Since Decimal is defined as unsiged `uint64`, we should use `strconv.ParseUint` instead of `strconv.ParseInt` during unmarshalling.
---------
Co-authored-by: Martin Holst Swende <martin@swende.se>
Both Hash and Address have a String method, which returns the value as
hex with 0x prefix. They also had a Format method which tried to print
the value using printf of []byte. The way Format worked was at odds with
String though, leading to a situation where fmt.Sprintf("%v", hash)
returned the decimal notation and hash.String() returned a hex string.
This commit makes it consistent again. Both types now support the %v,
%s, %q format verbs for 0x-prefixed hex output. %x, %X creates
unprefixed hex output. %d is also supported and returns the decimal
notation "[1 2 3...]".
For Address, the case of hex characters in %v, %s, %q output is
determined using the EIP-55 checksum. Using %x, %X with Address
disables checksumming.
Co-authored-by: Felix Lange <fjl@twurst.com>
* core/vm: remove function call for stack validation from evm runloop
* core/vm: separate gas calc into static + dynamic
* core/vm: optimize push1
* core/vm: reuse pooled bigints for ADDRESS, ORIGIN and CALLER
* core/vm: use generic error message for jump/jumpi, to avoid string interpolation
* testdata: fix tests for new error message
* core/vm: use 64-bit memory calculations
* core/vm: fix error in memory calculation
* core/vm: address review concerns
* core/vm: avoid unnecessary use of big.Int:BitLen()
This adds type and struct field context to error messages.
Instead of "hex string of odd length" users will now see "json: cannot
unmarshal hex string of odd length into Go struct field SendTxArgs.from
of type common.Address".
This commit makes the wrapper types more generally applicable.
encoding.TextMarshaler is supported by most codec implementations (e.g.
for yaml).
The tests now ensure that package json actually recognizes the custom
marshaler implementation irrespective of how it is implemented.
The Uint type has new tests, too. These are tricky because uint size
depends on the CPU word size. Turns out that there was one incorrect
case where decoding returned ErrUint64Range instead of ErrUintRange.