[website]: fix typos in sync-modes docs
This commit is contained in:
parent
b98a762cc2
commit
efdf2721c3
|
@ -11,7 +11,7 @@ There are two types of full node that use different mechanisms to sync up to the
|
|||
|
||||
### Snap (default) {#snap-sync}
|
||||
|
||||
Snap sync starts froma relatively recent block and syncs from there to the head of the chain, keeping only the most recent 128 block states in memory. The block header to sync up to is provided by the consensus client. Between the initial sync block and the 128 most recent blocks, the node stores occasional snapshots that can be used to rebuild any intermediate state "on-the-fly". The difference between the snap-synced node and a full block-by-block synced node is that a snap synced node started from an initial checkpoint that was more recent than the genesis block. Snap sync is much faster than a full block-by-block sync from genesis. To start a node with snap sync pass `--syncmode snap` at startup.
|
||||
Snap sync starts from a relatively recent block and syncs from there to the head of the chain, keeping only the most recent 128 block states in memory. The block header to sync up to is provided by the consensus client. Between the initial sync block and the 128 most recent blocks, the node stores occasional snapshots that can be used to rebuild any intermediate state "on-the-fly". The difference between the snap-synced node and a full block-by-block synced node is that a snap synced node started from an initial checkpoint that was more recent than the genesis block. Snap sync is much faster than a full block-by-block sync from genesis. To start a node with snap sync pass `--syncmode snap` at startup.
|
||||
|
||||
![state pruning options](/images/docs/state-pruning.png)
|
||||
_This image shows the state stored by each sync-mode - red indicates stored state. The full width of each line represents origin to present head_
|
||||
|
@ -32,7 +32,7 @@ To summarize, snap sync progresses in the following sequence:
|
|||
|
||||
### Full {#full-sync}
|
||||
|
||||
A full blobk-by-block sync generates the current state by executing every block starting from the genesis block. A full sync indendently verifies block provenance as well as all state transitions by re-executing the transactions in the entire historical sequence of blocks. Only the most recent 128 block states are stored in a full node - older block states are pruned periodically and represented as a series of checkpoints from which any previous state can be regenerated on request. 128 blocks is about 25.6 minutes of history with a block time of 12 seconds.
|
||||
A full block-by-block sync generates the current state by executing every block starting from the genesis block. A full sync independently verifies block provenance as well as all state transitions by re-executing the transactions in the entire historical sequence of blocks. Only the most recent 128 block states are stored in a full node - older block states are pruned periodically and represented as a series of checkpoints from which any previous state can be regenerated on request. 128 blocks is about 25.6 minutes of history with a block time of 12 seconds.
|
||||
|
||||
To create a full node pass `--syncmode full` at startup.
|
||||
|
||||
|
@ -44,7 +44,7 @@ It is also possible to create a partial/recent archive node where the node was s
|
|||
|
||||
## Light nodes {#light-nodes}
|
||||
|
||||
A light node syncs very quickly and stores the bare minimum of blockchain data. Light nodes only process block headers, not entire blocks. This greatly reduces the computation time, storage and bandwidth required relative to a full node. This means light nodes are suitable for resource-constrained devices and can catch up to the head of the chain much faster when they are new or have been offline for a while. The trade-off is that light nodes rely heavily on data served by altruistic full nodes. A light client can be used to query data from Ethereum and submit transactions, acting as a locally-hosted Ethereum wallet. However, because they don't keep local copies of the Ethereum state, light nodes can't validate blocks in the same way as full nodes - they receive a proof from the full node and verify it against their local header chain. To start a node in light mode, pass `--syncmode light`. Be aware that full nodes serving light data are relative scarce so light nodes can struggle to find peers. **Light nodes are not currently working on proof-of-stake Ethereum**.
|
||||
A light node syncs very quickly and stores the bare minimum of blockchain data. Light nodes only process block headers, not entire blocks. This greatly reduces the computation time, storage and bandwidth required relative to a full node. This means light nodes are suitable for resource-constrained devices and can catch up to the head of the chain much faster when they are new or have been offline for a while. The trade-off is that light nodes rely heavily on data served by altruistic full nodes. A light client can be used to query data from Ethereum and submit transactions, acting as a locally-hosted Ethereum wallet. However, because they don't keep local copies of the Ethereum state, light nodes can't validate blocks in the same way as full nodes - they receive a proof from the full node and verify it against their local header chain. To start a node in light mode, pass `--syncmode light`. Be aware that full nodes serving light data are relatively scarce so light nodes can struggle to find peers. **Light nodes are not currently working on proof-of-stake Ethereum**.
|
||||
|
||||
Read more about light nodes on our [LES page](/docs/fundamentals/les).
|
||||
|
||||
|
|
Loading…
Reference in New Issue