The total difficulty is the sum of all block difficulties from genesis
to a certain block. This value was used in PoW for deciding which chain
is heavier, and thus which chain to select. Since PoS has a different
fork selection algorithm, all blocks since the merge have a difficulty
of 0, and all total difficulties are the same for the past 2 years.
Whilst the TDs are mostly useless nowadays, there was never really a
reason to mess around removing them since they are so tiny. This
reasoning changes when we go down the path of pruned chain history. In
order to reconstruct any TD, we **must** retrieve all the headers from
chain head to genesis and then iterate all the difficulties to compute
the TD.
In a world where we completely prune past chain segments (bodies,
receipts, headers), it is not possible to reconstruct the TD at all. In
a world where we still keep chain headers and prune only the rest,
reconstructing it possible as long as we process (or download) the chain
forward from genesis, but trying to snap sync the head first and
backfill later hits the same issue, the TD becomes impossible to
calculate until genesis is backfilled.
All in all, the TD is a messy out-of-state, out-of-consensus computed
field that is overall useless nowadays, but code relying on it forces
the client into certain modes of operation and prevents other modes or
other optimizations. This PR completely nukes out the TD from the node.
It doesn't compute it, it doesn't operate on it, it's as if it didn't
even exist.
Caveats:
- Whenever we have APIs that return TD (devp2p handshake, tracer, etc.)
we return a TD of 0.
- For era files, we recompute the TD during export time (fairly quick)
to retain the format content.
- It is not possible to "verify" the merge point (i.e. with TD gone, TTD
is useless). Since we're not verifying PoW any more, just blindly trust
it, not verifying but blindly trusting the many year old merge point
seems just the same trust model.
- Our tests still need to be able to generate pre and post merge blocks,
so they need a new way to split the merge without TTD. The PR introduces
a settable ttdBlock field on the consensus object which is used by tests
as the block where originally the TTD happened. This is not needed for
live nodes, we never want to generate old blocks.
- One merge transition consensus test was disabled. With a
non-operational TD, testing how the client reacts to TTD is useless, it
cannot react.
Questions:
- Should we also drop total terminal difficulty from the genesis json?
It's a number we cannot react on any more, so maybe it would be cleaner
to get rid of even more concepts.
---------
Co-authored-by: Gary Rong <garyrong0905@gmail.com>
Lots of packages depend on eth/downloader just for the SyncMode type.
Since we have a dedicated package for eth protocol configuration, it
makes more sense to define SyncMode there, turning eth/downloader into
more of a leaf package.
* unify `staterunner` and `blockrunner` CLI flags, especially around
tracing
* added support for struct logger or json logging (although having issue
#30658)
* new --cross-check flag to validate the stateless witness collection
/ execution matches stateful
* adds support for tracing the stateless execution when a tracer is set
(to more easily debug differences)
* --human for more readable test summary
* directory or file input, so if you pass tests/spec-tests/fixtures/blockchain_tests it will execute all
blockchain tests
This implements recent changes to EIP-7685, EIP-6110, and
execution-apis.
---------
Co-authored-by: lightclient <lightclient@protonmail.com>
Co-authored-by: Shude Li <islishude@gmail.com>
This PR integrates witness-enabled block production, witness-creating
payload execution and stateless cross-validation into the `engine` API.
The purpose of the PR is to enable the following use-cases (for API
details, please see next section):
- Cross validating locally created blocks:
- Call `forkchoiceUpdatedWithWitness` instead of `forkchoiceUpdated` to
trigger witness creation too.
- Call `getPayload` as before to retrieve the new block and also the
above created witness.
- Call `executeStatelessPayload` against another client to
cross-validate the block.
- Cross validating locally processed blocks:
- Call `newPayloadWithWitness` instead of `newPayload` to trigger
witness creation too.
- Call `executeStatelessPayload` against another client to
cross-validate the block.
- Block production for stateless clients (local or MEV builders):
- Call `forkchoiceUpdatedWithWitness` instead of `forkchoiceUpdated` to
trigger witness creation too.
- Call `getPayload` as before to retrieve the new block and also the
above created witness.
- Propagate witnesses across the consensus libp2p network for stateless
Ethereum.
- Stateless validator validation:
- Call `executeStatelessPayload` with the propagated witness to
statelessly validate the block.
*Note, the various `WithWitness` methods could also *just be* an
additional boolean flag on the base methods, but this PR wanted to keep
the methods separate until a final consensus is reached on how to
integrate in production.*
---
The following `engine` API types are introduced:
```go
// StatelessPayloadStatusV1 is the result of a stateless payload execution.
type StatelessPayloadStatusV1 struct {
Status string `json:"status"`
StateRoot common.Hash `json:"stateRoot"`
ReceiptsRoot common.Hash `json:"receiptsRoot"`
ValidationError *string `json:"validationError"`
}
```
- Add `forkchoiceUpdatedWithWitnessV1,2,3` with same params and returns
as `forkchoiceUpdatedV1,2,3`, but triggering a stateless witness
building if block production is requested.
- Extend `getPayloadV2,3` to return `executionPayloadEnvelope` with an
additional `witness` field of type `bytes` iff created via
`forkchoiceUpdatedWithWitnessV2,3`.
- Add `newPayloadWithWitnessV1,2,3,4` with same params and returns as
`newPayloadV1,2,3,4`, but triggering a stateless witness creation during
payload execution to allow cross validating it.
- Extend `payloadStatusV1` with a `witness` field of type `bytes` if
returned by `newPayloadWithWitnessV1,2,3,4`.
- Add `executeStatelessPayloadV1,2,3,4` with same base params as
`newPayloadV1,2,3,4` and one more additional param (`witness`) of type
`bytes`. The method returns `statelessPayloadStatusV1`, which mirrors
`payloadStatusV1` but replaces `latestValidHash` with `stateRoot` and
`receiptRoot`.
h/t @MariusVanDerWijden for finding and fixing this on devnet 3.
I made the mistake of thinking `PayloadVersion` was correlated with the
`GetPayloadVX` method, but it actually tracks which version of
`PayloadAttributes` were passed to `forkchoiceUpdated`. So far, Prague
does not necessitate a new version of fcu, so there is no need for
`PayloadV4`.
Co-authored-by: Marius van der Wijden <m.vanderwijden@live.de>
closes#29475, replaces #29657, #30104
Fixes two issues. First is a deadlock where the txpool attempts to reorg, but can't complete because there are no readers left for the new txs subscription. Second, resolves a problem with on demand mode where txs may be left pending when there are more pending txs than block space.
Co-authored-by: Martin Holst Swende <martin@swende.se>
* eth: drop support for forward sync triggers and head block packets
* consensus, eth: enforce always merged network
* eth: fix tx looper startup and shutdown
* cmd, core: fix some tests
* core: remove notion of future blocks
* core, eth: drop unused methods and types
At some point, `ForkchoiceUpdatedV2` stopped working for `PayloadAttributesV1` while `paris` was active. This was causing a few failures in hive. This PR fixes that, and also adds a gate in `ForkchoiceUpdatedV1` to disallow `PayloadAttributesV3`.
GetPayloadVX should only return payloads which match its version. GetPayloadV2 is a special snowflake that supports v1 and v2 payloads. This change uses a a version-specific prefix within in the payload id, basically a namespace for the version number.
This PR fixes an issues in the new simulated backend. The root cause is the fact that the transaction pool has an internal reset operation that runs on a background thread.
When a new transaction is added to the pool via the RPC, the transaction is added to a non-executable queue and will be moved to its final location on a background thread. If the machine is overloaded (or simply due to timing issues), it can happen that the simulated backend will try to produce the next block, whilst the pool has not yet marked the newly added transaction executable. This will cause the block to not contain the transaction. This is an issue because we want determinism from the simulator: add a tx, mine a block. It should be in there.
The PR fixes it by adding a Sync function to the txpool, which waits for the current reset operation (if any) to finish, and then runs an entire round of reset on top. The new round is needed because resets are only triggered by new head events, so newly added transactions will not trigger the outer resets that we can wait on. The transaction pool would eventually internally do a reset even on transaction addition, but there's no easy way to wait on that and there's no meaningful reason to bubble that across everything. A clean outer reset will at worse be a small noop goroutine.
This PR introduces a few changes with respect to payload verification in fcu and new payload requests:
* First of all, it undoes the `verifyPayloadAttributes(..)` simplification I attempted in #27872.
* Adds timestamp validation to fcu payload attributes [as required](https://github.com/ethereum/execution-apis/blob/main/src/engine/cancun.md#specification-1) (section 2) by the Engine API spec.
* For the new payload methods, I also update the verification of the executable data. For `newPayloadV2`, it does not currently ensure that cancun values are `nil`. Which could make it possible to submit cancun payloads through it.
* On `newPayloadV3` the same types of checks are added. All shanghai and cancun related fields in the executable data must be non-nil, with the addition that the timestamp is _only_ with cancun.
* Finally it updates a newly failing catalyst test to call the correct fcu and new payload methods depending on the fork.
This PR makes EIP-4788 work in the engine API and miner. It also fixes some bugs related to
EIP-4844 block processing and mining. Changes in detail:
- Header.BeaconRoot has been renamed to ParentBeaconRoot.
- The engine API now implements forkchoiceUpdatedV3
- newPayloadV3 method has been updated with the parentBeaconBlockRoot parameter
- beacon root is now applied to new blocks in miner
- For EIP-4844, block creation now updates the blobGasUsed field of the header
This is a spin-out from the EIP-4844 devnet branch, containing just the Engine API modifications
and nothing else. The newPayloadV3 endpoint won't really work in this version, but we need the
data structures for testing so I'd like to get this in early.
Co-authored-by: Marius van der Wijden <m.vanderwijden@live.de>
This change adds back the 'geth --dev' mode of operation, using a cl-mocker.
---------
Co-authored-by: Martin Holst Swende <martin@swende.se>
Co-authored-by: rjl493456442 <garyrong0905@gmail.com>
Co-authored-by: lightclient <14004106+lightclient@users.noreply.github.com>
The method `GetPayloadBodiesByRangeV1` now returns "-38004: Too large request" error if the requested range is too large, according to spec
Co-authored-by: Martin Holst Swende <martin@swende.se>