// Copyright 2014 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package p2p import ( "errors" "fmt" "io" "net" "slices" "sync" "time" "github.com/ethereum/go-ethereum/common/mclock" "github.com/ethereum/go-ethereum/event" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/metrics" "github.com/ethereum/go-ethereum/p2p/enode" "github.com/ethereum/go-ethereum/p2p/enr" "github.com/ethereum/go-ethereum/rlp" ) var ( ErrShuttingDown = errors.New("shutting down") ) const ( baseProtocolVersion = 5 baseProtocolLength = uint64(16) baseProtocolMaxMsgSize = 2 * 1024 snappyProtocolVersion = 5 pingInterval = 15 * time.Second ) const ( // devp2p message codes handshakeMsg = 0x00 discMsg = 0x01 pingMsg = 0x02 pongMsg = 0x03 ) // protoHandshake is the RLP structure of the protocol handshake. type protoHandshake struct { Version uint64 Name string Caps []Cap ListenPort uint64 ID []byte // secp256k1 public key // Ignore additional fields (for forward compatibility). Rest []rlp.RawValue `rlp:"tail"` } // PeerEventType is the type of peer events emitted by a p2p.Server type PeerEventType string const ( // PeerEventTypeAdd is the type of event emitted when a peer is added // to a p2p.Server PeerEventTypeAdd PeerEventType = "add" // PeerEventTypeDrop is the type of event emitted when a peer is // dropped from a p2p.Server PeerEventTypeDrop PeerEventType = "drop" // PeerEventTypeMsgSend is the type of event emitted when a // message is successfully sent to a peer PeerEventTypeMsgSend PeerEventType = "msgsend" // PeerEventTypeMsgRecv is the type of event emitted when a // message is received from a peer PeerEventTypeMsgRecv PeerEventType = "msgrecv" ) // PeerEvent is an event emitted when peers are either added or dropped from // a p2p.Server or when a message is sent or received on a peer connection type PeerEvent struct { Type PeerEventType `json:"type"` Peer enode.ID `json:"peer"` Error string `json:"error,omitempty"` Protocol string `json:"protocol,omitempty"` MsgCode *uint64 `json:"msg_code,omitempty"` MsgSize *uint32 `json:"msg_size,omitempty"` LocalAddress string `json:"local,omitempty"` RemoteAddress string `json:"remote,omitempty"` } // Peer represents a connected remote node. type Peer struct { rw *conn running map[string]*protoRW log log.Logger created mclock.AbsTime wg sync.WaitGroup protoErr chan error closed chan struct{} pingRecv chan struct{} disc chan DiscReason // events receives message send / receive events if set events *event.Feed testPipe *MsgPipeRW // for testing } // NewPeer returns a peer for testing purposes. func NewPeer(id enode.ID, name string, caps []Cap) *Peer { // Generate a fake set of local protocols to match as running caps. Almost // no fields needs to be meaningful here as we're only using it to cross- // check with the "remote" caps array. protos := make([]Protocol, len(caps)) for i, cap := range caps { protos[i].Name = cap.Name protos[i].Version = cap.Version } pipe, _ := net.Pipe() node := enode.SignNull(new(enr.Record), id) conn := &conn{fd: pipe, transport: nil, node: node, caps: caps, name: name} peer := newPeer(log.Root(), conn, protos) close(peer.closed) // ensures Disconnect doesn't block return peer } // NewPeerPipe creates a peer for testing purposes. // The message pipe given as the last parameter is closed when // Disconnect is called on the peer. func NewPeerPipe(id enode.ID, name string, caps []Cap, pipe *MsgPipeRW) *Peer { p := NewPeer(id, name, caps) p.testPipe = pipe return p } // ID returns the node's public key. func (p *Peer) ID() enode.ID { return p.rw.node.ID() } // Node returns the peer's node descriptor. func (p *Peer) Node() *enode.Node { return p.rw.node } // Name returns an abbreviated form of the name func (p *Peer) Name() string { s := p.rw.name if len(s) > 20 { return s[:20] + "..." } return s } // Fullname returns the node name that the remote node advertised. func (p *Peer) Fullname() string { return p.rw.name } // Caps returns the capabilities (supported subprotocols) of the remote peer. func (p *Peer) Caps() []Cap { // TODO: maybe return copy return p.rw.caps } // RunningCap returns true if the peer is actively connected using any of the // enumerated versions of a specific protocol, meaning that at least one of the // versions is supported by both this node and the peer p. func (p *Peer) RunningCap(protocol string, versions []uint) bool { if proto, ok := p.running[protocol]; ok { for _, ver := range versions { if proto.Version == ver { return true } } } return false } // RemoteAddr returns the remote address of the network connection. func (p *Peer) RemoteAddr() net.Addr { return p.rw.fd.RemoteAddr() } // LocalAddr returns the local address of the network connection. func (p *Peer) LocalAddr() net.Addr { return p.rw.fd.LocalAddr() } // Disconnect terminates the peer connection with the given reason. // It returns immediately and does not wait until the connection is closed. func (p *Peer) Disconnect(reason DiscReason) { if p.testPipe != nil { p.testPipe.Close() } select { case p.disc <- reason: case <-p.closed: } } // String implements fmt.Stringer. func (p *Peer) String() string { id := p.ID() return fmt.Sprintf("Peer %x %v", id[:8], p.RemoteAddr()) } // Inbound returns true if the peer is an inbound connection func (p *Peer) Inbound() bool { return p.rw.is(inboundConn) } func newPeer(log log.Logger, conn *conn, protocols []Protocol) *Peer { protomap := matchProtocols(protocols, conn.caps, conn) p := &Peer{ rw: conn, running: protomap, created: mclock.Now(), disc: make(chan DiscReason), protoErr: make(chan error, len(protomap)+1), // protocols + pingLoop closed: make(chan struct{}), pingRecv: make(chan struct{}, 16), log: log.New("id", conn.node.ID(), "conn", conn.flags), } return p } func (p *Peer) Log() log.Logger { return p.log } func (p *Peer) run() (remoteRequested bool, err error) { var ( writeStart = make(chan struct{}, 1) writeErr = make(chan error, 1) readErr = make(chan error, 1) reason DiscReason // sent to the peer ) p.wg.Add(2) go p.readLoop(readErr) go p.pingLoop() // Start all protocol handlers. writeStart <- struct{}{} p.startProtocols(writeStart, writeErr) // Wait for an error or disconnect. loop: for { select { case err = <-writeErr: // A write finished. Allow the next write to start if // there was no error. if err != nil { reason = DiscNetworkError break loop } writeStart <- struct{}{} case err = <-readErr: if r, ok := err.(DiscReason); ok { remoteRequested = true reason = r } else { reason = DiscNetworkError } break loop case err = <-p.protoErr: reason = discReasonForError(err) break loop case err = <-p.disc: reason = discReasonForError(err) break loop } } close(p.closed) p.rw.close(reason) p.wg.Wait() return remoteRequested, err } func (p *Peer) pingLoop() { defer p.wg.Done() ping := time.NewTimer(pingInterval) defer ping.Stop() for { select { case <-ping.C: if err := SendItems(p.rw, pingMsg); err != nil { p.protoErr <- err return } ping.Reset(pingInterval) case <-p.pingRecv: SendItems(p.rw, pongMsg) case <-p.closed: return } } } func (p *Peer) readLoop(errc chan<- error) { defer p.wg.Done() for { msg, err := p.rw.ReadMsg() if err != nil { errc <- err return } msg.ReceivedAt = time.Now() if err = p.handle(msg); err != nil { errc <- err return } } } func (p *Peer) handle(msg Msg) error { switch { case msg.Code == pingMsg: msg.Discard() select { case p.pingRecv <- struct{}{}: case <-p.closed: } case msg.Code == discMsg: // This is the last message. We don't need to discard or // check errors because, the connection will be closed after it. return decodeDisconnectMessage(msg.Payload) case msg.Code < baseProtocolLength: // ignore other base protocol messages return msg.Discard() default: // it's a subprotocol message proto, err := p.getProto(msg.Code) if err != nil { return fmt.Errorf("msg code out of range: %v", msg.Code) } if metrics.Enabled() { m := fmt.Sprintf("%s/%s/%d/%#02x", ingressMeterName, proto.Name, proto.Version, msg.Code-proto.offset) metrics.GetOrRegisterMeter(m, nil).Mark(int64(msg.meterSize)) metrics.GetOrRegisterMeter(m+"/packets", nil).Mark(1) } select { case proto.in <- msg: return nil case <-p.closed: return io.EOF } } return nil } // decodeDisconnectMessage decodes the payload of discMsg. func decodeDisconnectMessage(r io.Reader) (reason DiscReason) { s := rlp.NewStream(r, 100) k, _, err := s.Kind() if err != nil { return DiscInvalid } if k == rlp.List { s.List() err = s.Decode(&reason) } else { // Legacy path: some implementations, including geth, used to send the disconnect // reason as a byte array by accident. err = s.Decode(&reason) } if err != nil { reason = DiscInvalid } return reason } func countMatchingProtocols(protocols []Protocol, caps []Cap) int { n := 0 for _, cap := range caps { for _, proto := range protocols { if proto.Name == cap.Name && proto.Version == cap.Version { n++ } } } return n } // matchProtocols creates structures for matching named subprotocols. func matchProtocols(protocols []Protocol, caps []Cap, rw MsgReadWriter) map[string]*protoRW { slices.SortFunc(caps, Cap.Cmp) offset := baseProtocolLength result := make(map[string]*protoRW) outer: for _, cap := range caps { for _, proto := range protocols { if proto.Name == cap.Name && proto.Version == cap.Version { // If an old protocol version matched, revert it if old := result[cap.Name]; old != nil { offset -= old.Length } // Assign the new match result[cap.Name] = &protoRW{Protocol: proto, offset: offset, in: make(chan Msg), w: rw} offset += proto.Length continue outer } } } return result } func (p *Peer) startProtocols(writeStart <-chan struct{}, writeErr chan<- error) { p.wg.Add(len(p.running)) for _, proto := range p.running { proto.closed = p.closed proto.wstart = writeStart proto.werr = writeErr var rw MsgReadWriter = proto if p.events != nil { rw = newMsgEventer(rw, p.events, p.ID(), proto.Name, p.Info().Network.RemoteAddress, p.Info().Network.LocalAddress) } p.log.Trace(fmt.Sprintf("Starting protocol %s/%d", proto.Name, proto.Version)) go func() { defer p.wg.Done() err := proto.Run(p, rw) if err == nil { p.log.Trace(fmt.Sprintf("Protocol %s/%d returned", proto.Name, proto.Version)) err = errProtocolReturned } else if !errors.Is(err, io.EOF) { p.log.Trace(fmt.Sprintf("Protocol %s/%d failed", proto.Name, proto.Version), "err", err) } p.protoErr <- err }() } } // getProto finds the protocol responsible for handling // the given message code. func (p *Peer) getProto(code uint64) (*protoRW, error) { for _, proto := range p.running { if code >= proto.offset && code < proto.offset+proto.Length { return proto, nil } } return nil, newPeerError(errInvalidMsgCode, "%d", code) } type protoRW struct { Protocol in chan Msg // receives read messages closed <-chan struct{} // receives when peer is shutting down wstart <-chan struct{} // receives when write may start werr chan<- error // for write results offset uint64 w MsgWriter } func (rw *protoRW) WriteMsg(msg Msg) (err error) { if msg.Code >= rw.Length { return newPeerError(errInvalidMsgCode, "not handled") } msg.meterCap = rw.cap() msg.meterCode = msg.Code msg.Code += rw.offset select { case <-rw.wstart: err = rw.w.WriteMsg(msg) // Report write status back to Peer.run. It will initiate // shutdown if the error is non-nil and unblock the next write // otherwise. The calling protocol code should exit for errors // as well but we don't want to rely on that. rw.werr <- err case <-rw.closed: err = ErrShuttingDown } return err } func (rw *protoRW) ReadMsg() (Msg, error) { select { case msg := <-rw.in: msg.Code -= rw.offset return msg, nil case <-rw.closed: return Msg{}, io.EOF } } // PeerInfo represents a short summary of the information known about a connected // peer. Sub-protocol independent fields are contained and initialized here, with // protocol specifics delegated to all connected sub-protocols. type PeerInfo struct { ENR string `json:"enr,omitempty"` // Ethereum Node Record Enode string `json:"enode"` // Node URL ID string `json:"id"` // Unique node identifier Name string `json:"name"` // Name of the node, including client type, version, OS, custom data Caps []string `json:"caps"` // Protocols advertised by this peer Network struct { LocalAddress string `json:"localAddress"` // Local endpoint of the TCP data connection RemoteAddress string `json:"remoteAddress"` // Remote endpoint of the TCP data connection Inbound bool `json:"inbound"` Trusted bool `json:"trusted"` Static bool `json:"static"` } `json:"network"` Protocols map[string]interface{} `json:"protocols"` // Sub-protocol specific metadata fields } // Info gathers and returns a collection of metadata known about a peer. func (p *Peer) Info() *PeerInfo { // Gather the protocol capabilities var caps []string for _, cap := range p.Caps() { caps = append(caps, cap.String()) } // Assemble the generic peer metadata info := &PeerInfo{ Enode: p.Node().URLv4(), ID: p.ID().String(), Name: p.Fullname(), Caps: caps, Protocols: make(map[string]interface{}, len(p.running)), } if p.Node().Seq() > 0 { info.ENR = p.Node().String() } info.Network.LocalAddress = p.LocalAddr().String() info.Network.RemoteAddress = p.RemoteAddr().String() info.Network.Inbound = p.rw.is(inboundConn) info.Network.Trusted = p.rw.is(trustedConn) info.Network.Static = p.rw.is(staticDialedConn) // Gather all the running protocol infos for _, proto := range p.running { protoInfo := interface{}("unknown") if query := proto.Protocol.PeerInfo; query != nil { if metadata := query(p.ID()); metadata != nil { protoInfo = metadata } else { protoInfo = "handshake" } } info.Protocols[proto.Name] = protoInfo } return info }