address{}, 0, ErrOutOfGas } if evm.Config.Tracer != nil && evm.Config.Tracer.OnGasChange != nil { evm.Config.Tracer.OnGasChange(gas, gas-statelessGas, tracing.GasChangeWitnessContractCollisionCheck) } gas = gas - statelessGas } // We add this to the access list _before_ taking a snapshot. Even if the // creation fails, the access-list change should not be rolled back. if evm.chainRules.IsEIP2929 { evm.StateDB.AddAddressToAccessList(address) } // Ensure there's no existing contract already at the designated address. // Account is regarded as existent if any of these three conditions is met: // - the nonce is non-zero // - the code is non-empty // - the storage is non-empty contractHash := evm.StateDB.GetCodeHash(address) storageRoot := evm.StateDB.GetStorageRoot(address) if evm.StateDB.GetNonce(address) != 0 || (contractHash != (common.Hash{}) && contractHash != types.EmptyCodeHash) || // non-empty code (storageRoot != (common.Hash{}) && storageRoot != types.EmptyRootHash) { // non-empty storage if evm.Config.Tracer != nil && evm.Config.Tracer.OnGasChange != nil { evm.Config.Tracer.OnGasChange(gas, 0, tracing.GasChangeCallFailedExecution) } return nil, common.Address{}, 0, ErrContractAddressCollision } // Create a new account on the state only if the object was not present. // It might be possible the contract code is deployed to a pre-existent // account with non-zero balance. snapshot := evm.StateDB.Snapshot() if !evm.StateDB.Exist(address) { evm.StateDB.CreateAccount(address) } // CreateContract means that regardless of whether the account previously existed // in the state trie or not, it _now_ becomes created as a _contract_ account. // This is performed _prior_ to executing the initcode, since the initcode // acts inside that account. evm.StateDB.CreateContract(address) if evm.chainRules.IsEIP158 { evm.StateDB.SetNonce(address, 1) } // Charge the contract creation init gas in verkle mode if evm.chainRules.IsEIP4762 { statelessGas := evm.AccessEvents.ContractCreateInitGas(address) if statelessGas > gas { return nil, common.Address{}, 0, ErrOutOfGas } if evm.Config.Tracer != nil && evm.Config.Tracer.OnGasChange != nil { evm.Config.Tracer.OnGasChange(gas, gas-statelessGas, tracing.GasChangeWitnessContractInit) } gas = gas - statelessGas } evm.Context.Transfer(evm.StateDB, caller.Address(), address, value) // Initialise a new contract and set the code that is to be used by the EVM. // The contract is a scoped environment for this execution context only. contract := NewContract(caller, AccountRef(address), value, gas) contract.SetCodeOptionalHash(&address, codeAndHash) contract.IsDeployment = true ret, err = evm.initNewContract(contract, address, value) if err != nil && (evm.chainRules.IsHomestead || err != ErrCodeStoreOutOfGas) { evm.StateDB.RevertToSnapshot(snapshot) if err != ErrExecutionReverted { contract.UseGas(contract.Gas, evm.Config.Tracer, tracing.GasChangeCallFailedExecution) } } return ret, address, contract.Gas, err } // initNewContract runs a new contract's creation code, performs checks on the // resulting code that is to be deployed, and consumes necessary gas. func (evm *EVM) initNewContract(contract *Contract, address common.Address, value *uint256.Int) ([]byte, error) { ret, err := evm.interpreter.Run(contract, nil, false) if err != nil { return ret, err } // Check whether the max code size has been exceeded, assign err if the case. if evm.chainRules.IsEIP158 && len(ret) > params.MaxCodeSize { return ret, ErrMaxCodeSizeExceeded } // Reject code starting with 0xEF if EIP-3541 is enabled. if len(ret) >= 1 && ret[0] == 0xEF && evm.chainRules.IsLondon { return ret, ErrInvalidCode } if !evm.chainRules.IsEIP4762 { createDataGas := uint64(len(ret)) * params.CreateDataGas if !contract.UseGas(createDataGas, evm.Config.Tracer, tracing.GasChangeCallCodeStorage) { return ret, ErrCodeStoreOutOfGas } } else { if len(ret) > 0 && !contract.UseGas(evm.AccessEvents.CodeChunksRangeGas(address, 0, uint64(len(ret)), uint64(len(ret)), true), evm.Config.Tracer, tracing.GasChangeWitnessCodeChunk) { return ret, ErrCodeStoreOutOfGas } } evm.StateDB.SetCode(address, ret) return ret, nil } // Create creates a new contract using code as deployment code. func (evm *EVM) Create(caller ContractRef, code []byte, gas uint64, value *uint256.Int) (ret []byte, contractAddr common.Address, leftOverGas uint64, err error) { contractAddr = crypto.CreateAddress(caller.Address(), evm.StateDB.GetNonce(caller.Address())) return evm.create(caller, &codeAndHash{code: code}, gas, value, contractAddr, CREATE) } // Create2 creates a new contract using code as deployment code. // // The different between Create2 with Create is Create2 uses keccak256(0xff ++ msg.sender ++ salt ++ keccak256(init_code))[12:] // instead of the usual sender-and-nonce-hash as the address where the contract is initialized at. func (evm *EVM) Create2(caller ContractRef, code []byte, gas uint64, endowment *uint256.Int, salt *uint256.Int) (ret []byte, contractAddr common.Address, leftOverGas uint64, err error) { codeAndHash := &codeAndHash{code: code} contractAddr = crypto.CreateAddress2(caller.Address(), salt.Bytes32(), codeAndHash.Hash().Bytes()) return evm.create(caller, codeAndHash, gas, endowment, contractAddr, CREATE2) } // resolveCode returns the code associated with the provided account. After // Prague, it can also resolve code pointed to by a delegation designator. func (evm *EVM) resolveCode(addr common.Address) []byte { code := evm.StateDB.GetCode(addr) if !evm.chainRules.IsPrague { return code } if target, ok := types.ParseDelegation(code); ok { // Note we only follow one level of delegation. return evm.StateDB.GetCode(target) } return code } // resolveCodeHash returns the code hash associated with the provided address. // After Prague, it can also resolve code hash of the account pointed to by a // delegation designator. Although this is not accessible in the EVM it is used // internally to associate jumpdest analysis to code. func (evm *EVM) resolveCodeHash(addr common.Address) common.Hash { if evm.chainRules.IsPrague { code := evm.StateDB.GetCode(addr) if target, ok := types.ParseDelegation(code); ok { // Note we only follow one level of delegation. return evm.StateDB.GetCodeHash(target) } } return evm.StateDB.GetCodeHash(addr) } // ChainConfig returns the environment's chain configuration func (evm *EVM) ChainConfig() *params.ChainConfig { return evm.chainConfig } func (evm *EVM) captureBegin(depth int, typ OpCode, from common.Address, to common.Address, input []byte, startGas uint64, value *big.Int) { tracer := evm.Config.Tracer if tracer.OnEnter != nil { tracer.OnEnter(depth, byte(typ), from, to, input, startGas, value) } if tracer.OnGasChange != nil { tracer.OnGasChange(0, startGas, tracing.GasChangeCallInitialBalance) } } func (evm *EVM) captureEnd(depth int, startGas uint64, leftOverGas uint64, ret []byte, err error) { tracer := evm.Config.Tracer if leftOverGas != 0 && tracer.OnGasChange != nil { tracer.OnGasChange(leftOverGas, 0, tracing.GasChangeCallLeftOverReturned) } var reverted bool if err != nil { reverted = true } if !evm.chainRules.IsHomestead && errors.Is(err, ErrCodeStoreOutOfGas) { reverted = false } if tracer.OnExit != nil { tracer.OnExit(depth, ret, startGas-leftOverGas, VMErrorFromErr(err), reverted) } } // GetVMContext provides context about the block being executed as well as state // to the tracers. func (evm *EVM) GetVMContext() *tracing.VMContext { return &tracing.VMContext{ Coinbase: evm.Context.Coinbase, BlockNumber: evm.Context.BlockNumber, Time: evm.Context.Time, Random: evm.Context.Random, BaseFee: evm.Context.BaseFee, StateDB: evm.StateDB, } }