// Copyright 2024 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package pathdb import ( "bytes" "github.com/ethereum/go-ethereum/common" ) // binaryIterator is a simplistic iterator to step over the accounts or storage // in a snapshot, which may or may not be composed of multiple layers. Performance // wise this iterator is slow, it's meant for cross validating the fast one. // // This iterator cannot be used on its own; it should be wrapped with an outer // iterator, such as accountBinaryIterator or storageBinaryIterator. // // This iterator can only traverse the keys of the entries stored in the layers, // but cannot obtain the corresponding values. Besides, the deleted entry will // also be traversed, the outer iterator must check the emptiness before returning. type binaryIterator struct { a Iterator b Iterator aDone bool bDone bool k common.Hash fail error } // initBinaryAccountIterator creates a simplistic iterator to step over all the // accounts in a slow, but easily verifiable way. Note this function is used // for initialization, use `newBinaryAccountIterator` as the API. func (dl *diskLayer) initBinaryAccountIterator(seek common.Hash) *binaryIterator { // Create two iterators for state buffer and the persistent state in disk // respectively and combine them as a binary iterator. l := &binaryIterator{ // The account loader function is unnecessary; the account key list // produced by the supplied buffer alone is sufficient for iteration. // // The account key list for iteration is deterministic once the iterator // is constructed, no matter the referenced disk layer is stale or not // later. a: newDiffAccountIterator(seek, dl.buffer.states, nil), b: newDiskAccountIterator(dl.db.diskdb, seek), } l.aDone = !l.a.Next() l.bDone = !l.b.Next() return l } // initBinaryAccountIterator creates a simplistic iterator to step over all the // accounts in a slow, but easily verifiable way. Note this function is used // for initialization, use `newBinaryAccountIterator` as the API. func (dl *diffLayer) initBinaryAccountIterator(seek common.Hash) *binaryIterator { parent, ok := dl.parent.(*diffLayer) if !ok { l := &binaryIterator{ // The account loader function is unnecessary; the account key list // produced by the supplied state set alone is sufficient for iteration. // // The account key list for iteration is deterministic once the iterator // is constructed, no matter the referenced disk layer is stale or not // later. a: newDiffAccountIterator(seek, dl.states.stateSet, nil), b: dl.parent.(*diskLayer).initBinaryAccountIterator(seek), } l.aDone = !l.a.Next() l.bDone = !l.b.Next() return l } l := &binaryIterator{ // The account loader function is unnecessary; the account key list // produced by the supplied state set alone is sufficient for iteration. // // The account key list for iteration is deterministic once the iterator // is constructed, no matter the referenced disk layer is stale or not // later. a: newDiffAccountIterator(seek, dl.states.stateSet, nil), b: parent.initBinaryAccountIterator(seek), } l.aDone = !l.a.Next() l.bDone = !l.b.Next() return l } // initBinaryStorageIterator creates a simplistic iterator to step over all the // storage slots in a slow, but easily verifiable way. Note this function is used // for initialization, use `newBinaryStorageIterator` as the API. func (dl *diskLayer) initBinaryStorageIterator(account common.Hash, seek common.Hash) *binaryIterator { // Create two iterators for state buffer and the persistent state in disk // respectively and combine them as a binary iterator. l := &binaryIterator{ // The storage loader function is unnecessary; the storage key list // produced by the supplied buffer alone is sufficient for iteration. // // The storage key list for iteration is deterministic once the iterator // is constructed, no matter the referenced disk layer is stale or not // later. a: newDiffStorageIterator(account, seek, dl.buffer.states, nil), b: newDiskStorageIterator(dl.db.diskdb, account, seek), } l.aDone = !l.a.Next() l.bDone = !l.b.Next() return l } // initBinaryStorageIterator creates a simplistic iterator to step over all the // storage slots in a slow, but easily verifiable way. Note this function is used // for initialization, use `newBinaryStorageIterator` as the API. func (dl *diffLayer) initBinaryStorageIterator(account common.Hash, seek common.Hash) *binaryIterator { parent, ok := dl.parent.(*diffLayer) if !ok { l := &binaryIterator{ // The storage loader function is unnecessary; the storage key list // produced by the supplied state set alone is sufficient for iteration. // // The storage key list for iteration is deterministic once the iterator // is constructed, no matter the referenced disk layer is stale or not // later. a: newDiffStorageIterator(account, seek, dl.states.stateSet, nil), b: dl.parent.(*diskLayer).initBinaryStorageIterator(account, seek), } l.aDone = !l.a.Next() l.bDone = !l.b.Next() return l } l := &binaryIterator{ // The storage loader function is unnecessary; the storage key list // produced by the supplied state set alone is sufficient for iteration. // // The storage key list for iteration is deterministic once the iterator // is constructed, no matter the referenced disk layer is stale or not // later. a: newDiffStorageIterator(account, seek, dl.states.stateSet, nil), b: parent.initBinaryStorageIterator(account, seek), } l.aDone = !l.a.Next() l.bDone = !l.b.Next() return l } // Next advances the iterator by one element, returning false if both iterators // are exhausted. Note that the entry pointed to by the iterator may be null // (e.g., when an account is deleted but still accessible for iteration). // The outer iterator must verify emptiness before terminating the iteration. // // There’s no need to check for errors in the two iterators, as we only iterate // through the entries without retrieving their values. func (it *binaryIterator) Next() bool { if it.aDone && it.bDone { return false } for { if it.aDone { it.k = it.b.Hash() it.bDone = !it.b.Next() return true } if it.bDone { it.k = it.a.Hash() it.aDone = !it.a.Next() return true } nextA, nextB := it.a.Hash(), it.b.Hash() if diff := bytes.Compare(nextA[:], nextB[:]); diff < 0 { it.aDone = !it.a.Next() it.k = nextA return true } else if diff == 0 { // Now we need to advance one of them it.aDone = !it.a.Next() continue } it.bDone = !it.b.Next() it.k = nextB return true } } // Error returns any failure that occurred during iteration, which might have // caused a premature iteration exit (e.g. snapshot stack becoming stale). func (it *binaryIterator) Error() error { return it.fail } // Hash returns the hash of the account the iterator is currently at. func (it *binaryIterator) Hash() common.Hash { return it.k } // Release recursively releases all the iterators in the stack. func (it *binaryIterator) Release() { it.a.Release() it.b.Release() } // accountBinaryIterator is a wrapper around a binary iterator that adds functionality // to retrieve account data from the associated layer at the current position. type accountBinaryIterator struct { *binaryIterator layer layer } // newBinaryAccountIterator creates a simplistic account iterator to step over // all the accounts in a slow, but easily verifiable way. // // nolint:all func (dl *diskLayer) newBinaryAccountIterator(seek common.Hash) AccountIterator { return &accountBinaryIterator{ binaryIterator: dl.initBinaryAccountIterator(seek), layer: dl, } } // newBinaryAccountIterator creates a simplistic account iterator to step over // all the accounts in a slow, but easily verifiable way. func (dl *diffLayer) newBinaryAccountIterator(seek common.Hash) AccountIterator { return &accountBinaryIterator{ binaryIterator: dl.initBinaryAccountIterator(seek), layer: dl, } } // Next steps the iterator forward one element, returning false if exhausted, // or an error if iteration failed for some reason (e.g. the linked layer is // stale during the iteration). func (it *accountBinaryIterator) Next() bool { for { if !it.binaryIterator.Next() { return false } // Retrieve the account data referenced by the current iterator, the // associated layers might be outdated due to chain progressing, // the relative error will be set to it.fail just in case. // // Skip the null account which was deleted before and move to the // next account. if len(it.Account()) != 0 { return true } // it.fail might be set if error occurs by calling it.Account(). // Stop iteration if so. if it.fail != nil { return false } } } // Account returns the RLP encoded slim account the iterator is currently at, or // nil if the iterated snapshot stack became stale (you can check Error after // to see if it failed or not). // // Note the returned account is not a copy, please don't modify it. func (it *accountBinaryIterator) Account() []byte { blob, err := it.layer.account(it.k, 0) if err != nil { it.fail = err return nil } return blob } // storageBinaryIterator is a wrapper around a binary iterator that adds functionality // to retrieve storage slot data from the associated layer at the current position. type storageBinaryIterator struct { *binaryIterator account common.Hash layer layer } // newBinaryStorageIterator creates a simplistic account iterator to step over // all the storage slots in a slow, but easily verifiable way. // // nolint:all func (dl *diskLayer) newBinaryStorageIterator(account common.Hash, seek common.Hash) StorageIterator { return &storageBinaryIterator{ binaryIterator: dl.initBinaryStorageIterator(account, seek), account: account, layer: dl, } } // newBinaryStorageIterator creates a simplistic account iterator to step over // all the storage slots in a slow, but easily verifiable way. func (dl *diffLayer) newBinaryStorageIterator(account common.Hash, seek common.Hash) StorageIterator { return &storageBinaryIterator{ binaryIterator: dl.initBinaryStorageIterator(account, seek), account: account, layer: dl, } } // Next steps the iterator forward one element, returning false if exhausted, // or an error if iteration failed for some reason (e.g. the linked layer is // stale during the iteration). func (it *storageBinaryIterator) Next() bool { for { if !it.binaryIterator.Next() { return false } // Retrieve the storage data referenced by the current iterator, the // associated layers might be outdated due to chain progressing, // the relative error will be set to it.fail just in case. // // Skip the null storage which was deleted before and move to the // next account. if len(it.Slot()) != 0 { return true } // it.fail might be set if error occurs by calling it.Slot(). // Stop iteration if so. if it.fail != nil { return false } } } // Slot returns the raw storage slot data the iterator is currently at, or // nil if the iterated snapshot stack became stale (you can check Error after // to see if it failed or not). // // Note the returned slot is not a copy, please don't modify it. func (it *storageBinaryIterator) Slot() []byte { blob, err := it.layer.storage(it.account, it.k, 0) if err != nil { it.fail = err return nil } return blob }