crypto, tests/fuzzers: add gnark bn254 precompile methods for fuzzing (#30585)
Makes the gnark precompile methods more amenable to fuzzing
This commit is contained in:
parent
d7434facba
commit
cba2e77fe2
|
@ -0,0 +1,51 @@
|
|||
package bn256
|
||||
|
||||
import (
|
||||
"math/big"
|
||||
|
||||
"github.com/consensys/gnark-crypto/ecc/bn254"
|
||||
)
|
||||
|
||||
// G1 is the affine representation of a G1 group element.
|
||||
//
|
||||
// Since this code is used for precompiles, using Jacobian
|
||||
// points are not beneficial because there are no intermediate
|
||||
// points to allow us to save on inversions.
|
||||
//
|
||||
// Note: We also use this struct so that we can conform to the existing API
|
||||
// that the precompiles want.
|
||||
type G1 struct {
|
||||
inner bn254.G1Affine
|
||||
}
|
||||
|
||||
// Add adds `a` and `b` together, storing the result in `g`
|
||||
func (g *G1) Add(a, b *G1) {
|
||||
g.inner.Add(&a.inner, &b.inner)
|
||||
}
|
||||
|
||||
// ScalarMult computes the scalar multiplication between `a` and
|
||||
// `scalar`, storing the result in `g`
|
||||
func (g *G1) ScalarMult(a *G1, scalar *big.Int) {
|
||||
g.inner.ScalarMultiplication(&a.inner, scalar)
|
||||
}
|
||||
|
||||
// Unmarshal deserializes `buf` into `g`
|
||||
//
|
||||
// Note: whether the deserialization is of a compressed
|
||||
// or an uncompressed point, is encoded in the bytes.
|
||||
//
|
||||
// For our purpose, the point will always be serialized
|
||||
// as uncompressed, ie 64 bytes.
|
||||
//
|
||||
// This method also checks whether the point is on the
|
||||
// curve and in the prime order subgroup.
|
||||
func (g *G1) Unmarshal(buf []byte) (int, error) {
|
||||
return g.inner.SetBytes(buf)
|
||||
}
|
||||
|
||||
// Marshal serializes the point into a byte slice.
|
||||
//
|
||||
// Note: The point is serialized as uncompressed.
|
||||
func (p *G1) Marshal() []byte {
|
||||
return p.inner.Marshal()
|
||||
}
|
|
@ -0,0 +1,38 @@
|
|||
package bn256
|
||||
|
||||
import (
|
||||
"github.com/consensys/gnark-crypto/ecc/bn254"
|
||||
)
|
||||
|
||||
// G2 is the affine representation of a G2 group element.
|
||||
//
|
||||
// Since this code is used for precompiles, using Jacobian
|
||||
// points are not beneficial because there are no intermediate
|
||||
// points and G2 in particular is only used for the pairing input.
|
||||
//
|
||||
// Note: We also use this struct so that we can conform to the existing API
|
||||
// that the precompiles want.
|
||||
type G2 struct {
|
||||
inner bn254.G2Affine
|
||||
}
|
||||
|
||||
// Unmarshal deserializes `buf` into `g`
|
||||
//
|
||||
// Note: whether the deserialization is of a compressed
|
||||
// or an uncompressed point, is encoded in the bytes.
|
||||
//
|
||||
// For our purpose, the point will always be serialized
|
||||
// as uncompressed, ie 128 bytes.
|
||||
//
|
||||
// This method also checks whether the point is on the
|
||||
// curve and in the prime order subgroup.
|
||||
func (g *G2) Unmarshal(buf []byte) (int, error) {
|
||||
return g.inner.SetBytes(buf)
|
||||
}
|
||||
|
||||
// Marshal serializes the point into a byte slice.
|
||||
//
|
||||
// Note: The point is serialized as uncompressed.
|
||||
func (g *G2) Marshal() []byte {
|
||||
return g.inner.Marshal()
|
||||
}
|
|
@ -0,0 +1,65 @@
|
|||
package bn256
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"math/big"
|
||||
|
||||
"github.com/consensys/gnark-crypto/ecc/bn254"
|
||||
)
|
||||
|
||||
// GT is the affine representation of a GT field element.
|
||||
//
|
||||
// Note: GT is not explicitly used in mainline code.
|
||||
// It is needed for fuzzing.
|
||||
type GT struct {
|
||||
inner bn254.GT
|
||||
}
|
||||
|
||||
// Pair compute the optimal Ate pairing between a G1 and
|
||||
// G2 element.
|
||||
//
|
||||
// Note: This method is not explicitly used in mainline code.
|
||||
// It is needed for fuzzing. It should also be noted,
|
||||
// that the output of this function may not match other
|
||||
func Pair(a_ *G1, b_ *G2) *GT {
|
||||
a := a_.inner
|
||||
b := b_.inner
|
||||
|
||||
pairingOutput, err := bn254.Pair([]bn254.G1Affine{a}, []bn254.G2Affine{b})
|
||||
|
||||
if err != nil {
|
||||
// Since this method is only called during fuzzing, it is okay to panic here.
|
||||
// We do not return an error to match the interface of the other bn256 libraries.
|
||||
panic(fmt.Sprintf("gnark/bn254 encountered error: %v", err))
|
||||
}
|
||||
|
||||
return >{
|
||||
inner: pairingOutput,
|
||||
}
|
||||
}
|
||||
|
||||
// Unmarshal deserializes `buf` into `g`
|
||||
//
|
||||
// Note: This method is not explicitly used in mainline code.
|
||||
// It is needed for fuzzing.
|
||||
func (g *GT) Unmarshal(buf []byte) error {
|
||||
return g.inner.SetBytes(buf)
|
||||
}
|
||||
|
||||
// Marshal serializes the point into a byte slice.
|
||||
//
|
||||
// Note: This method is not explicitly used in mainline code.
|
||||
// It is needed for fuzzing.
|
||||
func (g *GT) Marshal() []byte {
|
||||
bytes := g.inner.Bytes()
|
||||
return bytes[:]
|
||||
}
|
||||
|
||||
// Exp raises `base` to the power of `exponent`
|
||||
//
|
||||
// Note: This method is not explicitly used in mainline code.
|
||||
// It is needed for fuzzing.
|
||||
func (g *GT) Exp(base GT, exponent *big.Int) *GT {
|
||||
g.inner.Exp(base.inner, exponent)
|
||||
return g
|
||||
}
|
|
@ -0,0 +1,73 @@
|
|||
package bn256
|
||||
|
||||
import (
|
||||
"github.com/consensys/gnark-crypto/ecc/bn254"
|
||||
)
|
||||
|
||||
// Computes the following relation: ∏ᵢ e(Pᵢ, Qᵢ) =? 1
|
||||
//
|
||||
// To explain why gnark returns a (bool, error):
|
||||
//
|
||||
// - If the function `e` does not return a result then internally
|
||||
// an error is returned.
|
||||
// - If `e` returns a result, then error will be nil,
|
||||
// but if this value is not `1` then the boolean value will be false
|
||||
//
|
||||
// We therefore check for an error, and return false if its non-nil and
|
||||
// then return the value of the boolean if not.
|
||||
func PairingCheck(a_ []*G1, b_ []*G2) bool {
|
||||
a := getInnerG1s(a_)
|
||||
b := getInnerG2s(b_)
|
||||
|
||||
// Assume that len(a) == len(b)
|
||||
//
|
||||
// The pairing function will return
|
||||
// false, if this is not the case.
|
||||
size := len(a)
|
||||
|
||||
// Check if input is empty -- gnark will
|
||||
// return false on an empty input, however
|
||||
// the ossified behavior is to return true
|
||||
// on an empty input, so we add this if statement.
|
||||
if size == 0 {
|
||||
return true
|
||||
}
|
||||
|
||||
ok, err := bn254.PairingCheck(a, b)
|
||||
if err != nil {
|
||||
return false
|
||||
}
|
||||
return ok
|
||||
}
|
||||
|
||||
// getInnerG1s gets the inner gnark G1 elements.
|
||||
//
|
||||
// These methods are used for two reasons:
|
||||
//
|
||||
// - We use a new type `G1`, so we need to convert from
|
||||
// []*G1 to []*bn254.G1Affine
|
||||
// - The gnark API accepts slices of values and not slices of
|
||||
// pointers to values, so we need to return []bn254.G1Affine
|
||||
// instead of []*bn254.G1Affine.
|
||||
func getInnerG1s(pointerSlice []*G1) []bn254.G1Affine {
|
||||
gnarkValues := make([]bn254.G1Affine, 0, len(pointerSlice))
|
||||
for _, ptr := range pointerSlice {
|
||||
if ptr != nil {
|
||||
gnarkValues = append(gnarkValues, ptr.inner)
|
||||
}
|
||||
}
|
||||
return gnarkValues
|
||||
}
|
||||
|
||||
// getInnerG2s gets the inner gnark G2 elements.
|
||||
//
|
||||
// The rationale for this method is the same as `getInnerG1s`.
|
||||
func getInnerG2s(pointerSlice []*G2) []bn254.G2Affine {
|
||||
gnarkValues := make([]bn254.G2Affine, 0, len(pointerSlice))
|
||||
for _, ptr := range pointerSlice {
|
||||
if ptr != nil {
|
||||
gnarkValues = append(gnarkValues, ptr.inner)
|
||||
}
|
||||
}
|
||||
return gnarkValues
|
||||
}
|
|
@ -22,12 +22,12 @@ import (
|
|||
"io"
|
||||
"math/big"
|
||||
|
||||
"github.com/consensys/gnark-crypto/ecc/bn254"
|
||||
cloudflare "github.com/ethereum/go-ethereum/crypto/bn256/cloudflare"
|
||||
gnark "github.com/ethereum/go-ethereum/crypto/bn256/gnark"
|
||||
google "github.com/ethereum/go-ethereum/crypto/bn256/google"
|
||||
)
|
||||
|
||||
func getG1Points(input io.Reader) (*cloudflare.G1, *google.G1, *bn254.G1Affine) {
|
||||
func getG1Points(input io.Reader) (*cloudflare.G1, *google.G1, *gnark.G1) {
|
||||
_, xc, err := cloudflare.RandomG1(input)
|
||||
if err != nil {
|
||||
// insufficient input
|
||||
|
@ -37,14 +37,14 @@ func getG1Points(input io.Reader) (*cloudflare.G1, *google.G1, *bn254.G1Affine)
|
|||
if _, err := xg.Unmarshal(xc.Marshal()); err != nil {
|
||||
panic(fmt.Sprintf("Could not marshal cloudflare -> google: %v", err))
|
||||
}
|
||||
xs := new(bn254.G1Affine)
|
||||
if err := xs.Unmarshal(xc.Marshal()); err != nil {
|
||||
xs := new(gnark.G1)
|
||||
if _, err := xs.Unmarshal(xc.Marshal()); err != nil {
|
||||
panic(fmt.Sprintf("Could not marshal cloudflare -> gnark: %v", err))
|
||||
}
|
||||
return xc, xg, xs
|
||||
}
|
||||
|
||||
func getG2Points(input io.Reader) (*cloudflare.G2, *google.G2, *bn254.G2Affine) {
|
||||
func getG2Points(input io.Reader) (*cloudflare.G2, *google.G2, *gnark.G2) {
|
||||
_, xc, err := cloudflare.RandomG2(input)
|
||||
if err != nil {
|
||||
// insufficient input
|
||||
|
@ -54,14 +54,14 @@ func getG2Points(input io.Reader) (*cloudflare.G2, *google.G2, *bn254.G2Affine)
|
|||
if _, err := xg.Unmarshal(xc.Marshal()); err != nil {
|
||||
panic(fmt.Sprintf("Could not marshal cloudflare -> google: %v", err))
|
||||
}
|
||||
xs := new(bn254.G2Affine)
|
||||
if err := xs.Unmarshal(xc.Marshal()); err != nil {
|
||||
xs := new(gnark.G2)
|
||||
if _, err := xs.Unmarshal(xc.Marshal()); err != nil {
|
||||
panic(fmt.Sprintf("Could not marshal cloudflare -> gnark: %v", err))
|
||||
}
|
||||
return xc, xg, xs
|
||||
}
|
||||
|
||||
// fuzzAdd fuzzez bn256 addition between the Google and Cloudflare libraries.
|
||||
// fuzzAdd fuzzes bn256 addition between the Google, Cloudflare and Gnark libraries.
|
||||
func fuzzAdd(data []byte) int {
|
||||
input := bytes.NewReader(data)
|
||||
xc, xg, xs := getG1Points(input)
|
||||
|
@ -72,7 +72,7 @@ func fuzzAdd(data []byte) int {
|
|||
if yc == nil {
|
||||
return 0
|
||||
}
|
||||
// Ensure both libs can parse the second curve point
|
||||
// Ensure libs can parse the second curve point
|
||||
// Add the two points and ensure they result in the same output
|
||||
rc := new(cloudflare.G1)
|
||||
rc.Add(xc, yc)
|
||||
|
@ -80,9 +80,8 @@ func fuzzAdd(data []byte) int {
|
|||
rg := new(google.G1)
|
||||
rg.Add(xg, yg)
|
||||
|
||||
tmpX := new(bn254.G1Jac).FromAffine(xs)
|
||||
tmpY := new(bn254.G1Jac).FromAffine(ys)
|
||||
rs := new(bn254.G1Affine).FromJacobian(tmpX.AddAssign(tmpY))
|
||||
rs := new(gnark.G1)
|
||||
rs.Add(xs, ys)
|
||||
|
||||
if !bytes.Equal(rc.Marshal(), rg.Marshal()) {
|
||||
panic("add mismatch: cloudflare/google")
|
||||
|
@ -94,8 +93,8 @@ func fuzzAdd(data []byte) int {
|
|||
return 1
|
||||
}
|
||||
|
||||
// fuzzMul fuzzez bn256 scalar multiplication between the Google and Cloudflare
|
||||
// libraries.
|
||||
// fuzzMul fuzzes bn256 scalar multiplication between the Google, Cloudflare
|
||||
// and Gnark libraries.
|
||||
func fuzzMul(data []byte) int {
|
||||
input := bytes.NewReader(data)
|
||||
pc, pg, ps := getG1Points(input)
|
||||
|
@ -122,15 +121,13 @@ func fuzzMul(data []byte) int {
|
|||
rg := new(google.G1)
|
||||
rg.ScalarMult(pg, new(big.Int).SetBytes(buf))
|
||||
|
||||
rs := new(bn254.G1Jac)
|
||||
psJac := new(bn254.G1Jac).FromAffine(ps)
|
||||
rs.ScalarMultiplication(psJac, new(big.Int).SetBytes(buf))
|
||||
rsAffine := new(bn254.G1Affine).FromJacobian(rs)
|
||||
rs := new(gnark.G1)
|
||||
rs.ScalarMult(ps, new(big.Int).SetBytes(buf))
|
||||
|
||||
if !bytes.Equal(rc.Marshal(), rg.Marshal()) {
|
||||
panic("scalar mul mismatch: cloudflare/google")
|
||||
}
|
||||
if !bytes.Equal(rc.Marshal(), rsAffine.Marshal()) {
|
||||
if !bytes.Equal(rc.Marshal(), rs.Marshal()) {
|
||||
panic("scalar mul mismatch: cloudflare/gnark")
|
||||
}
|
||||
return 1
|
||||
|
@ -150,17 +147,26 @@ func fuzzPair(data []byte) int {
|
|||
// Pair the two points and ensure they result in the same output
|
||||
clPair := cloudflare.Pair(pc, tc).Marshal()
|
||||
gPair := google.Pair(pg, tg).Marshal()
|
||||
sPair := gnark.Pair(ps, ts).Marshal()
|
||||
|
||||
if !bytes.Equal(clPair, gPair) {
|
||||
panic("pairing mismatch: cloudflare/google")
|
||||
}
|
||||
cPair, err := bn254.Pair([]bn254.G1Affine{*ps}, []bn254.G2Affine{*ts})
|
||||
if err != nil {
|
||||
panic(fmt.Sprintf("gnark/bn254 encountered error: %v", err))
|
||||
|
||||
normalizedClPair := normalizeGTToGnark(clPair).Marshal()
|
||||
if !bytes.Equal(normalizedClPair, sPair) {
|
||||
panic("pairing mismatch: cloudflare/gnark")
|
||||
}
|
||||
|
||||
// gnark uses a different pairing algorithm which might produce
|
||||
// different but also correct outputs, we need to scale the output by s
|
||||
return 1
|
||||
}
|
||||
|
||||
// normalizeGTToGnark scales a Cloudflare/Google GT element by `s`
|
||||
// so that it can be compared with a gnark GT point.
|
||||
//
|
||||
// For the definition of `s` see 3.5 in https://eprint.iacr.org/2015/192.pdf
|
||||
func normalizeGTToGnark(cloudflareOrGoogleGT []byte) *gnark.GT {
|
||||
// Compute s = 2*u(6*u^2 + 3*u + 1)
|
||||
u, _ := new(big.Int).SetString("0x44e992b44a6909f1", 0)
|
||||
u_exp2 := new(big.Int).Exp(u, big.NewInt(2), nil) // u^2
|
||||
u_6_exp2 := new(big.Int).Mul(big.NewInt(6), u_exp2) // 6*u^2
|
||||
|
@ -170,14 +176,12 @@ func fuzzPair(data []byte) int {
|
|||
u_2 := new(big.Int).Mul(big.NewInt(2), u) // 2*u
|
||||
s := u_2.Mul(u_2, inner) // 2*u(6*u^2 + 3*u + 1)
|
||||
|
||||
gRes := new(bn254.GT)
|
||||
if err := gRes.SetBytes(clPair); err != nil {
|
||||
// Scale the Cloudflare/Google GT element by `s`
|
||||
gRes := new(gnark.GT)
|
||||
if err := gRes.Unmarshal(cloudflareOrGoogleGT); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
gRes = gRes.Exp(*gRes, s)
|
||||
if !bytes.Equal(cPair.Marshal(), gRes.Marshal()) {
|
||||
panic("pairing mismatch: cloudflare/gnark")
|
||||
}
|
||||
|
||||
return 1
|
||||
return gRes
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue