first stab at integrating crypto in our p2p
- abstract the entire handshake logic in cryptoId.Run() taking session-relevant parameters - changes in peer to accomodate how the encryption layer would be switched on - modify arguments of handshake components - fixed test getting the wrong pubkey but it till crashes on DH in newSession()
This commit is contained in:
parent
1803c65e40
commit
e252c634cb
|
@ -4,6 +4,7 @@ import (
|
|||
"crypto/ecdsa"
|
||||
"crypto/rand"
|
||||
"fmt"
|
||||
"io"
|
||||
|
||||
"github.com/ethereum/go-ethereum/crypto"
|
||||
"github.com/obscuren/ecies"
|
||||
|
@ -53,19 +54,35 @@ func newCryptoId(id ClientIdentity) (self *cryptoId, err error) {
|
|||
return
|
||||
}
|
||||
|
||||
func (self *cryptoId) Run(remotePubKeyDER []byte) (rw *secretRW) {
|
||||
if self.initiator {
|
||||
auth, initNonce, randomPrvKey, randomPubKey, err := initiator.initAuth(remotePubKeyDER, sessionToken)
|
||||
|
||||
respNonce, remoteRandomPubKey, _, _ := initiator.verifyAuthResp(response)
|
||||
func (self *cryptoId) Run(conn io.ReadWriter, remotePubKeyDER []byte, sessionToken []byte, initiator bool) (token []byte, rw *secretRW, err error) {
|
||||
var auth, initNonce, recNonce []byte
|
||||
var randomPrivKey *ecdsa.PrivateKey
|
||||
var remoteRandomPubKey *ecdsa.PublicKey
|
||||
if initiator {
|
||||
if auth, initNonce, randomPrivKey, _, err = self.startHandshake(remotePubKeyDER, sessionToken); err != nil {
|
||||
return
|
||||
}
|
||||
conn.Write(auth)
|
||||
var response []byte
|
||||
conn.Read(response)
|
||||
// write out auth message
|
||||
// wait for response, then call complete
|
||||
if recNonce, remoteRandomPubKey, _, err = self.completeHandshake(response); err != nil {
|
||||
return
|
||||
}
|
||||
} else {
|
||||
// we are listening connection. we are responders in the haandshake.
|
||||
conn.Read(auth)
|
||||
// we are listening connection. we are responders in the handshake.
|
||||
// Extract info from the authentication. The initiator starts by sending us a handshake that we need to respond to.
|
||||
response, remoteRespNonce, remoteInitNonce, remoteRandomPrivKey, _ := responder.verifyAuth(auth, sessionToken, pubInit)
|
||||
|
||||
// so we read auth message first, then respond
|
||||
var response []byte
|
||||
if response, recNonce, initNonce, randomPrivKey, err = self.respondToHandshake(auth, remotePubKeyDER, sessionToken); err != nil {
|
||||
return
|
||||
}
|
||||
remoteRandomPubKey = &randomPrivKey.PublicKey
|
||||
conn.Write(response)
|
||||
}
|
||||
initSessionToken, initSecretRW, _ := initiator.newSession(initNonce, respNonce, auth, randomPrvKey, remoteRandomPubKey)
|
||||
respSessionToken, respSecretRW, _ := responder.newSession(remoteInitNonce, remoteRespNonce, auth, remoteRandomPrivKey, randomPubKey)
|
||||
return self.newSession(initNonce, recNonce, auth, randomPrivKey, remoteRandomPubKey)
|
||||
}
|
||||
|
||||
/* startHandshake is called by peer if it initiated the connection.
|
||||
|
@ -83,9 +100,9 @@ The handshake is the process by which the peers establish their connection for a
|
|||
|
||||
*/
|
||||
|
||||
func (self *cryptoId) startHandshake(remotePubKeyDER, sessionToken []byte) (auth []byte, initNonce []byte, randomPrvKey *ecdsa.PrivateKey, randomPubKey *ecdsa.PublicKey, err error) {
|
||||
func (self *cryptoId) startHandshake(remotePubKeyDER, sessionToken []byte) (auth []byte, initNonce []byte, randomPrvKey *ecdsa.PrivateKey, remotePubKey *ecdsa.PublicKey, err error) {
|
||||
// session init, common to both parties
|
||||
remotePubKey := crypto.ToECDSAPub(remotePubKeyDER)
|
||||
remotePubKey = crypto.ToECDSAPub(remotePubKeyDER)
|
||||
if remotePubKey == nil {
|
||||
err = fmt.Errorf("invalid remote public key")
|
||||
return
|
||||
|
@ -160,8 +177,14 @@ func (self *cryptoId) startHandshake(remotePubKeyDER, sessionToken []byte) (auth
|
|||
}
|
||||
|
||||
// verifyAuth is called by peer if it accepted (but not initiated) the connection
|
||||
func (self *cryptoId) respondToHandshake(auth, sessionToken []byte, remotePubKey *ecdsa.PublicKey) (authResp []byte, respNonce []byte, initNonce []byte, randomPrvKey *ecdsa.PrivateKey, err error) {
|
||||
func (self *cryptoId) respondToHandshake(auth, remotePubKeyDER, sessionToken []byte) (authResp []byte, respNonce []byte, initNonce []byte, randomPrivKey *ecdsa.PrivateKey, err error) {
|
||||
var msg []byte
|
||||
remotePubKey := crypto.ToECDSAPub(remotePubKeyDER)
|
||||
if remotePubKey == nil {
|
||||
err = fmt.Errorf("invalid public key")
|
||||
return
|
||||
}
|
||||
|
||||
fmt.Printf("encrypted message received: %v %x\n used pubkey: %x\n", len(auth), auth, crypto.FromECDSAPub(self.pubKey))
|
||||
// they prove that msg is meant for me,
|
||||
// I prove I possess private key if i can read it
|
||||
|
@ -210,12 +233,12 @@ func (self *cryptoId) respondToHandshake(auth, sessionToken []byte, remotePubKey
|
|||
return
|
||||
}
|
||||
// generate random keypair for session
|
||||
if randomPrvKey, err = crypto.GenerateKey(); err != nil {
|
||||
if randomPrivKey, err = crypto.GenerateKey(); err != nil {
|
||||
return
|
||||
}
|
||||
// responder auth message
|
||||
// E(remote-pubk, ecdhe-random-pubk || nonce || 0x0)
|
||||
copy(resp[:keyLen], crypto.FromECDSAPub(&randomPrvKey.PublicKey))
|
||||
copy(resp[:keyLen], crypto.FromECDSAPub(&randomPrivKey.PublicKey))
|
||||
// nonce is already in the slice
|
||||
resp[resLen-1] = tokenFlag
|
||||
|
||||
|
|
|
@ -11,44 +11,43 @@ import (
|
|||
func TestCryptoHandshake(t *testing.T) {
|
||||
var err error
|
||||
var sessionToken []byte
|
||||
prvInit, _ := crypto.GenerateKey()
|
||||
pubInit := &prvInit.PublicKey
|
||||
prvResp, _ := crypto.GenerateKey()
|
||||
pubResp := &prvResp.PublicKey
|
||||
prv0, _ := crypto.GenerateKey()
|
||||
pub0 := &prv0.PublicKey
|
||||
prv1, _ := crypto.GenerateKey()
|
||||
pub1 := &prv1.PublicKey
|
||||
|
||||
var initiator, responder *cryptoId
|
||||
if initiator, err = newCryptoId(&peerId{crypto.FromECDSA(prvInit), crypto.FromECDSAPub(pubInit)}); err != nil {
|
||||
var initiator, receiver *cryptoId
|
||||
if initiator, err = newCryptoId(&peerId{crypto.FromECDSA(prv0), crypto.FromECDSAPub(pub0)}); err != nil {
|
||||
return
|
||||
}
|
||||
if responder, err = newCryptoId(&peerId{crypto.FromECDSA(prvResp), crypto.FromECDSAPub(pubResp)}); err != nil {
|
||||
if receiver, err = newCryptoId(&peerId{crypto.FromECDSA(prv1), crypto.FromECDSAPub(pub1)}); err != nil {
|
||||
return
|
||||
}
|
||||
|
||||
auth, initNonce, randomPrvKey, randomPubKey, _ := initiator.initAuth(responder.pubKeyDER, sessionToken)
|
||||
// simulate handshake by feeding output to input
|
||||
auth, initNonce, randomPrivKey, _, _ := initiator.startHandshake(receiver.pubKeyDER, sessionToken)
|
||||
response, remoteRecNonce, remoteInitNonce, remoteRandomPrivKey, _ := receiver.respondToHandshake(auth, crypto.FromECDSAPub(pub0), sessionToken)
|
||||
recNonce, remoteRandomPubKey, _, _ := initiator.completeHandshake(response)
|
||||
|
||||
response, remoteRespNonce, remoteInitNonce, remoteRandomPrivKey, _ := responder.verifyAuth(auth, sessionToken, pubInit)
|
||||
initSessionToken, initSecretRW, _ := initiator.newSession(initNonce, recNonce, auth, randomPrivKey, remoteRandomPubKey)
|
||||
recSessionToken, recSecretRW, _ := receiver.newSession(remoteInitNonce, remoteRecNonce, auth, remoteRandomPrivKey, &randomPrivKey.PublicKey)
|
||||
|
||||
respNonce, remoteRandomPubKey, _, _ := initiator.verifyAuthResp(response)
|
||||
fmt.Printf("%x\n%x\n%x\n%x\n%x\n%x\n%x\n%x\n%x\n%x\n", auth, initNonce, response, remoteRecNonce, remoteInitNonce, remoteRandomPubKey, recNonce, &randomPrivKey.PublicKey, initSessionToken, initSecretRW)
|
||||
|
||||
initSessionToken, initSecretRW, _ := initiator.newSession(initNonce, respNonce, auth, randomPrvKey, remoteRandomPubKey)
|
||||
respSessionToken, respSecretRW, _ := responder.newSession(remoteInitNonce, remoteRespNonce, auth, remoteRandomPrivKey, randomPubKey)
|
||||
|
||||
fmt.Printf("%x\n%x\n%x\n%x\n%x\n%x\n%x\n%x\n%x\n%x\n", auth, initNonce, response, remoteRespNonce, remoteInitNonce, remoteRandomPubKey, respNonce, randomPubKey, initSessionToken, initSecretRW)
|
||||
|
||||
if !bytes.Equal(initSessionToken, respSessionToken) {
|
||||
if !bytes.Equal(initSessionToken, recSessionToken) {
|
||||
t.Errorf("session tokens do not match")
|
||||
}
|
||||
// aesSecret, macSecret, egressMac, ingressMac
|
||||
if !bytes.Equal(initSecretRW.aesSecret, respSecretRW.aesSecret) {
|
||||
if !bytes.Equal(initSecretRW.aesSecret, recSecretRW.aesSecret) {
|
||||
t.Errorf("AES secrets do not match")
|
||||
}
|
||||
if !bytes.Equal(initSecretRW.macSecret, respSecretRW.macSecret) {
|
||||
if !bytes.Equal(initSecretRW.macSecret, recSecretRW.macSecret) {
|
||||
t.Errorf("macSecrets do not match")
|
||||
}
|
||||
if !bytes.Equal(initSecretRW.egressMac, respSecretRW.egressMac) {
|
||||
if !bytes.Equal(initSecretRW.egressMac, recSecretRW.egressMac) {
|
||||
t.Errorf("egressMacs do not match")
|
||||
}
|
||||
if !bytes.Equal(initSecretRW.ingressMac, respSecretRW.ingressMac) {
|
||||
if !bytes.Equal(initSecretRW.ingressMac, recSecretRW.ingressMac) {
|
||||
t.Errorf("ingressMacs do not match")
|
||||
}
|
||||
|
||||
|
|
33
p2p/peer.go
33
p2p/peer.go
|
@ -222,9 +222,9 @@ func (p *Peer) loop() (reason DiscReason, err error) {
|
|||
defer close(p.closed)
|
||||
defer p.conn.Close()
|
||||
|
||||
var readLoop func(chan Msg, chan error, chan bool)
|
||||
var readLoop func(chan<- Msg, chan<- error, <-chan bool)
|
||||
if p.cryptoHandshake {
|
||||
if readLoop, err := p.handleCryptoHandshake(); err != nil {
|
||||
if readLoop, err = p.handleCryptoHandshake(); err != nil {
|
||||
// from here on everything can be encrypted, authenticated
|
||||
return DiscProtocolError, err // no graceful disconnect
|
||||
}
|
||||
|
@ -332,20 +332,33 @@ func (p *Peer) dispatch(msg Msg, protoDone chan struct{}) (wait bool, err error)
|
|||
return wait, nil
|
||||
}
|
||||
|
||||
func (p *Peer) handleCryptoHandshake() (err error) {
|
||||
type readLoop func(chan<- Msg, chan<- error, <-chan bool)
|
||||
|
||||
func (p *Peer) handleCryptoHandshake() (loop readLoop, err error) {
|
||||
// cryptoId is just created for the lifecycle of the handshake
|
||||
// it is survived by an encrypted readwriter
|
||||
if p.dialAddr != 0 { // this should have its own method Outgoing() bool
|
||||
var initiator bool
|
||||
var sessionToken []byte
|
||||
if p.dialAddr != nil { // this should have its own method Outgoing() bool
|
||||
initiator = true
|
||||
}
|
||||
// create crypto layer
|
||||
cryptoId := newCryptoId(p.identity, initiator, sessionToken)
|
||||
// run on peer
|
||||
if rw, err := cryptoId.Run(p.Pubkey()); err != nil {
|
||||
return err
|
||||
// this could in principle run only once but maybe we want to allow
|
||||
// identity switching
|
||||
var crypto *cryptoId
|
||||
if crypto, err = newCryptoId(p.ourID); err != nil {
|
||||
return
|
||||
}
|
||||
p.conn = rw.Run(p.conn)
|
||||
|
||||
// run on peer
|
||||
// this bit handles the handshake and creates a secure communications channel with
|
||||
// var rw *secretRW
|
||||
if sessionToken, _, err = crypto.Run(p.conn, p.Pubkey(), sessionToken, initiator); err != nil {
|
||||
return
|
||||
}
|
||||
loop = func(msg chan<- Msg, err chan<- error, next <-chan bool) {
|
||||
// this is the readloop :)
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
func (p *Peer) startBaseProtocol() {
|
||||
|
|
Loading…
Reference in New Issue