Fix rebase error: include norm package
This commit is contained in:
parent
5b30aa59d6
commit
8ee5bb2289
|
@ -0,0 +1,512 @@
|
|||
// Copyright 2011 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package norm
|
||||
|
||||
import "unicode/utf8"
|
||||
|
||||
const (
|
||||
maxNonStarters = 30
|
||||
// The maximum number of characters needed for a buffer is
|
||||
// maxNonStarters + 1 for the starter + 1 for the GCJ
|
||||
maxBufferSize = maxNonStarters + 2
|
||||
maxNFCExpansion = 3 // NFC(0x1D160)
|
||||
maxNFKCExpansion = 18 // NFKC(0xFDFA)
|
||||
|
||||
maxByteBufferSize = utf8.UTFMax * maxBufferSize // 128
|
||||
)
|
||||
|
||||
// ssState is used for reporting the segment state after inserting a rune.
|
||||
// It is returned by streamSafe.next.
|
||||
type ssState int
|
||||
|
||||
const (
|
||||
// Indicates a rune was successfully added to the segment.
|
||||
ssSuccess ssState = iota
|
||||
// Indicates a rune starts a new segment and should not be added.
|
||||
ssStarter
|
||||
// Indicates a rune caused a segment overflow and a CGJ should be inserted.
|
||||
ssOverflow
|
||||
)
|
||||
|
||||
// streamSafe implements the policy of when a CGJ should be inserted.
|
||||
type streamSafe uint8
|
||||
|
||||
// first inserts the first rune of a segment. It is a faster version of next if
|
||||
// it is known p represents the first rune in a segment.
|
||||
func (ss *streamSafe) first(p Properties) {
|
||||
*ss = streamSafe(p.nTrailingNonStarters())
|
||||
}
|
||||
|
||||
// insert returns a ssState value to indicate whether a rune represented by p
|
||||
// can be inserted.
|
||||
func (ss *streamSafe) next(p Properties) ssState {
|
||||
if *ss > maxNonStarters {
|
||||
panic("streamSafe was not reset")
|
||||
}
|
||||
n := p.nLeadingNonStarters()
|
||||
if *ss += streamSafe(n); *ss > maxNonStarters {
|
||||
*ss = 0
|
||||
return ssOverflow
|
||||
}
|
||||
// The Stream-Safe Text Processing prescribes that the counting can stop
|
||||
// as soon as a starter is encountered. However, there are some starters,
|
||||
// like Jamo V and T, that can combine with other runes, leaving their
|
||||
// successive non-starters appended to the previous, possibly causing an
|
||||
// overflow. We will therefore consider any rune with a non-zero nLead to
|
||||
// be a non-starter. Note that it always hold that if nLead > 0 then
|
||||
// nLead == nTrail.
|
||||
if n == 0 {
|
||||
*ss = streamSafe(p.nTrailingNonStarters())
|
||||
return ssStarter
|
||||
}
|
||||
return ssSuccess
|
||||
}
|
||||
|
||||
// backwards is used for checking for overflow and segment starts
|
||||
// when traversing a string backwards. Users do not need to call first
|
||||
// for the first rune. The state of the streamSafe retains the count of
|
||||
// the non-starters loaded.
|
||||
func (ss *streamSafe) backwards(p Properties) ssState {
|
||||
if *ss > maxNonStarters {
|
||||
panic("streamSafe was not reset")
|
||||
}
|
||||
c := *ss + streamSafe(p.nTrailingNonStarters())
|
||||
if c > maxNonStarters {
|
||||
return ssOverflow
|
||||
}
|
||||
*ss = c
|
||||
if p.nLeadingNonStarters() == 0 {
|
||||
return ssStarter
|
||||
}
|
||||
return ssSuccess
|
||||
}
|
||||
|
||||
func (ss streamSafe) isMax() bool {
|
||||
return ss == maxNonStarters
|
||||
}
|
||||
|
||||
// GraphemeJoiner is inserted after maxNonStarters non-starter runes.
|
||||
const GraphemeJoiner = "\u034F"
|
||||
|
||||
// reorderBuffer is used to normalize a single segment. Characters inserted with
|
||||
// insert are decomposed and reordered based on CCC. The compose method can
|
||||
// be used to recombine characters. Note that the byte buffer does not hold
|
||||
// the UTF-8 characters in order. Only the rune array is maintained in sorted
|
||||
// order. flush writes the resulting segment to a byte array.
|
||||
type reorderBuffer struct {
|
||||
rune [maxBufferSize]Properties // Per character info.
|
||||
byte [maxByteBufferSize]byte // UTF-8 buffer. Referenced by runeInfo.pos.
|
||||
nbyte uint8 // Number or bytes.
|
||||
ss streamSafe // For limiting length of non-starter sequence.
|
||||
nrune int // Number of runeInfos.
|
||||
f formInfo
|
||||
|
||||
src input
|
||||
nsrc int
|
||||
tmpBytes input
|
||||
|
||||
out []byte
|
||||
flushF func(*reorderBuffer) bool
|
||||
}
|
||||
|
||||
func (rb *reorderBuffer) init(f Form, src []byte) {
|
||||
rb.f = *formTable[f]
|
||||
rb.src.setBytes(src)
|
||||
rb.nsrc = len(src)
|
||||
rb.ss = 0
|
||||
}
|
||||
|
||||
func (rb *reorderBuffer) initString(f Form, src string) {
|
||||
rb.f = *formTable[f]
|
||||
rb.src.setString(src)
|
||||
rb.nsrc = len(src)
|
||||
rb.ss = 0
|
||||
}
|
||||
|
||||
func (rb *reorderBuffer) setFlusher(out []byte, f func(*reorderBuffer) bool) {
|
||||
rb.out = out
|
||||
rb.flushF = f
|
||||
}
|
||||
|
||||
// reset discards all characters from the buffer.
|
||||
func (rb *reorderBuffer) reset() {
|
||||
rb.nrune = 0
|
||||
rb.nbyte = 0
|
||||
}
|
||||
|
||||
func (rb *reorderBuffer) doFlush() bool {
|
||||
if rb.f.composing {
|
||||
rb.compose()
|
||||
}
|
||||
res := rb.flushF(rb)
|
||||
rb.reset()
|
||||
return res
|
||||
}
|
||||
|
||||
// appendFlush appends the normalized segment to rb.out.
|
||||
func appendFlush(rb *reorderBuffer) bool {
|
||||
for i := 0; i < rb.nrune; i++ {
|
||||
start := rb.rune[i].pos
|
||||
end := start + rb.rune[i].size
|
||||
rb.out = append(rb.out, rb.byte[start:end]...)
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// flush appends the normalized segment to out and resets rb.
|
||||
func (rb *reorderBuffer) flush(out []byte) []byte {
|
||||
for i := 0; i < rb.nrune; i++ {
|
||||
start := rb.rune[i].pos
|
||||
end := start + rb.rune[i].size
|
||||
out = append(out, rb.byte[start:end]...)
|
||||
}
|
||||
rb.reset()
|
||||
return out
|
||||
}
|
||||
|
||||
// flushCopy copies the normalized segment to buf and resets rb.
|
||||
// It returns the number of bytes written to buf.
|
||||
func (rb *reorderBuffer) flushCopy(buf []byte) int {
|
||||
p := 0
|
||||
for i := 0; i < rb.nrune; i++ {
|
||||
runep := rb.rune[i]
|
||||
p += copy(buf[p:], rb.byte[runep.pos:runep.pos+runep.size])
|
||||
}
|
||||
rb.reset()
|
||||
return p
|
||||
}
|
||||
|
||||
// insertOrdered inserts a rune in the buffer, ordered by Canonical Combining Class.
|
||||
// It returns false if the buffer is not large enough to hold the rune.
|
||||
// It is used internally by insert and insertString only.
|
||||
func (rb *reorderBuffer) insertOrdered(info Properties) {
|
||||
n := rb.nrune
|
||||
b := rb.rune[:]
|
||||
cc := info.ccc
|
||||
if cc > 0 {
|
||||
// Find insertion position + move elements to make room.
|
||||
for ; n > 0; n-- {
|
||||
if b[n-1].ccc <= cc {
|
||||
break
|
||||
}
|
||||
b[n] = b[n-1]
|
||||
}
|
||||
}
|
||||
rb.nrune += 1
|
||||
pos := uint8(rb.nbyte)
|
||||
rb.nbyte += utf8.UTFMax
|
||||
info.pos = pos
|
||||
b[n] = info
|
||||
}
|
||||
|
||||
// insertErr is an error code returned by insert. Using this type instead
|
||||
// of error improves performance up to 20% for many of the benchmarks.
|
||||
type insertErr int
|
||||
|
||||
const (
|
||||
iSuccess insertErr = -iota
|
||||
iShortDst
|
||||
iShortSrc
|
||||
)
|
||||
|
||||
// insertFlush inserts the given rune in the buffer ordered by CCC.
|
||||
// If a decomposition with multiple segments are encountered, they leading
|
||||
// ones are flushed.
|
||||
// It returns a non-zero error code if the rune was not inserted.
|
||||
func (rb *reorderBuffer) insertFlush(src input, i int, info Properties) insertErr {
|
||||
if rune := src.hangul(i); rune != 0 {
|
||||
rb.decomposeHangul(rune)
|
||||
return iSuccess
|
||||
}
|
||||
if info.hasDecomposition() {
|
||||
return rb.insertDecomposed(info.Decomposition())
|
||||
}
|
||||
rb.insertSingle(src, i, info)
|
||||
return iSuccess
|
||||
}
|
||||
|
||||
// insertUnsafe inserts the given rune in the buffer ordered by CCC.
|
||||
// It is assumed there is sufficient space to hold the runes. It is the
|
||||
// responsibility of the caller to ensure this. This can be done by checking
|
||||
// the state returned by the streamSafe type.
|
||||
func (rb *reorderBuffer) insertUnsafe(src input, i int, info Properties) {
|
||||
if rune := src.hangul(i); rune != 0 {
|
||||
rb.decomposeHangul(rune)
|
||||
}
|
||||
if info.hasDecomposition() {
|
||||
// TODO: inline.
|
||||
rb.insertDecomposed(info.Decomposition())
|
||||
} else {
|
||||
rb.insertSingle(src, i, info)
|
||||
}
|
||||
}
|
||||
|
||||
// insertDecomposed inserts an entry in to the reorderBuffer for each rune
|
||||
// in dcomp. dcomp must be a sequence of decomposed UTF-8-encoded runes.
|
||||
// It flushes the buffer on each new segment start.
|
||||
func (rb *reorderBuffer) insertDecomposed(dcomp []byte) insertErr {
|
||||
rb.tmpBytes.setBytes(dcomp)
|
||||
// As the streamSafe accounting already handles the counting for modifiers,
|
||||
// we don't have to call next. However, we do need to keep the accounting
|
||||
// intact when flushing the buffer.
|
||||
for i := 0; i < len(dcomp); {
|
||||
info := rb.f.info(rb.tmpBytes, i)
|
||||
if info.BoundaryBefore() && rb.nrune > 0 && !rb.doFlush() {
|
||||
return iShortDst
|
||||
}
|
||||
i += copy(rb.byte[rb.nbyte:], dcomp[i:i+int(info.size)])
|
||||
rb.insertOrdered(info)
|
||||
}
|
||||
return iSuccess
|
||||
}
|
||||
|
||||
// insertSingle inserts an entry in the reorderBuffer for the rune at
|
||||
// position i. info is the runeInfo for the rune at position i.
|
||||
func (rb *reorderBuffer) insertSingle(src input, i int, info Properties) {
|
||||
src.copySlice(rb.byte[rb.nbyte:], i, i+int(info.size))
|
||||
rb.insertOrdered(info)
|
||||
}
|
||||
|
||||
// insertCGJ inserts a Combining Grapheme Joiner (0x034f) into rb.
|
||||
func (rb *reorderBuffer) insertCGJ() {
|
||||
rb.insertSingle(input{str: GraphemeJoiner}, 0, Properties{size: uint8(len(GraphemeJoiner))})
|
||||
}
|
||||
|
||||
// appendRune inserts a rune at the end of the buffer. It is used for Hangul.
|
||||
func (rb *reorderBuffer) appendRune(r rune) {
|
||||
bn := rb.nbyte
|
||||
sz := utf8.EncodeRune(rb.byte[bn:], rune(r))
|
||||
rb.nbyte += utf8.UTFMax
|
||||
rb.rune[rb.nrune] = Properties{pos: bn, size: uint8(sz)}
|
||||
rb.nrune++
|
||||
}
|
||||
|
||||
// assignRune sets a rune at position pos. It is used for Hangul and recomposition.
|
||||
func (rb *reorderBuffer) assignRune(pos int, r rune) {
|
||||
bn := rb.rune[pos].pos
|
||||
sz := utf8.EncodeRune(rb.byte[bn:], rune(r))
|
||||
rb.rune[pos] = Properties{pos: bn, size: uint8(sz)}
|
||||
}
|
||||
|
||||
// runeAt returns the rune at position n. It is used for Hangul and recomposition.
|
||||
func (rb *reorderBuffer) runeAt(n int) rune {
|
||||
inf := rb.rune[n]
|
||||
r, _ := utf8.DecodeRune(rb.byte[inf.pos : inf.pos+inf.size])
|
||||
return r
|
||||
}
|
||||
|
||||
// bytesAt returns the UTF-8 encoding of the rune at position n.
|
||||
// It is used for Hangul and recomposition.
|
||||
func (rb *reorderBuffer) bytesAt(n int) []byte {
|
||||
inf := rb.rune[n]
|
||||
return rb.byte[inf.pos : int(inf.pos)+int(inf.size)]
|
||||
}
|
||||
|
||||
// For Hangul we combine algorithmically, instead of using tables.
|
||||
const (
|
||||
hangulBase = 0xAC00 // UTF-8(hangulBase) -> EA B0 80
|
||||
hangulBase0 = 0xEA
|
||||
hangulBase1 = 0xB0
|
||||
hangulBase2 = 0x80
|
||||
|
||||
hangulEnd = hangulBase + jamoLVTCount // UTF-8(0xD7A4) -> ED 9E A4
|
||||
hangulEnd0 = 0xED
|
||||
hangulEnd1 = 0x9E
|
||||
hangulEnd2 = 0xA4
|
||||
|
||||
jamoLBase = 0x1100 // UTF-8(jamoLBase) -> E1 84 00
|
||||
jamoLBase0 = 0xE1
|
||||
jamoLBase1 = 0x84
|
||||
jamoLEnd = 0x1113
|
||||
jamoVBase = 0x1161
|
||||
jamoVEnd = 0x1176
|
||||
jamoTBase = 0x11A7
|
||||
jamoTEnd = 0x11C3
|
||||
|
||||
jamoTCount = 28
|
||||
jamoVCount = 21
|
||||
jamoVTCount = 21 * 28
|
||||
jamoLVTCount = 19 * 21 * 28
|
||||
)
|
||||
|
||||
const hangulUTF8Size = 3
|
||||
|
||||
func isHangul(b []byte) bool {
|
||||
if len(b) < hangulUTF8Size {
|
||||
return false
|
||||
}
|
||||
b0 := b[0]
|
||||
if b0 < hangulBase0 {
|
||||
return false
|
||||
}
|
||||
b1 := b[1]
|
||||
switch {
|
||||
case b0 == hangulBase0:
|
||||
return b1 >= hangulBase1
|
||||
case b0 < hangulEnd0:
|
||||
return true
|
||||
case b0 > hangulEnd0:
|
||||
return false
|
||||
case b1 < hangulEnd1:
|
||||
return true
|
||||
}
|
||||
return b1 == hangulEnd1 && b[2] < hangulEnd2
|
||||
}
|
||||
|
||||
func isHangulString(b string) bool {
|
||||
if len(b) < hangulUTF8Size {
|
||||
return false
|
||||
}
|
||||
b0 := b[0]
|
||||
if b0 < hangulBase0 {
|
||||
return false
|
||||
}
|
||||
b1 := b[1]
|
||||
switch {
|
||||
case b0 == hangulBase0:
|
||||
return b1 >= hangulBase1
|
||||
case b0 < hangulEnd0:
|
||||
return true
|
||||
case b0 > hangulEnd0:
|
||||
return false
|
||||
case b1 < hangulEnd1:
|
||||
return true
|
||||
}
|
||||
return b1 == hangulEnd1 && b[2] < hangulEnd2
|
||||
}
|
||||
|
||||
// Caller must ensure len(b) >= 2.
|
||||
func isJamoVT(b []byte) bool {
|
||||
// True if (rune & 0xff00) == jamoLBase
|
||||
return b[0] == jamoLBase0 && (b[1]&0xFC) == jamoLBase1
|
||||
}
|
||||
|
||||
func isHangulWithoutJamoT(b []byte) bool {
|
||||
c, _ := utf8.DecodeRune(b)
|
||||
c -= hangulBase
|
||||
return c < jamoLVTCount && c%jamoTCount == 0
|
||||
}
|
||||
|
||||
// decomposeHangul writes the decomposed Hangul to buf and returns the number
|
||||
// of bytes written. len(buf) should be at least 9.
|
||||
func decomposeHangul(buf []byte, r rune) int {
|
||||
const JamoUTF8Len = 3
|
||||
r -= hangulBase
|
||||
x := r % jamoTCount
|
||||
r /= jamoTCount
|
||||
utf8.EncodeRune(buf, jamoLBase+r/jamoVCount)
|
||||
utf8.EncodeRune(buf[JamoUTF8Len:], jamoVBase+r%jamoVCount)
|
||||
if x != 0 {
|
||||
utf8.EncodeRune(buf[2*JamoUTF8Len:], jamoTBase+x)
|
||||
return 3 * JamoUTF8Len
|
||||
}
|
||||
return 2 * JamoUTF8Len
|
||||
}
|
||||
|
||||
// decomposeHangul algorithmically decomposes a Hangul rune into
|
||||
// its Jamo components.
|
||||
// See https://unicode.org/reports/tr15/#Hangul for details on decomposing Hangul.
|
||||
func (rb *reorderBuffer) decomposeHangul(r rune) {
|
||||
r -= hangulBase
|
||||
x := r % jamoTCount
|
||||
r /= jamoTCount
|
||||
rb.appendRune(jamoLBase + r/jamoVCount)
|
||||
rb.appendRune(jamoVBase + r%jamoVCount)
|
||||
if x != 0 {
|
||||
rb.appendRune(jamoTBase + x)
|
||||
}
|
||||
}
|
||||
|
||||
// combineHangul algorithmically combines Jamo character components into Hangul.
|
||||
// See https://unicode.org/reports/tr15/#Hangul for details on combining Hangul.
|
||||
func (rb *reorderBuffer) combineHangul(s, i, k int) {
|
||||
b := rb.rune[:]
|
||||
bn := rb.nrune
|
||||
for ; i < bn; i++ {
|
||||
cccB := b[k-1].ccc
|
||||
cccC := b[i].ccc
|
||||
if cccB == 0 {
|
||||
s = k - 1
|
||||
}
|
||||
if s != k-1 && cccB >= cccC {
|
||||
// b[i] is blocked by greater-equal cccX below it
|
||||
b[k] = b[i]
|
||||
k++
|
||||
} else {
|
||||
l := rb.runeAt(s) // also used to compare to hangulBase
|
||||
v := rb.runeAt(i) // also used to compare to jamoT
|
||||
switch {
|
||||
case jamoLBase <= l && l < jamoLEnd &&
|
||||
jamoVBase <= v && v < jamoVEnd:
|
||||
// 11xx plus 116x to LV
|
||||
rb.assignRune(s, hangulBase+
|
||||
(l-jamoLBase)*jamoVTCount+(v-jamoVBase)*jamoTCount)
|
||||
case hangulBase <= l && l < hangulEnd &&
|
||||
jamoTBase < v && v < jamoTEnd &&
|
||||
((l-hangulBase)%jamoTCount) == 0:
|
||||
// ACxx plus 11Ax to LVT
|
||||
rb.assignRune(s, l+v-jamoTBase)
|
||||
default:
|
||||
b[k] = b[i]
|
||||
k++
|
||||
}
|
||||
}
|
||||
}
|
||||
rb.nrune = k
|
||||
}
|
||||
|
||||
// compose recombines the runes in the buffer.
|
||||
// It should only be used to recompose a single segment, as it will not
|
||||
// handle alternations between Hangul and non-Hangul characters correctly.
|
||||
func (rb *reorderBuffer) compose() {
|
||||
// Lazily load the map used by the combine func below, but do
|
||||
// it outside of the loop.
|
||||
recompMapOnce.Do(buildRecompMap)
|
||||
|
||||
// UAX #15, section X5 , including Corrigendum #5
|
||||
// "In any character sequence beginning with starter S, a character C is
|
||||
// blocked from S if and only if there is some character B between S
|
||||
// and C, and either B is a starter or it has the same or higher
|
||||
// combining class as C."
|
||||
bn := rb.nrune
|
||||
if bn == 0 {
|
||||
return
|
||||
}
|
||||
k := 1
|
||||
b := rb.rune[:]
|
||||
for s, i := 0, 1; i < bn; i++ {
|
||||
if isJamoVT(rb.bytesAt(i)) {
|
||||
// Redo from start in Hangul mode. Necessary to support
|
||||
// U+320E..U+321E in NFKC mode.
|
||||
rb.combineHangul(s, i, k)
|
||||
return
|
||||
}
|
||||
ii := b[i]
|
||||
// We can only use combineForward as a filter if we later
|
||||
// get the info for the combined character. This is more
|
||||
// expensive than using the filter. Using combinesBackward()
|
||||
// is safe.
|
||||
if ii.combinesBackward() {
|
||||
cccB := b[k-1].ccc
|
||||
cccC := ii.ccc
|
||||
blocked := false // b[i] blocked by starter or greater or equal CCC?
|
||||
if cccB == 0 {
|
||||
s = k - 1
|
||||
} else {
|
||||
blocked = s != k-1 && cccB >= cccC
|
||||
}
|
||||
if !blocked {
|
||||
combined := combine(rb.runeAt(s), rb.runeAt(i))
|
||||
if combined != 0 {
|
||||
rb.assignRune(s, combined)
|
||||
continue
|
||||
}
|
||||
}
|
||||
}
|
||||
b[k] = b[i]
|
||||
k++
|
||||
}
|
||||
rb.nrune = k
|
||||
}
|
|
@ -0,0 +1,278 @@
|
|||
// Copyright 2011 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package norm
|
||||
|
||||
import "encoding/binary"
|
||||
|
||||
// This file contains Form-specific logic and wrappers for data in tables.go.
|
||||
|
||||
// Rune info is stored in a separate trie per composing form. A composing form
|
||||
// and its corresponding decomposing form share the same trie. Each trie maps
|
||||
// a rune to a uint16. The values take two forms. For v >= 0x8000:
|
||||
// bits
|
||||
// 15: 1 (inverse of NFD_QC bit of qcInfo)
|
||||
// 13..7: qcInfo (see below). isYesD is always true (no decompostion).
|
||||
// 6..0: ccc (compressed CCC value).
|
||||
// For v < 0x8000, the respective rune has a decomposition and v is an index
|
||||
// into a byte array of UTF-8 decomposition sequences and additional info and
|
||||
// has the form:
|
||||
// <header> <decomp_byte>* [<tccc> [<lccc>]]
|
||||
// The header contains the number of bytes in the decomposition (excluding this
|
||||
// length byte). The two most significant bits of this length byte correspond
|
||||
// to bit 5 and 4 of qcInfo (see below). The byte sequence itself starts at v+1.
|
||||
// The byte sequence is followed by a trailing and leading CCC if the values
|
||||
// for these are not zero. The value of v determines which ccc are appended
|
||||
// to the sequences. For v < firstCCC, there are none, for v >= firstCCC,
|
||||
// the sequence is followed by a trailing ccc, and for v >= firstLeadingCC
|
||||
// there is an additional leading ccc. The value of tccc itself is the
|
||||
// trailing CCC shifted left 2 bits. The two least-significant bits of tccc
|
||||
// are the number of trailing non-starters.
|
||||
|
||||
const (
|
||||
qcInfoMask = 0x3F // to clear all but the relevant bits in a qcInfo
|
||||
headerLenMask = 0x3F // extract the length value from the header byte
|
||||
headerFlagsMask = 0xC0 // extract the qcInfo bits from the header byte
|
||||
)
|
||||
|
||||
// Properties provides access to normalization properties of a rune.
|
||||
type Properties struct {
|
||||
pos uint8 // start position in reorderBuffer; used in composition.go
|
||||
size uint8 // length of UTF-8 encoding of this rune
|
||||
ccc uint8 // leading canonical combining class (ccc if not decomposition)
|
||||
tccc uint8 // trailing canonical combining class (ccc if not decomposition)
|
||||
nLead uint8 // number of leading non-starters.
|
||||
flags qcInfo // quick check flags
|
||||
index uint16
|
||||
}
|
||||
|
||||
// functions dispatchable per form
|
||||
type lookupFunc func(b input, i int) Properties
|
||||
|
||||
// formInfo holds Form-specific functions and tables.
|
||||
type formInfo struct {
|
||||
form Form
|
||||
composing, compatibility bool // form type
|
||||
info lookupFunc
|
||||
nextMain iterFunc
|
||||
}
|
||||
|
||||
var formTable = []*formInfo{{
|
||||
form: NFC,
|
||||
composing: true,
|
||||
compatibility: false,
|
||||
info: lookupInfoNFC,
|
||||
nextMain: nextComposed,
|
||||
}, {
|
||||
form: NFD,
|
||||
composing: false,
|
||||
compatibility: false,
|
||||
info: lookupInfoNFC,
|
||||
nextMain: nextDecomposed,
|
||||
}, {
|
||||
form: NFKC,
|
||||
composing: true,
|
||||
compatibility: true,
|
||||
info: lookupInfoNFKC,
|
||||
nextMain: nextComposed,
|
||||
}, {
|
||||
form: NFKD,
|
||||
composing: false,
|
||||
compatibility: true,
|
||||
info: lookupInfoNFKC,
|
||||
nextMain: nextDecomposed,
|
||||
}}
|
||||
|
||||
// We do not distinguish between boundaries for NFC, NFD, etc. to avoid
|
||||
// unexpected behavior for the user. For example, in NFD, there is a boundary
|
||||
// after 'a'. However, 'a' might combine with modifiers, so from the application's
|
||||
// perspective it is not a good boundary. We will therefore always use the
|
||||
// boundaries for the combining variants.
|
||||
|
||||
// BoundaryBefore returns true if this rune starts a new segment and
|
||||
// cannot combine with any rune on the left.
|
||||
func (p Properties) BoundaryBefore() bool {
|
||||
if p.ccc == 0 && !p.combinesBackward() {
|
||||
return true
|
||||
}
|
||||
// We assume that the CCC of the first character in a decomposition
|
||||
// is always non-zero if different from info.ccc and that we can return
|
||||
// false at this point. This is verified by maketables.
|
||||
return false
|
||||
}
|
||||
|
||||
// BoundaryAfter returns true if runes cannot combine with or otherwise
|
||||
// interact with this or previous runes.
|
||||
func (p Properties) BoundaryAfter() bool {
|
||||
// TODO: loosen these conditions.
|
||||
return p.isInert()
|
||||
}
|
||||
|
||||
// We pack quick check data in 4 bits:
|
||||
// 5: Combines forward (0 == false, 1 == true)
|
||||
// 4..3: NFC_QC Yes(00), No (10), or Maybe (11)
|
||||
// 2: NFD_QC Yes (0) or No (1). No also means there is a decomposition.
|
||||
// 1..0: Number of trailing non-starters.
|
||||
//
|
||||
// When all 4 bits are zero, the character is inert, meaning it is never
|
||||
// influenced by normalization.
|
||||
type qcInfo uint8
|
||||
|
||||
func (p Properties) isYesC() bool { return p.flags&0x10 == 0 }
|
||||
func (p Properties) isYesD() bool { return p.flags&0x4 == 0 }
|
||||
|
||||
func (p Properties) combinesForward() bool { return p.flags&0x20 != 0 }
|
||||
func (p Properties) combinesBackward() bool { return p.flags&0x8 != 0 } // == isMaybe
|
||||
func (p Properties) hasDecomposition() bool { return p.flags&0x4 != 0 } // == isNoD
|
||||
|
||||
func (p Properties) isInert() bool {
|
||||
return p.flags&qcInfoMask == 0 && p.ccc == 0
|
||||
}
|
||||
|
||||
func (p Properties) multiSegment() bool {
|
||||
return p.index >= firstMulti && p.index < endMulti
|
||||
}
|
||||
|
||||
func (p Properties) nLeadingNonStarters() uint8 {
|
||||
return p.nLead
|
||||
}
|
||||
|
||||
func (p Properties) nTrailingNonStarters() uint8 {
|
||||
return uint8(p.flags & 0x03)
|
||||
}
|
||||
|
||||
// Decomposition returns the decomposition for the underlying rune
|
||||
// or nil if there is none.
|
||||
func (p Properties) Decomposition() []byte {
|
||||
// TODO: create the decomposition for Hangul?
|
||||
if p.index == 0 {
|
||||
return nil
|
||||
}
|
||||
i := p.index
|
||||
n := decomps[i] & headerLenMask
|
||||
i++
|
||||
return decomps[i : i+uint16(n)]
|
||||
}
|
||||
|
||||
// Size returns the length of UTF-8 encoding of the rune.
|
||||
func (p Properties) Size() int {
|
||||
return int(p.size)
|
||||
}
|
||||
|
||||
// CCC returns the canonical combining class of the underlying rune.
|
||||
func (p Properties) CCC() uint8 {
|
||||
if p.index >= firstCCCZeroExcept {
|
||||
return 0
|
||||
}
|
||||
return ccc[p.ccc]
|
||||
}
|
||||
|
||||
// LeadCCC returns the CCC of the first rune in the decomposition.
|
||||
// If there is no decomposition, LeadCCC equals CCC.
|
||||
func (p Properties) LeadCCC() uint8 {
|
||||
return ccc[p.ccc]
|
||||
}
|
||||
|
||||
// TrailCCC returns the CCC of the last rune in the decomposition.
|
||||
// If there is no decomposition, TrailCCC equals CCC.
|
||||
func (p Properties) TrailCCC() uint8 {
|
||||
return ccc[p.tccc]
|
||||
}
|
||||
|
||||
func buildRecompMap() {
|
||||
recompMap = make(map[uint32]rune, len(recompMapPacked)/8)
|
||||
var buf [8]byte
|
||||
for i := 0; i < len(recompMapPacked); i += 8 {
|
||||
copy(buf[:], recompMapPacked[i:i+8])
|
||||
key := binary.BigEndian.Uint32(buf[:4])
|
||||
val := binary.BigEndian.Uint32(buf[4:])
|
||||
recompMap[key] = rune(val)
|
||||
}
|
||||
}
|
||||
|
||||
// Recomposition
|
||||
// We use 32-bit keys instead of 64-bit for the two codepoint keys.
|
||||
// This clips off the bits of three entries, but we know this will not
|
||||
// result in a collision. In the unlikely event that changes to
|
||||
// UnicodeData.txt introduce collisions, the compiler will catch it.
|
||||
// Note that the recomposition map for NFC and NFKC are identical.
|
||||
|
||||
// combine returns the combined rune or 0 if it doesn't exist.
|
||||
//
|
||||
// The caller is responsible for calling
|
||||
// recompMapOnce.Do(buildRecompMap) sometime before this is called.
|
||||
func combine(a, b rune) rune {
|
||||
key := uint32(uint16(a))<<16 + uint32(uint16(b))
|
||||
if recompMap == nil {
|
||||
panic("caller error") // see func comment
|
||||
}
|
||||
return recompMap[key]
|
||||
}
|
||||
|
||||
func lookupInfoNFC(b input, i int) Properties {
|
||||
v, sz := b.charinfoNFC(i)
|
||||
return compInfo(v, sz)
|
||||
}
|
||||
|
||||
func lookupInfoNFKC(b input, i int) Properties {
|
||||
v, sz := b.charinfoNFKC(i)
|
||||
return compInfo(v, sz)
|
||||
}
|
||||
|
||||
// Properties returns properties for the first rune in s.
|
||||
func (f Form) Properties(s []byte) Properties {
|
||||
if f == NFC || f == NFD {
|
||||
return compInfo(nfcData.lookup(s))
|
||||
}
|
||||
return compInfo(nfkcData.lookup(s))
|
||||
}
|
||||
|
||||
// PropertiesString returns properties for the first rune in s.
|
||||
func (f Form) PropertiesString(s string) Properties {
|
||||
if f == NFC || f == NFD {
|
||||
return compInfo(nfcData.lookupString(s))
|
||||
}
|
||||
return compInfo(nfkcData.lookupString(s))
|
||||
}
|
||||
|
||||
// compInfo converts the information contained in v and sz
|
||||
// to a Properties. See the comment at the top of the file
|
||||
// for more information on the format.
|
||||
func compInfo(v uint16, sz int) Properties {
|
||||
if v == 0 {
|
||||
return Properties{size: uint8(sz)}
|
||||
} else if v >= 0x8000 {
|
||||
p := Properties{
|
||||
size: uint8(sz),
|
||||
ccc: uint8(v),
|
||||
tccc: uint8(v),
|
||||
flags: qcInfo(v >> 8),
|
||||
}
|
||||
if p.ccc > 0 || p.combinesBackward() {
|
||||
p.nLead = uint8(p.flags & 0x3)
|
||||
}
|
||||
return p
|
||||
}
|
||||
// has decomposition
|
||||
h := decomps[v]
|
||||
f := (qcInfo(h&headerFlagsMask) >> 2) | 0x4
|
||||
p := Properties{size: uint8(sz), flags: f, index: v}
|
||||
if v >= firstCCC {
|
||||
v += uint16(h&headerLenMask) + 1
|
||||
c := decomps[v]
|
||||
p.tccc = c >> 2
|
||||
p.flags |= qcInfo(c & 0x3)
|
||||
if v >= firstLeadingCCC {
|
||||
p.nLead = c & 0x3
|
||||
if v >= firstStarterWithNLead {
|
||||
// We were tricked. Remove the decomposition.
|
||||
p.flags &= 0x03
|
||||
p.index = 0
|
||||
return p
|
||||
}
|
||||
p.ccc = decomps[v+1]
|
||||
}
|
||||
}
|
||||
return p
|
||||
}
|
|
@ -0,0 +1,109 @@
|
|||
// Copyright 2011 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package norm
|
||||
|
||||
import "unicode/utf8"
|
||||
|
||||
type input struct {
|
||||
str string
|
||||
bytes []byte
|
||||
}
|
||||
|
||||
func inputBytes(str []byte) input {
|
||||
return input{bytes: str}
|
||||
}
|
||||
|
||||
func inputString(str string) input {
|
||||
return input{str: str}
|
||||
}
|
||||
|
||||
func (in *input) setBytes(str []byte) {
|
||||
in.str = ""
|
||||
in.bytes = str
|
||||
}
|
||||
|
||||
func (in *input) setString(str string) {
|
||||
in.str = str
|
||||
in.bytes = nil
|
||||
}
|
||||
|
||||
func (in *input) _byte(p int) byte {
|
||||
if in.bytes == nil {
|
||||
return in.str[p]
|
||||
}
|
||||
return in.bytes[p]
|
||||
}
|
||||
|
||||
func (in *input) skipASCII(p, max int) int {
|
||||
if in.bytes == nil {
|
||||
for ; p < max && in.str[p] < utf8.RuneSelf; p++ {
|
||||
}
|
||||
} else {
|
||||
for ; p < max && in.bytes[p] < utf8.RuneSelf; p++ {
|
||||
}
|
||||
}
|
||||
return p
|
||||
}
|
||||
|
||||
func (in *input) skipContinuationBytes(p int) int {
|
||||
if in.bytes == nil {
|
||||
for ; p < len(in.str) && !utf8.RuneStart(in.str[p]); p++ {
|
||||
}
|
||||
} else {
|
||||
for ; p < len(in.bytes) && !utf8.RuneStart(in.bytes[p]); p++ {
|
||||
}
|
||||
}
|
||||
return p
|
||||
}
|
||||
|
||||
func (in *input) appendSlice(buf []byte, b, e int) []byte {
|
||||
if in.bytes != nil {
|
||||
return append(buf, in.bytes[b:e]...)
|
||||
}
|
||||
for i := b; i < e; i++ {
|
||||
buf = append(buf, in.str[i])
|
||||
}
|
||||
return buf
|
||||
}
|
||||
|
||||
func (in *input) copySlice(buf []byte, b, e int) int {
|
||||
if in.bytes == nil {
|
||||
return copy(buf, in.str[b:e])
|
||||
}
|
||||
return copy(buf, in.bytes[b:e])
|
||||
}
|
||||
|
||||
func (in *input) charinfoNFC(p int) (uint16, int) {
|
||||
if in.bytes == nil {
|
||||
return nfcData.lookupString(in.str[p:])
|
||||
}
|
||||
return nfcData.lookup(in.bytes[p:])
|
||||
}
|
||||
|
||||
func (in *input) charinfoNFKC(p int) (uint16, int) {
|
||||
if in.bytes == nil {
|
||||
return nfkcData.lookupString(in.str[p:])
|
||||
}
|
||||
return nfkcData.lookup(in.bytes[p:])
|
||||
}
|
||||
|
||||
func (in *input) hangul(p int) (r rune) {
|
||||
var size int
|
||||
if in.bytes == nil {
|
||||
if !isHangulString(in.str[p:]) {
|
||||
return 0
|
||||
}
|
||||
r, size = utf8.DecodeRuneInString(in.str[p:])
|
||||
} else {
|
||||
if !isHangul(in.bytes[p:]) {
|
||||
return 0
|
||||
}
|
||||
r, size = utf8.DecodeRune(in.bytes[p:])
|
||||
}
|
||||
if size != hangulUTF8Size {
|
||||
return 0
|
||||
}
|
||||
return r
|
||||
}
|
|
@ -0,0 +1,458 @@
|
|||
// Copyright 2011 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package norm
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"unicode/utf8"
|
||||
)
|
||||
|
||||
// MaxSegmentSize is the maximum size of a byte buffer needed to consider any
|
||||
// sequence of starter and non-starter runes for the purpose of normalization.
|
||||
const MaxSegmentSize = maxByteBufferSize
|
||||
|
||||
// An Iter iterates over a string or byte slice, while normalizing it
|
||||
// to a given Form.
|
||||
type Iter struct {
|
||||
rb reorderBuffer
|
||||
buf [maxByteBufferSize]byte
|
||||
info Properties // first character saved from previous iteration
|
||||
next iterFunc // implementation of next depends on form
|
||||
asciiF iterFunc
|
||||
|
||||
p int // current position in input source
|
||||
multiSeg []byte // remainder of multi-segment decomposition
|
||||
}
|
||||
|
||||
type iterFunc func(*Iter) []byte
|
||||
|
||||
// Init initializes i to iterate over src after normalizing it to Form f.
|
||||
func (i *Iter) Init(f Form, src []byte) {
|
||||
i.p = 0
|
||||
if len(src) == 0 {
|
||||
i.setDone()
|
||||
i.rb.nsrc = 0
|
||||
return
|
||||
}
|
||||
i.multiSeg = nil
|
||||
i.rb.init(f, src)
|
||||
i.next = i.rb.f.nextMain
|
||||
i.asciiF = nextASCIIBytes
|
||||
i.info = i.rb.f.info(i.rb.src, i.p)
|
||||
i.rb.ss.first(i.info)
|
||||
}
|
||||
|
||||
// InitString initializes i to iterate over src after normalizing it to Form f.
|
||||
func (i *Iter) InitString(f Form, src string) {
|
||||
i.p = 0
|
||||
if len(src) == 0 {
|
||||
i.setDone()
|
||||
i.rb.nsrc = 0
|
||||
return
|
||||
}
|
||||
i.multiSeg = nil
|
||||
i.rb.initString(f, src)
|
||||
i.next = i.rb.f.nextMain
|
||||
i.asciiF = nextASCIIString
|
||||
i.info = i.rb.f.info(i.rb.src, i.p)
|
||||
i.rb.ss.first(i.info)
|
||||
}
|
||||
|
||||
// Seek sets the segment to be returned by the next call to Next to start
|
||||
// at position p. It is the responsibility of the caller to set p to the
|
||||
// start of a segment.
|
||||
func (i *Iter) Seek(offset int64, whence int) (int64, error) {
|
||||
var abs int64
|
||||
switch whence {
|
||||
case 0:
|
||||
abs = offset
|
||||
case 1:
|
||||
abs = int64(i.p) + offset
|
||||
case 2:
|
||||
abs = int64(i.rb.nsrc) + offset
|
||||
default:
|
||||
return 0, fmt.Errorf("norm: invalid whence")
|
||||
}
|
||||
if abs < 0 {
|
||||
return 0, fmt.Errorf("norm: negative position")
|
||||
}
|
||||
if int(abs) >= i.rb.nsrc {
|
||||
i.setDone()
|
||||
return int64(i.p), nil
|
||||
}
|
||||
i.p = int(abs)
|
||||
i.multiSeg = nil
|
||||
i.next = i.rb.f.nextMain
|
||||
i.info = i.rb.f.info(i.rb.src, i.p)
|
||||
i.rb.ss.first(i.info)
|
||||
return abs, nil
|
||||
}
|
||||
|
||||
// returnSlice returns a slice of the underlying input type as a byte slice.
|
||||
// If the underlying is of type []byte, it will simply return a slice.
|
||||
// If the underlying is of type string, it will copy the slice to the buffer
|
||||
// and return that.
|
||||
func (i *Iter) returnSlice(a, b int) []byte {
|
||||
if i.rb.src.bytes == nil {
|
||||
return i.buf[:copy(i.buf[:], i.rb.src.str[a:b])]
|
||||
}
|
||||
return i.rb.src.bytes[a:b]
|
||||
}
|
||||
|
||||
// Pos returns the byte position at which the next call to Next will commence processing.
|
||||
func (i *Iter) Pos() int {
|
||||
return i.p
|
||||
}
|
||||
|
||||
func (i *Iter) setDone() {
|
||||
i.next = nextDone
|
||||
i.p = i.rb.nsrc
|
||||
}
|
||||
|
||||
// Done returns true if there is no more input to process.
|
||||
func (i *Iter) Done() bool {
|
||||
return i.p >= i.rb.nsrc
|
||||
}
|
||||
|
||||
// Next returns f(i.input[i.Pos():n]), where n is a boundary of i.input.
|
||||
// For any input a and b for which f(a) == f(b), subsequent calls
|
||||
// to Next will return the same segments.
|
||||
// Modifying runes are grouped together with the preceding starter, if such a starter exists.
|
||||
// Although not guaranteed, n will typically be the smallest possible n.
|
||||
func (i *Iter) Next() []byte {
|
||||
return i.next(i)
|
||||
}
|
||||
|
||||
func nextASCIIBytes(i *Iter) []byte {
|
||||
p := i.p + 1
|
||||
if p >= i.rb.nsrc {
|
||||
p0 := i.p
|
||||
i.setDone()
|
||||
return i.rb.src.bytes[p0:p]
|
||||
}
|
||||
if i.rb.src.bytes[p] < utf8.RuneSelf {
|
||||
p0 := i.p
|
||||
i.p = p
|
||||
return i.rb.src.bytes[p0:p]
|
||||
}
|
||||
i.info = i.rb.f.info(i.rb.src, i.p)
|
||||
i.next = i.rb.f.nextMain
|
||||
return i.next(i)
|
||||
}
|
||||
|
||||
func nextASCIIString(i *Iter) []byte {
|
||||
p := i.p + 1
|
||||
if p >= i.rb.nsrc {
|
||||
i.buf[0] = i.rb.src.str[i.p]
|
||||
i.setDone()
|
||||
return i.buf[:1]
|
||||
}
|
||||
if i.rb.src.str[p] < utf8.RuneSelf {
|
||||
i.buf[0] = i.rb.src.str[i.p]
|
||||
i.p = p
|
||||
return i.buf[:1]
|
||||
}
|
||||
i.info = i.rb.f.info(i.rb.src, i.p)
|
||||
i.next = i.rb.f.nextMain
|
||||
return i.next(i)
|
||||
}
|
||||
|
||||
func nextHangul(i *Iter) []byte {
|
||||
p := i.p
|
||||
next := p + hangulUTF8Size
|
||||
if next >= i.rb.nsrc {
|
||||
i.setDone()
|
||||
} else if i.rb.src.hangul(next) == 0 {
|
||||
i.rb.ss.next(i.info)
|
||||
i.info = i.rb.f.info(i.rb.src, i.p)
|
||||
i.next = i.rb.f.nextMain
|
||||
return i.next(i)
|
||||
}
|
||||
i.p = next
|
||||
return i.buf[:decomposeHangul(i.buf[:], i.rb.src.hangul(p))]
|
||||
}
|
||||
|
||||
func nextDone(i *Iter) []byte {
|
||||
return nil
|
||||
}
|
||||
|
||||
// nextMulti is used for iterating over multi-segment decompositions
|
||||
// for decomposing normal forms.
|
||||
func nextMulti(i *Iter) []byte {
|
||||
j := 0
|
||||
d := i.multiSeg
|
||||
// skip first rune
|
||||
for j = 1; j < len(d) && !utf8.RuneStart(d[j]); j++ {
|
||||
}
|
||||
for j < len(d) {
|
||||
info := i.rb.f.info(input{bytes: d}, j)
|
||||
if info.BoundaryBefore() {
|
||||
i.multiSeg = d[j:]
|
||||
return d[:j]
|
||||
}
|
||||
j += int(info.size)
|
||||
}
|
||||
// treat last segment as normal decomposition
|
||||
i.next = i.rb.f.nextMain
|
||||
return i.next(i)
|
||||
}
|
||||
|
||||
// nextMultiNorm is used for iterating over multi-segment decompositions
|
||||
// for composing normal forms.
|
||||
func nextMultiNorm(i *Iter) []byte {
|
||||
j := 0
|
||||
d := i.multiSeg
|
||||
for j < len(d) {
|
||||
info := i.rb.f.info(input{bytes: d}, j)
|
||||
if info.BoundaryBefore() {
|
||||
i.rb.compose()
|
||||
seg := i.buf[:i.rb.flushCopy(i.buf[:])]
|
||||
i.rb.insertUnsafe(input{bytes: d}, j, info)
|
||||
i.multiSeg = d[j+int(info.size):]
|
||||
return seg
|
||||
}
|
||||
i.rb.insertUnsafe(input{bytes: d}, j, info)
|
||||
j += int(info.size)
|
||||
}
|
||||
i.multiSeg = nil
|
||||
i.next = nextComposed
|
||||
return doNormComposed(i)
|
||||
}
|
||||
|
||||
// nextDecomposed is the implementation of Next for forms NFD and NFKD.
|
||||
func nextDecomposed(i *Iter) (next []byte) {
|
||||
outp := 0
|
||||
inCopyStart, outCopyStart := i.p, 0
|
||||
for {
|
||||
if sz := int(i.info.size); sz <= 1 {
|
||||
i.rb.ss = 0
|
||||
p := i.p
|
||||
i.p++ // ASCII or illegal byte. Either way, advance by 1.
|
||||
if i.p >= i.rb.nsrc {
|
||||
i.setDone()
|
||||
return i.returnSlice(p, i.p)
|
||||
} else if i.rb.src._byte(i.p) < utf8.RuneSelf {
|
||||
i.next = i.asciiF
|
||||
return i.returnSlice(p, i.p)
|
||||
}
|
||||
outp++
|
||||
} else if d := i.info.Decomposition(); d != nil {
|
||||
// Note: If leading CCC != 0, then len(d) == 2 and last is also non-zero.
|
||||
// Case 1: there is a leftover to copy. In this case the decomposition
|
||||
// must begin with a modifier and should always be appended.
|
||||
// Case 2: no leftover. Simply return d if followed by a ccc == 0 value.
|
||||
p := outp + len(d)
|
||||
if outp > 0 {
|
||||
i.rb.src.copySlice(i.buf[outCopyStart:], inCopyStart, i.p)
|
||||
// TODO: this condition should not be possible, but we leave it
|
||||
// in for defensive purposes.
|
||||
if p > len(i.buf) {
|
||||
return i.buf[:outp]
|
||||
}
|
||||
} else if i.info.multiSegment() {
|
||||
// outp must be 0 as multi-segment decompositions always
|
||||
// start a new segment.
|
||||
if i.multiSeg == nil {
|
||||
i.multiSeg = d
|
||||
i.next = nextMulti
|
||||
return nextMulti(i)
|
||||
}
|
||||
// We are in the last segment. Treat as normal decomposition.
|
||||
d = i.multiSeg
|
||||
i.multiSeg = nil
|
||||
p = len(d)
|
||||
}
|
||||
prevCC := i.info.tccc
|
||||
if i.p += sz; i.p >= i.rb.nsrc {
|
||||
i.setDone()
|
||||
i.info = Properties{} // Force BoundaryBefore to succeed.
|
||||
} else {
|
||||
i.info = i.rb.f.info(i.rb.src, i.p)
|
||||
}
|
||||
switch i.rb.ss.next(i.info) {
|
||||
case ssOverflow:
|
||||
i.next = nextCGJDecompose
|
||||
fallthrough
|
||||
case ssStarter:
|
||||
if outp > 0 {
|
||||
copy(i.buf[outp:], d)
|
||||
return i.buf[:p]
|
||||
}
|
||||
return d
|
||||
}
|
||||
copy(i.buf[outp:], d)
|
||||
outp = p
|
||||
inCopyStart, outCopyStart = i.p, outp
|
||||
if i.info.ccc < prevCC {
|
||||
goto doNorm
|
||||
}
|
||||
continue
|
||||
} else if r := i.rb.src.hangul(i.p); r != 0 {
|
||||
outp = decomposeHangul(i.buf[:], r)
|
||||
i.p += hangulUTF8Size
|
||||
inCopyStart, outCopyStart = i.p, outp
|
||||
if i.p >= i.rb.nsrc {
|
||||
i.setDone()
|
||||
break
|
||||
} else if i.rb.src.hangul(i.p) != 0 {
|
||||
i.next = nextHangul
|
||||
return i.buf[:outp]
|
||||
}
|
||||
} else {
|
||||
p := outp + sz
|
||||
if p > len(i.buf) {
|
||||
break
|
||||
}
|
||||
outp = p
|
||||
i.p += sz
|
||||
}
|
||||
if i.p >= i.rb.nsrc {
|
||||
i.setDone()
|
||||
break
|
||||
}
|
||||
prevCC := i.info.tccc
|
||||
i.info = i.rb.f.info(i.rb.src, i.p)
|
||||
if v := i.rb.ss.next(i.info); v == ssStarter {
|
||||
break
|
||||
} else if v == ssOverflow {
|
||||
i.next = nextCGJDecompose
|
||||
break
|
||||
}
|
||||
if i.info.ccc < prevCC {
|
||||
goto doNorm
|
||||
}
|
||||
}
|
||||
if outCopyStart == 0 {
|
||||
return i.returnSlice(inCopyStart, i.p)
|
||||
} else if inCopyStart < i.p {
|
||||
i.rb.src.copySlice(i.buf[outCopyStart:], inCopyStart, i.p)
|
||||
}
|
||||
return i.buf[:outp]
|
||||
doNorm:
|
||||
// Insert what we have decomposed so far in the reorderBuffer.
|
||||
// As we will only reorder, there will always be enough room.
|
||||
i.rb.src.copySlice(i.buf[outCopyStart:], inCopyStart, i.p)
|
||||
i.rb.insertDecomposed(i.buf[0:outp])
|
||||
return doNormDecomposed(i)
|
||||
}
|
||||
|
||||
func doNormDecomposed(i *Iter) []byte {
|
||||
for {
|
||||
i.rb.insertUnsafe(i.rb.src, i.p, i.info)
|
||||
if i.p += int(i.info.size); i.p >= i.rb.nsrc {
|
||||
i.setDone()
|
||||
break
|
||||
}
|
||||
i.info = i.rb.f.info(i.rb.src, i.p)
|
||||
if i.info.ccc == 0 {
|
||||
break
|
||||
}
|
||||
if s := i.rb.ss.next(i.info); s == ssOverflow {
|
||||
i.next = nextCGJDecompose
|
||||
break
|
||||
}
|
||||
}
|
||||
// new segment or too many combining characters: exit normalization
|
||||
return i.buf[:i.rb.flushCopy(i.buf[:])]
|
||||
}
|
||||
|
||||
func nextCGJDecompose(i *Iter) []byte {
|
||||
i.rb.ss = 0
|
||||
i.rb.insertCGJ()
|
||||
i.next = nextDecomposed
|
||||
i.rb.ss.first(i.info)
|
||||
buf := doNormDecomposed(i)
|
||||
return buf
|
||||
}
|
||||
|
||||
// nextComposed is the implementation of Next for forms NFC and NFKC.
|
||||
func nextComposed(i *Iter) []byte {
|
||||
outp, startp := 0, i.p
|
||||
var prevCC uint8
|
||||
for {
|
||||
if !i.info.isYesC() {
|
||||
goto doNorm
|
||||
}
|
||||
prevCC = i.info.tccc
|
||||
sz := int(i.info.size)
|
||||
if sz == 0 {
|
||||
sz = 1 // illegal rune: copy byte-by-byte
|
||||
}
|
||||
p := outp + sz
|
||||
if p > len(i.buf) {
|
||||
break
|
||||
}
|
||||
outp = p
|
||||
i.p += sz
|
||||
if i.p >= i.rb.nsrc {
|
||||
i.setDone()
|
||||
break
|
||||
} else if i.rb.src._byte(i.p) < utf8.RuneSelf {
|
||||
i.rb.ss = 0
|
||||
i.next = i.asciiF
|
||||
break
|
||||
}
|
||||
i.info = i.rb.f.info(i.rb.src, i.p)
|
||||
if v := i.rb.ss.next(i.info); v == ssStarter {
|
||||
break
|
||||
} else if v == ssOverflow {
|
||||
i.next = nextCGJCompose
|
||||
break
|
||||
}
|
||||
if i.info.ccc < prevCC {
|
||||
goto doNorm
|
||||
}
|
||||
}
|
||||
return i.returnSlice(startp, i.p)
|
||||
doNorm:
|
||||
// reset to start position
|
||||
i.p = startp
|
||||
i.info = i.rb.f.info(i.rb.src, i.p)
|
||||
i.rb.ss.first(i.info)
|
||||
if i.info.multiSegment() {
|
||||
d := i.info.Decomposition()
|
||||
info := i.rb.f.info(input{bytes: d}, 0)
|
||||
i.rb.insertUnsafe(input{bytes: d}, 0, info)
|
||||
i.multiSeg = d[int(info.size):]
|
||||
i.next = nextMultiNorm
|
||||
return nextMultiNorm(i)
|
||||
}
|
||||
i.rb.ss.first(i.info)
|
||||
i.rb.insertUnsafe(i.rb.src, i.p, i.info)
|
||||
return doNormComposed(i)
|
||||
}
|
||||
|
||||
func doNormComposed(i *Iter) []byte {
|
||||
// First rune should already be inserted.
|
||||
for {
|
||||
if i.p += int(i.info.size); i.p >= i.rb.nsrc {
|
||||
i.setDone()
|
||||
break
|
||||
}
|
||||
i.info = i.rb.f.info(i.rb.src, i.p)
|
||||
if s := i.rb.ss.next(i.info); s == ssStarter {
|
||||
break
|
||||
} else if s == ssOverflow {
|
||||
i.next = nextCGJCompose
|
||||
break
|
||||
}
|
||||
i.rb.insertUnsafe(i.rb.src, i.p, i.info)
|
||||
}
|
||||
i.rb.compose()
|
||||
seg := i.buf[:i.rb.flushCopy(i.buf[:])]
|
||||
return seg
|
||||
}
|
||||
|
||||
func nextCGJCompose(i *Iter) []byte {
|
||||
i.rb.ss = 0 // instead of first
|
||||
i.rb.insertCGJ()
|
||||
i.next = nextComposed
|
||||
// Note that we treat any rune with nLeadingNonStarters > 0 as a non-starter,
|
||||
// even if they are not. This is particularly dubious for U+FF9E and UFF9A.
|
||||
// If we ever change that, insert a check here.
|
||||
i.rb.ss.first(i.info)
|
||||
i.rb.insertUnsafe(i.rb.src, i.p, i.info)
|
||||
return doNormComposed(i)
|
||||
}
|
|
@ -0,0 +1,986 @@
|
|||
// Copyright 2011 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build ignore
|
||||
|
||||
// Normalization table generator.
|
||||
// Data read from the web.
|
||||
// See forminfo.go for a description of the trie values associated with each rune.
|
||||
|
||||
package main
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/binary"
|
||||
"flag"
|
||||
"fmt"
|
||||
"io"
|
||||
"log"
|
||||
"sort"
|
||||
"strconv"
|
||||
"strings"
|
||||
|
||||
"golang.org/x/text/internal/gen"
|
||||
"golang.org/x/text/internal/triegen"
|
||||
"golang.org/x/text/internal/ucd"
|
||||
)
|
||||
|
||||
func main() {
|
||||
gen.Init()
|
||||
loadUnicodeData()
|
||||
compactCCC()
|
||||
loadCompositionExclusions()
|
||||
completeCharFields(FCanonical)
|
||||
completeCharFields(FCompatibility)
|
||||
computeNonStarterCounts()
|
||||
verifyComputed()
|
||||
printChars()
|
||||
testDerived()
|
||||
printTestdata()
|
||||
makeTables()
|
||||
}
|
||||
|
||||
var (
|
||||
tablelist = flag.String("tables",
|
||||
"all",
|
||||
"comma-separated list of which tables to generate; "+
|
||||
"can be 'decomp', 'recomp', 'info' and 'all'")
|
||||
test = flag.Bool("test",
|
||||
false,
|
||||
"test existing tables against DerivedNormalizationProps and generate test data for regression testing")
|
||||
verbose = flag.Bool("verbose",
|
||||
false,
|
||||
"write data to stdout as it is parsed")
|
||||
)
|
||||
|
||||
const MaxChar = 0x10FFFF // anything above this shouldn't exist
|
||||
|
||||
// Quick Check properties of runes allow us to quickly
|
||||
// determine whether a rune may occur in a normal form.
|
||||
// For a given normal form, a rune may be guaranteed to occur
|
||||
// verbatim (QC=Yes), may or may not combine with another
|
||||
// rune (QC=Maybe), or may not occur (QC=No).
|
||||
type QCResult int
|
||||
|
||||
const (
|
||||
QCUnknown QCResult = iota
|
||||
QCYes
|
||||
QCNo
|
||||
QCMaybe
|
||||
)
|
||||
|
||||
func (r QCResult) String() string {
|
||||
switch r {
|
||||
case QCYes:
|
||||
return "Yes"
|
||||
case QCNo:
|
||||
return "No"
|
||||
case QCMaybe:
|
||||
return "Maybe"
|
||||
}
|
||||
return "***UNKNOWN***"
|
||||
}
|
||||
|
||||
const (
|
||||
FCanonical = iota // NFC or NFD
|
||||
FCompatibility // NFKC or NFKD
|
||||
FNumberOfFormTypes
|
||||
)
|
||||
|
||||
const (
|
||||
MComposed = iota // NFC or NFKC
|
||||
MDecomposed // NFD or NFKD
|
||||
MNumberOfModes
|
||||
)
|
||||
|
||||
// This contains only the properties we're interested in.
|
||||
type Char struct {
|
||||
name string
|
||||
codePoint rune // if zero, this index is not a valid code point.
|
||||
ccc uint8 // canonical combining class
|
||||
origCCC uint8
|
||||
excludeInComp bool // from CompositionExclusions.txt
|
||||
compatDecomp bool // it has a compatibility expansion
|
||||
|
||||
nTrailingNonStarters uint8
|
||||
nLeadingNonStarters uint8 // must be equal to trailing if non-zero
|
||||
|
||||
forms [FNumberOfFormTypes]FormInfo // For FCanonical and FCompatibility
|
||||
|
||||
state State
|
||||
}
|
||||
|
||||
var chars = make([]Char, MaxChar+1)
|
||||
var cccMap = make(map[uint8]uint8)
|
||||
|
||||
func (c Char) String() string {
|
||||
buf := new(bytes.Buffer)
|
||||
|
||||
fmt.Fprintf(buf, "%U [%s]:\n", c.codePoint, c.name)
|
||||
fmt.Fprintf(buf, " ccc: %v\n", c.ccc)
|
||||
fmt.Fprintf(buf, " excludeInComp: %v\n", c.excludeInComp)
|
||||
fmt.Fprintf(buf, " compatDecomp: %v\n", c.compatDecomp)
|
||||
fmt.Fprintf(buf, " state: %v\n", c.state)
|
||||
fmt.Fprintf(buf, " NFC:\n")
|
||||
fmt.Fprint(buf, c.forms[FCanonical])
|
||||
fmt.Fprintf(buf, " NFKC:\n")
|
||||
fmt.Fprint(buf, c.forms[FCompatibility])
|
||||
|
||||
return buf.String()
|
||||
}
|
||||
|
||||
// In UnicodeData.txt, some ranges are marked like this:
|
||||
// 3400;<CJK Ideograph Extension A, First>;Lo;0;L;;;;;N;;;;;
|
||||
// 4DB5;<CJK Ideograph Extension A, Last>;Lo;0;L;;;;;N;;;;;
|
||||
// parseCharacter keeps a state variable indicating the weirdness.
|
||||
type State int
|
||||
|
||||
const (
|
||||
SNormal State = iota // known to be zero for the type
|
||||
SFirst
|
||||
SLast
|
||||
SMissing
|
||||
)
|
||||
|
||||
var lastChar = rune('\u0000')
|
||||
|
||||
func (c Char) isValid() bool {
|
||||
return c.codePoint != 0 && c.state != SMissing
|
||||
}
|
||||
|
||||
type FormInfo struct {
|
||||
quickCheck [MNumberOfModes]QCResult // index: MComposed or MDecomposed
|
||||
verified [MNumberOfModes]bool // index: MComposed or MDecomposed
|
||||
|
||||
combinesForward bool // May combine with rune on the right
|
||||
combinesBackward bool // May combine with rune on the left
|
||||
isOneWay bool // Never appears in result
|
||||
inDecomp bool // Some decompositions result in this char.
|
||||
decomp Decomposition
|
||||
expandedDecomp Decomposition
|
||||
}
|
||||
|
||||
func (f FormInfo) String() string {
|
||||
buf := bytes.NewBuffer(make([]byte, 0))
|
||||
|
||||
fmt.Fprintf(buf, " quickCheck[C]: %v\n", f.quickCheck[MComposed])
|
||||
fmt.Fprintf(buf, " quickCheck[D]: %v\n", f.quickCheck[MDecomposed])
|
||||
fmt.Fprintf(buf, " cmbForward: %v\n", f.combinesForward)
|
||||
fmt.Fprintf(buf, " cmbBackward: %v\n", f.combinesBackward)
|
||||
fmt.Fprintf(buf, " isOneWay: %v\n", f.isOneWay)
|
||||
fmt.Fprintf(buf, " inDecomp: %v\n", f.inDecomp)
|
||||
fmt.Fprintf(buf, " decomposition: %X\n", f.decomp)
|
||||
fmt.Fprintf(buf, " expandedDecomp: %X\n", f.expandedDecomp)
|
||||
|
||||
return buf.String()
|
||||
}
|
||||
|
||||
type Decomposition []rune
|
||||
|
||||
func parseDecomposition(s string, skipfirst bool) (a []rune, err error) {
|
||||
decomp := strings.Split(s, " ")
|
||||
if len(decomp) > 0 && skipfirst {
|
||||
decomp = decomp[1:]
|
||||
}
|
||||
for _, d := range decomp {
|
||||
point, err := strconv.ParseUint(d, 16, 64)
|
||||
if err != nil {
|
||||
return a, err
|
||||
}
|
||||
a = append(a, rune(point))
|
||||
}
|
||||
return a, nil
|
||||
}
|
||||
|
||||
func loadUnicodeData() {
|
||||
f := gen.OpenUCDFile("UnicodeData.txt")
|
||||
defer f.Close()
|
||||
p := ucd.New(f)
|
||||
for p.Next() {
|
||||
r := p.Rune(ucd.CodePoint)
|
||||
char := &chars[r]
|
||||
|
||||
char.ccc = uint8(p.Uint(ucd.CanonicalCombiningClass))
|
||||
decmap := p.String(ucd.DecompMapping)
|
||||
|
||||
exp, err := parseDecomposition(decmap, false)
|
||||
isCompat := false
|
||||
if err != nil {
|
||||
if len(decmap) > 0 {
|
||||
exp, err = parseDecomposition(decmap, true)
|
||||
if err != nil {
|
||||
log.Fatalf(`%U: bad decomp |%v|: "%s"`, r, decmap, err)
|
||||
}
|
||||
isCompat = true
|
||||
}
|
||||
}
|
||||
|
||||
char.name = p.String(ucd.Name)
|
||||
char.codePoint = r
|
||||
char.forms[FCompatibility].decomp = exp
|
||||
if !isCompat {
|
||||
char.forms[FCanonical].decomp = exp
|
||||
} else {
|
||||
char.compatDecomp = true
|
||||
}
|
||||
if len(decmap) > 0 {
|
||||
char.forms[FCompatibility].decomp = exp
|
||||
}
|
||||
}
|
||||
if err := p.Err(); err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
}
|
||||
|
||||
// compactCCC converts the sparse set of CCC values to a continguous one,
|
||||
// reducing the number of bits needed from 8 to 6.
|
||||
func compactCCC() {
|
||||
m := make(map[uint8]uint8)
|
||||
for i := range chars {
|
||||
c := &chars[i]
|
||||
m[c.ccc] = 0
|
||||
}
|
||||
cccs := []int{}
|
||||
for v, _ := range m {
|
||||
cccs = append(cccs, int(v))
|
||||
}
|
||||
sort.Ints(cccs)
|
||||
for i, c := range cccs {
|
||||
cccMap[uint8(i)] = uint8(c)
|
||||
m[uint8(c)] = uint8(i)
|
||||
}
|
||||
for i := range chars {
|
||||
c := &chars[i]
|
||||
c.origCCC = c.ccc
|
||||
c.ccc = m[c.ccc]
|
||||
}
|
||||
if len(m) >= 1<<6 {
|
||||
log.Fatalf("too many difference CCC values: %d >= 64", len(m))
|
||||
}
|
||||
}
|
||||
|
||||
// CompositionExclusions.txt has form:
|
||||
// 0958 # ...
|
||||
// See https://unicode.org/reports/tr44/ for full explanation
|
||||
func loadCompositionExclusions() {
|
||||
f := gen.OpenUCDFile("CompositionExclusions.txt")
|
||||
defer f.Close()
|
||||
p := ucd.New(f)
|
||||
for p.Next() {
|
||||
c := &chars[p.Rune(0)]
|
||||
if c.excludeInComp {
|
||||
log.Fatalf("%U: Duplicate entry in exclusions.", c.codePoint)
|
||||
}
|
||||
c.excludeInComp = true
|
||||
}
|
||||
if e := p.Err(); e != nil {
|
||||
log.Fatal(e)
|
||||
}
|
||||
}
|
||||
|
||||
// hasCompatDecomp returns true if any of the recursive
|
||||
// decompositions contains a compatibility expansion.
|
||||
// In this case, the character may not occur in NFK*.
|
||||
func hasCompatDecomp(r rune) bool {
|
||||
c := &chars[r]
|
||||
if c.compatDecomp {
|
||||
return true
|
||||
}
|
||||
for _, d := range c.forms[FCompatibility].decomp {
|
||||
if hasCompatDecomp(d) {
|
||||
return true
|
||||
}
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
// Hangul related constants.
|
||||
const (
|
||||
HangulBase = 0xAC00
|
||||
HangulEnd = 0xD7A4 // hangulBase + Jamo combinations (19 * 21 * 28)
|
||||
|
||||
JamoLBase = 0x1100
|
||||
JamoLEnd = 0x1113
|
||||
JamoVBase = 0x1161
|
||||
JamoVEnd = 0x1176
|
||||
JamoTBase = 0x11A8
|
||||
JamoTEnd = 0x11C3
|
||||
|
||||
JamoLVTCount = 19 * 21 * 28
|
||||
JamoTCount = 28
|
||||
)
|
||||
|
||||
func isHangul(r rune) bool {
|
||||
return HangulBase <= r && r < HangulEnd
|
||||
}
|
||||
|
||||
func isHangulWithoutJamoT(r rune) bool {
|
||||
if !isHangul(r) {
|
||||
return false
|
||||
}
|
||||
r -= HangulBase
|
||||
return r < JamoLVTCount && r%JamoTCount == 0
|
||||
}
|
||||
|
||||
func ccc(r rune) uint8 {
|
||||
return chars[r].ccc
|
||||
}
|
||||
|
||||
// Insert a rune in a buffer, ordered by Canonical Combining Class.
|
||||
func insertOrdered(b Decomposition, r rune) Decomposition {
|
||||
n := len(b)
|
||||
b = append(b, 0)
|
||||
cc := ccc(r)
|
||||
if cc > 0 {
|
||||
// Use bubble sort.
|
||||
for ; n > 0; n-- {
|
||||
if ccc(b[n-1]) <= cc {
|
||||
break
|
||||
}
|
||||
b[n] = b[n-1]
|
||||
}
|
||||
}
|
||||
b[n] = r
|
||||
return b
|
||||
}
|
||||
|
||||
// Recursively decompose.
|
||||
func decomposeRecursive(form int, r rune, d Decomposition) Decomposition {
|
||||
dcomp := chars[r].forms[form].decomp
|
||||
if len(dcomp) == 0 {
|
||||
return insertOrdered(d, r)
|
||||
}
|
||||
for _, c := range dcomp {
|
||||
d = decomposeRecursive(form, c, d)
|
||||
}
|
||||
return d
|
||||
}
|
||||
|
||||
func completeCharFields(form int) {
|
||||
// Phase 0: pre-expand decomposition.
|
||||
for i := range chars {
|
||||
f := &chars[i].forms[form]
|
||||
if len(f.decomp) == 0 {
|
||||
continue
|
||||
}
|
||||
exp := make(Decomposition, 0)
|
||||
for _, c := range f.decomp {
|
||||
exp = decomposeRecursive(form, c, exp)
|
||||
}
|
||||
f.expandedDecomp = exp
|
||||
}
|
||||
|
||||
// Phase 1: composition exclusion, mark decomposition.
|
||||
for i := range chars {
|
||||
c := &chars[i]
|
||||
f := &c.forms[form]
|
||||
|
||||
// Marks script-specific exclusions and version restricted.
|
||||
f.isOneWay = c.excludeInComp
|
||||
|
||||
// Singletons
|
||||
f.isOneWay = f.isOneWay || len(f.decomp) == 1
|
||||
|
||||
// Non-starter decompositions
|
||||
if len(f.decomp) > 1 {
|
||||
chk := c.ccc != 0 || chars[f.decomp[0]].ccc != 0
|
||||
f.isOneWay = f.isOneWay || chk
|
||||
}
|
||||
|
||||
// Runes that decompose into more than two runes.
|
||||
f.isOneWay = f.isOneWay || len(f.decomp) > 2
|
||||
|
||||
if form == FCompatibility {
|
||||
f.isOneWay = f.isOneWay || hasCompatDecomp(c.codePoint)
|
||||
}
|
||||
|
||||
for _, r := range f.decomp {
|
||||
chars[r].forms[form].inDecomp = true
|
||||
}
|
||||
}
|
||||
|
||||
// Phase 2: forward and backward combining.
|
||||
for i := range chars {
|
||||
c := &chars[i]
|
||||
f := &c.forms[form]
|
||||
|
||||
if !f.isOneWay && len(f.decomp) == 2 {
|
||||
f0 := &chars[f.decomp[0]].forms[form]
|
||||
f1 := &chars[f.decomp[1]].forms[form]
|
||||
if !f0.isOneWay {
|
||||
f0.combinesForward = true
|
||||
}
|
||||
if !f1.isOneWay {
|
||||
f1.combinesBackward = true
|
||||
}
|
||||
}
|
||||
if isHangulWithoutJamoT(rune(i)) {
|
||||
f.combinesForward = true
|
||||
}
|
||||
}
|
||||
|
||||
// Phase 3: quick check values.
|
||||
for i := range chars {
|
||||
c := &chars[i]
|
||||
f := &c.forms[form]
|
||||
|
||||
switch {
|
||||
case len(f.decomp) > 0:
|
||||
f.quickCheck[MDecomposed] = QCNo
|
||||
case isHangul(rune(i)):
|
||||
f.quickCheck[MDecomposed] = QCNo
|
||||
default:
|
||||
f.quickCheck[MDecomposed] = QCYes
|
||||
}
|
||||
switch {
|
||||
case f.isOneWay:
|
||||
f.quickCheck[MComposed] = QCNo
|
||||
case (i & 0xffff00) == JamoLBase:
|
||||
f.quickCheck[MComposed] = QCYes
|
||||
if JamoLBase <= i && i < JamoLEnd {
|
||||
f.combinesForward = true
|
||||
}
|
||||
if JamoVBase <= i && i < JamoVEnd {
|
||||
f.quickCheck[MComposed] = QCMaybe
|
||||
f.combinesBackward = true
|
||||
f.combinesForward = true
|
||||
}
|
||||
if JamoTBase <= i && i < JamoTEnd {
|
||||
f.quickCheck[MComposed] = QCMaybe
|
||||
f.combinesBackward = true
|
||||
}
|
||||
case !f.combinesBackward:
|
||||
f.quickCheck[MComposed] = QCYes
|
||||
default:
|
||||
f.quickCheck[MComposed] = QCMaybe
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func computeNonStarterCounts() {
|
||||
// Phase 4: leading and trailing non-starter count
|
||||
for i := range chars {
|
||||
c := &chars[i]
|
||||
|
||||
runes := []rune{rune(i)}
|
||||
// We always use FCompatibility so that the CGJ insertion points do not
|
||||
// change for repeated normalizations with different forms.
|
||||
if exp := c.forms[FCompatibility].expandedDecomp; len(exp) > 0 {
|
||||
runes = exp
|
||||
}
|
||||
// We consider runes that combine backwards to be non-starters for the
|
||||
// purpose of Stream-Safe Text Processing.
|
||||
for _, r := range runes {
|
||||
if cr := &chars[r]; cr.ccc == 0 && !cr.forms[FCompatibility].combinesBackward {
|
||||
break
|
||||
}
|
||||
c.nLeadingNonStarters++
|
||||
}
|
||||
for i := len(runes) - 1; i >= 0; i-- {
|
||||
if cr := &chars[runes[i]]; cr.ccc == 0 && !cr.forms[FCompatibility].combinesBackward {
|
||||
break
|
||||
}
|
||||
c.nTrailingNonStarters++
|
||||
}
|
||||
if c.nTrailingNonStarters > 3 {
|
||||
log.Fatalf("%U: Decomposition with more than 3 (%d) trailing modifiers (%U)", i, c.nTrailingNonStarters, runes)
|
||||
}
|
||||
|
||||
if isHangul(rune(i)) {
|
||||
c.nTrailingNonStarters = 2
|
||||
if isHangulWithoutJamoT(rune(i)) {
|
||||
c.nTrailingNonStarters = 1
|
||||
}
|
||||
}
|
||||
|
||||
if l, t := c.nLeadingNonStarters, c.nTrailingNonStarters; l > 0 && l != t {
|
||||
log.Fatalf("%U: number of leading and trailing non-starters should be equal (%d vs %d)", i, l, t)
|
||||
}
|
||||
if t := c.nTrailingNonStarters; t > 3 {
|
||||
log.Fatalf("%U: number of trailing non-starters is %d > 3", t)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func printBytes(w io.Writer, b []byte, name string) {
|
||||
fmt.Fprintf(w, "// %s: %d bytes\n", name, len(b))
|
||||
fmt.Fprintf(w, "var %s = [...]byte {", name)
|
||||
for i, c := range b {
|
||||
switch {
|
||||
case i%64 == 0:
|
||||
fmt.Fprintf(w, "\n// Bytes %x - %x\n", i, i+63)
|
||||
case i%8 == 0:
|
||||
fmt.Fprintf(w, "\n")
|
||||
}
|
||||
fmt.Fprintf(w, "0x%.2X, ", c)
|
||||
}
|
||||
fmt.Fprint(w, "\n}\n\n")
|
||||
}
|
||||
|
||||
// See forminfo.go for format.
|
||||
func makeEntry(f *FormInfo, c *Char) uint16 {
|
||||
e := uint16(0)
|
||||
if r := c.codePoint; HangulBase <= r && r < HangulEnd {
|
||||
e |= 0x40
|
||||
}
|
||||
if f.combinesForward {
|
||||
e |= 0x20
|
||||
}
|
||||
if f.quickCheck[MDecomposed] == QCNo {
|
||||
e |= 0x4
|
||||
}
|
||||
switch f.quickCheck[MComposed] {
|
||||
case QCYes:
|
||||
case QCNo:
|
||||
e |= 0x10
|
||||
case QCMaybe:
|
||||
e |= 0x18
|
||||
default:
|
||||
log.Fatalf("Illegal quickcheck value %v.", f.quickCheck[MComposed])
|
||||
}
|
||||
e |= uint16(c.nTrailingNonStarters)
|
||||
return e
|
||||
}
|
||||
|
||||
// decompSet keeps track of unique decompositions, grouped by whether
|
||||
// the decomposition is followed by a trailing and/or leading CCC.
|
||||
type decompSet [7]map[string]bool
|
||||
|
||||
const (
|
||||
normalDecomp = iota
|
||||
firstMulti
|
||||
firstCCC
|
||||
endMulti
|
||||
firstLeadingCCC
|
||||
firstCCCZeroExcept
|
||||
firstStarterWithNLead
|
||||
lastDecomp
|
||||
)
|
||||
|
||||
var cname = []string{"firstMulti", "firstCCC", "endMulti", "firstLeadingCCC", "firstCCCZeroExcept", "firstStarterWithNLead", "lastDecomp"}
|
||||
|
||||
func makeDecompSet() decompSet {
|
||||
m := decompSet{}
|
||||
for i := range m {
|
||||
m[i] = make(map[string]bool)
|
||||
}
|
||||
return m
|
||||
}
|
||||
func (m *decompSet) insert(key int, s string) {
|
||||
m[key][s] = true
|
||||
}
|
||||
|
||||
func printCharInfoTables(w io.Writer) int {
|
||||
mkstr := func(r rune, f *FormInfo) (int, string) {
|
||||
d := f.expandedDecomp
|
||||
s := string([]rune(d))
|
||||
if max := 1 << 6; len(s) >= max {
|
||||
const msg = "%U: too many bytes in decomposition: %d >= %d"
|
||||
log.Fatalf(msg, r, len(s), max)
|
||||
}
|
||||
head := uint8(len(s))
|
||||
if f.quickCheck[MComposed] != QCYes {
|
||||
head |= 0x40
|
||||
}
|
||||
if f.combinesForward {
|
||||
head |= 0x80
|
||||
}
|
||||
s = string([]byte{head}) + s
|
||||
|
||||
lccc := ccc(d[0])
|
||||
tccc := ccc(d[len(d)-1])
|
||||
cc := ccc(r)
|
||||
if cc != 0 && lccc == 0 && tccc == 0 {
|
||||
log.Fatalf("%U: trailing and leading ccc are 0 for non-zero ccc %d", r, cc)
|
||||
}
|
||||
if tccc < lccc && lccc != 0 {
|
||||
const msg = "%U: lccc (%d) must be <= tcc (%d)"
|
||||
log.Fatalf(msg, r, lccc, tccc)
|
||||
}
|
||||
index := normalDecomp
|
||||
nTrail := chars[r].nTrailingNonStarters
|
||||
nLead := chars[r].nLeadingNonStarters
|
||||
if tccc > 0 || lccc > 0 || nTrail > 0 {
|
||||
tccc <<= 2
|
||||
tccc |= nTrail
|
||||
s += string([]byte{tccc})
|
||||
index = endMulti
|
||||
for _, r := range d[1:] {
|
||||
if ccc(r) == 0 {
|
||||
index = firstCCC
|
||||
}
|
||||
}
|
||||
if lccc > 0 || nLead > 0 {
|
||||
s += string([]byte{lccc})
|
||||
if index == firstCCC {
|
||||
log.Fatalf("%U: multi-segment decomposition not supported for decompositions with leading CCC != 0", r)
|
||||
}
|
||||
index = firstLeadingCCC
|
||||
}
|
||||
if cc != lccc {
|
||||
if cc != 0 {
|
||||
log.Fatalf("%U: for lccc != ccc, expected ccc to be 0; was %d", r, cc)
|
||||
}
|
||||
index = firstCCCZeroExcept
|
||||
}
|
||||
} else if len(d) > 1 {
|
||||
index = firstMulti
|
||||
}
|
||||
return index, s
|
||||
}
|
||||
|
||||
decompSet := makeDecompSet()
|
||||
const nLeadStr = "\x00\x01" // 0-byte length and tccc with nTrail.
|
||||
decompSet.insert(firstStarterWithNLead, nLeadStr)
|
||||
|
||||
// Store the uniqued decompositions in a byte buffer,
|
||||
// preceded by their byte length.
|
||||
for _, c := range chars {
|
||||
for _, f := range c.forms {
|
||||
if len(f.expandedDecomp) == 0 {
|
||||
continue
|
||||
}
|
||||
if f.combinesBackward {
|
||||
log.Fatalf("%U: combinesBackward and decompose", c.codePoint)
|
||||
}
|
||||
index, s := mkstr(c.codePoint, &f)
|
||||
decompSet.insert(index, s)
|
||||
}
|
||||
}
|
||||
|
||||
decompositions := bytes.NewBuffer(make([]byte, 0, 10000))
|
||||
size := 0
|
||||
positionMap := make(map[string]uint16)
|
||||
decompositions.WriteString("\000")
|
||||
fmt.Fprintln(w, "const (")
|
||||
for i, m := range decompSet {
|
||||
sa := []string{}
|
||||
for s := range m {
|
||||
sa = append(sa, s)
|
||||
}
|
||||
sort.Strings(sa)
|
||||
for _, s := range sa {
|
||||
p := decompositions.Len()
|
||||
decompositions.WriteString(s)
|
||||
positionMap[s] = uint16(p)
|
||||
}
|
||||
if cname[i] != "" {
|
||||
fmt.Fprintf(w, "%s = 0x%X\n", cname[i], decompositions.Len())
|
||||
}
|
||||
}
|
||||
fmt.Fprintln(w, "maxDecomp = 0x8000")
|
||||
fmt.Fprintln(w, ")")
|
||||
b := decompositions.Bytes()
|
||||
printBytes(w, b, "decomps")
|
||||
size += len(b)
|
||||
|
||||
varnames := []string{"nfc", "nfkc"}
|
||||
for i := 0; i < FNumberOfFormTypes; i++ {
|
||||
trie := triegen.NewTrie(varnames[i])
|
||||
|
||||
for r, c := range chars {
|
||||
f := c.forms[i]
|
||||
d := f.expandedDecomp
|
||||
if len(d) != 0 {
|
||||
_, key := mkstr(c.codePoint, &f)
|
||||
trie.Insert(rune(r), uint64(positionMap[key]))
|
||||
if c.ccc != ccc(d[0]) {
|
||||
// We assume the lead ccc of a decomposition !=0 in this case.
|
||||
if ccc(d[0]) == 0 {
|
||||
log.Fatalf("Expected leading CCC to be non-zero; ccc is %d", c.ccc)
|
||||
}
|
||||
}
|
||||
} else if c.nLeadingNonStarters > 0 && len(f.expandedDecomp) == 0 && c.ccc == 0 && !f.combinesBackward {
|
||||
// Handle cases where it can't be detected that the nLead should be equal
|
||||
// to nTrail.
|
||||
trie.Insert(c.codePoint, uint64(positionMap[nLeadStr]))
|
||||
} else if v := makeEntry(&f, &c)<<8 | uint16(c.ccc); v != 0 {
|
||||
trie.Insert(c.codePoint, uint64(0x8000|v))
|
||||
}
|
||||
}
|
||||
sz, err := trie.Gen(w, triegen.Compact(&normCompacter{name: varnames[i]}))
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
size += sz
|
||||
}
|
||||
return size
|
||||
}
|
||||
|
||||
func contains(sa []string, s string) bool {
|
||||
for _, a := range sa {
|
||||
if a == s {
|
||||
return true
|
||||
}
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
func makeTables() {
|
||||
w := &bytes.Buffer{}
|
||||
|
||||
size := 0
|
||||
if *tablelist == "" {
|
||||
return
|
||||
}
|
||||
list := strings.Split(*tablelist, ",")
|
||||
if *tablelist == "all" {
|
||||
list = []string{"recomp", "info"}
|
||||
}
|
||||
|
||||
// Compute maximum decomposition size.
|
||||
max := 0
|
||||
for _, c := range chars {
|
||||
if n := len(string(c.forms[FCompatibility].expandedDecomp)); n > max {
|
||||
max = n
|
||||
}
|
||||
}
|
||||
fmt.Fprintln(w, `import "sync"`)
|
||||
fmt.Fprintln(w)
|
||||
|
||||
fmt.Fprintln(w, "const (")
|
||||
fmt.Fprintln(w, "\t// Version is the Unicode edition from which the tables are derived.")
|
||||
fmt.Fprintf(w, "\tVersion = %q\n", gen.UnicodeVersion())
|
||||
fmt.Fprintln(w)
|
||||
fmt.Fprintln(w, "\t// MaxTransformChunkSize indicates the maximum number of bytes that Transform")
|
||||
fmt.Fprintln(w, "\t// may need to write atomically for any Form. Making a destination buffer at")
|
||||
fmt.Fprintln(w, "\t// least this size ensures that Transform can always make progress and that")
|
||||
fmt.Fprintln(w, "\t// the user does not need to grow the buffer on an ErrShortDst.")
|
||||
fmt.Fprintf(w, "\tMaxTransformChunkSize = %d+maxNonStarters*4\n", len(string(0x034F))+max)
|
||||
fmt.Fprintln(w, ")\n")
|
||||
|
||||
// Print the CCC remap table.
|
||||
size += len(cccMap)
|
||||
fmt.Fprintf(w, "var ccc = [%d]uint8{", len(cccMap))
|
||||
for i := 0; i < len(cccMap); i++ {
|
||||
if i%8 == 0 {
|
||||
fmt.Fprintln(w)
|
||||
}
|
||||
fmt.Fprintf(w, "%3d, ", cccMap[uint8(i)])
|
||||
}
|
||||
fmt.Fprintln(w, "\n}\n")
|
||||
|
||||
if contains(list, "info") {
|
||||
size += printCharInfoTables(w)
|
||||
}
|
||||
|
||||
if contains(list, "recomp") {
|
||||
// Note that we use 32 bit keys, instead of 64 bit.
|
||||
// This clips the bits of three entries, but we know
|
||||
// this won't cause a collision. The compiler will catch
|
||||
// any changes made to UnicodeData.txt that introduces
|
||||
// a collision.
|
||||
// Note that the recomposition map for NFC and NFKC
|
||||
// are identical.
|
||||
|
||||
// Recomposition map
|
||||
nrentries := 0
|
||||
for _, c := range chars {
|
||||
f := c.forms[FCanonical]
|
||||
if !f.isOneWay && len(f.decomp) > 0 {
|
||||
nrentries++
|
||||
}
|
||||
}
|
||||
sz := nrentries * 8
|
||||
size += sz
|
||||
fmt.Fprintf(w, "// recompMap: %d bytes (entries only)\n", sz)
|
||||
fmt.Fprintln(w, "var recompMap map[uint32]rune")
|
||||
fmt.Fprintln(w, "var recompMapOnce sync.Once\n")
|
||||
fmt.Fprintln(w, `const recompMapPacked = "" +`)
|
||||
var buf [8]byte
|
||||
for i, c := range chars {
|
||||
f := c.forms[FCanonical]
|
||||
d := f.decomp
|
||||
if !f.isOneWay && len(d) > 0 {
|
||||
key := uint32(uint16(d[0]))<<16 + uint32(uint16(d[1]))
|
||||
binary.BigEndian.PutUint32(buf[:4], key)
|
||||
binary.BigEndian.PutUint32(buf[4:], uint32(i))
|
||||
fmt.Fprintf(w, "\t\t%q + // 0x%.8X: 0x%.8X\n", string(buf[:]), key, uint32(i))
|
||||
}
|
||||
}
|
||||
// hack so we don't have to special case the trailing plus sign
|
||||
fmt.Fprintf(w, ` ""`)
|
||||
fmt.Fprintln(w)
|
||||
}
|
||||
|
||||
fmt.Fprintf(w, "// Total size of tables: %dKB (%d bytes)\n", (size+512)/1024, size)
|
||||
gen.WriteVersionedGoFile("tables.go", "norm", w.Bytes())
|
||||
}
|
||||
|
||||
func printChars() {
|
||||
if *verbose {
|
||||
for _, c := range chars {
|
||||
if !c.isValid() || c.state == SMissing {
|
||||
continue
|
||||
}
|
||||
fmt.Println(c)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// verifyComputed does various consistency tests.
|
||||
func verifyComputed() {
|
||||
for i, c := range chars {
|
||||
for _, f := range c.forms {
|
||||
isNo := (f.quickCheck[MDecomposed] == QCNo)
|
||||
if (len(f.decomp) > 0) != isNo && !isHangul(rune(i)) {
|
||||
log.Fatalf("%U: NF*D QC must be No if rune decomposes", i)
|
||||
}
|
||||
|
||||
isMaybe := f.quickCheck[MComposed] == QCMaybe
|
||||
if f.combinesBackward != isMaybe {
|
||||
log.Fatalf("%U: NF*C QC must be Maybe if combinesBackward", i)
|
||||
}
|
||||
if len(f.decomp) > 0 && f.combinesForward && isMaybe {
|
||||
log.Fatalf("%U: NF*C QC must be Yes or No if combinesForward and decomposes", i)
|
||||
}
|
||||
|
||||
if len(f.expandedDecomp) != 0 {
|
||||
continue
|
||||
}
|
||||
if a, b := c.nLeadingNonStarters > 0, (c.ccc > 0 || f.combinesBackward); a != b {
|
||||
// We accept these runes to be treated differently (it only affects
|
||||
// segment breaking in iteration, most likely on improper use), but
|
||||
// reconsider if more characters are added.
|
||||
// U+FF9E HALFWIDTH KATAKANA VOICED SOUND MARK;Lm;0;L;<narrow> 3099;;;;N;;;;;
|
||||
// U+FF9F HALFWIDTH KATAKANA SEMI-VOICED SOUND MARK;Lm;0;L;<narrow> 309A;;;;N;;;;;
|
||||
// U+3133 HANGUL LETTER KIYEOK-SIOS;Lo;0;L;<compat> 11AA;;;;N;HANGUL LETTER GIYEOG SIOS;;;;
|
||||
// U+318E HANGUL LETTER ARAEAE;Lo;0;L;<compat> 11A1;;;;N;HANGUL LETTER ALAE AE;;;;
|
||||
// U+FFA3 HALFWIDTH HANGUL LETTER KIYEOK-SIOS;Lo;0;L;<narrow> 3133;;;;N;HALFWIDTH HANGUL LETTER GIYEOG SIOS;;;;
|
||||
// U+FFDC HALFWIDTH HANGUL LETTER I;Lo;0;L;<narrow> 3163;;;;N;;;;;
|
||||
if i != 0xFF9E && i != 0xFF9F && !(0x3133 <= i && i <= 0x318E) && !(0xFFA3 <= i && i <= 0xFFDC) {
|
||||
log.Fatalf("%U: nLead was %v; want %v", i, a, b)
|
||||
}
|
||||
}
|
||||
}
|
||||
nfc := c.forms[FCanonical]
|
||||
nfkc := c.forms[FCompatibility]
|
||||
if nfc.combinesBackward != nfkc.combinesBackward {
|
||||
log.Fatalf("%U: Cannot combine combinesBackward\n", c.codePoint)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Use values in DerivedNormalizationProps.txt to compare against the
|
||||
// values we computed.
|
||||
// DerivedNormalizationProps.txt has form:
|
||||
// 00C0..00C5 ; NFD_QC; N # ...
|
||||
// 0374 ; NFD_QC; N # ...
|
||||
// See https://unicode.org/reports/tr44/ for full explanation
|
||||
func testDerived() {
|
||||
f := gen.OpenUCDFile("DerivedNormalizationProps.txt")
|
||||
defer f.Close()
|
||||
p := ucd.New(f)
|
||||
for p.Next() {
|
||||
r := p.Rune(0)
|
||||
c := &chars[r]
|
||||
|
||||
var ftype, mode int
|
||||
qt := p.String(1)
|
||||
switch qt {
|
||||
case "NFC_QC":
|
||||
ftype, mode = FCanonical, MComposed
|
||||
case "NFD_QC":
|
||||
ftype, mode = FCanonical, MDecomposed
|
||||
case "NFKC_QC":
|
||||
ftype, mode = FCompatibility, MComposed
|
||||
case "NFKD_QC":
|
||||
ftype, mode = FCompatibility, MDecomposed
|
||||
default:
|
||||
continue
|
||||
}
|
||||
var qr QCResult
|
||||
switch p.String(2) {
|
||||
case "Y":
|
||||
qr = QCYes
|
||||
case "N":
|
||||
qr = QCNo
|
||||
case "M":
|
||||
qr = QCMaybe
|
||||
default:
|
||||
log.Fatalf(`Unexpected quick check value "%s"`, p.String(2))
|
||||
}
|
||||
if got := c.forms[ftype].quickCheck[mode]; got != qr {
|
||||
log.Printf("%U: FAILED %s (was %v need %v)\n", r, qt, got, qr)
|
||||
}
|
||||
c.forms[ftype].verified[mode] = true
|
||||
}
|
||||
if err := p.Err(); err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
// Any unspecified value must be QCYes. Verify this.
|
||||
for i, c := range chars {
|
||||
for j, fd := range c.forms {
|
||||
for k, qr := range fd.quickCheck {
|
||||
if !fd.verified[k] && qr != QCYes {
|
||||
m := "%U: FAIL F:%d M:%d (was %v need Yes) %s\n"
|
||||
log.Printf(m, i, j, k, qr, c.name)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
var testHeader = `const (
|
||||
Yes = iota
|
||||
No
|
||||
Maybe
|
||||
)
|
||||
|
||||
type formData struct {
|
||||
qc uint8
|
||||
combinesForward bool
|
||||
decomposition string
|
||||
}
|
||||
|
||||
type runeData struct {
|
||||
r rune
|
||||
ccc uint8
|
||||
nLead uint8
|
||||
nTrail uint8
|
||||
f [2]formData // 0: canonical; 1: compatibility
|
||||
}
|
||||
|
||||
func f(qc uint8, cf bool, dec string) [2]formData {
|
||||
return [2]formData{{qc, cf, dec}, {qc, cf, dec}}
|
||||
}
|
||||
|
||||
func g(qc, qck uint8, cf, cfk bool, d, dk string) [2]formData {
|
||||
return [2]formData{{qc, cf, d}, {qck, cfk, dk}}
|
||||
}
|
||||
|
||||
var testData = []runeData{
|
||||
`
|
||||
|
||||
func printTestdata() {
|
||||
type lastInfo struct {
|
||||
ccc uint8
|
||||
nLead uint8
|
||||
nTrail uint8
|
||||
f string
|
||||
}
|
||||
|
||||
last := lastInfo{}
|
||||
w := &bytes.Buffer{}
|
||||
fmt.Fprintf(w, testHeader)
|
||||
for r, c := range chars {
|
||||
f := c.forms[FCanonical]
|
||||
qc, cf, d := f.quickCheck[MComposed], f.combinesForward, string(f.expandedDecomp)
|
||||
f = c.forms[FCompatibility]
|
||||
qck, cfk, dk := f.quickCheck[MComposed], f.combinesForward, string(f.expandedDecomp)
|
||||
s := ""
|
||||
if d == dk && qc == qck && cf == cfk {
|
||||
s = fmt.Sprintf("f(%s, %v, %q)", qc, cf, d)
|
||||
} else {
|
||||
s = fmt.Sprintf("g(%s, %s, %v, %v, %q, %q)", qc, qck, cf, cfk, d, dk)
|
||||
}
|
||||
current := lastInfo{c.ccc, c.nLeadingNonStarters, c.nTrailingNonStarters, s}
|
||||
if last != current {
|
||||
fmt.Fprintf(w, "\t{0x%x, %d, %d, %d, %s},\n", r, c.origCCC, c.nLeadingNonStarters, c.nTrailingNonStarters, s)
|
||||
last = current
|
||||
}
|
||||
}
|
||||
fmt.Fprintln(w, "}")
|
||||
gen.WriteVersionedGoFile("data_test.go", "norm", w.Bytes())
|
||||
}
|
|
@ -0,0 +1,609 @@
|
|||
// Copyright 2011 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Note: the file data_test.go that is generated should not be checked in.
|
||||
//go:generate go run maketables.go triegen.go
|
||||
//go:generate go test -tags test
|
||||
|
||||
// Package norm contains types and functions for normalizing Unicode strings.
|
||||
package norm // import "golang.org/x/text/unicode/norm"
|
||||
|
||||
import (
|
||||
"unicode/utf8"
|
||||
|
||||
"golang.org/x/text/transform"
|
||||
)
|
||||
|
||||
// A Form denotes a canonical representation of Unicode code points.
|
||||
// The Unicode-defined normalization and equivalence forms are:
|
||||
//
|
||||
// NFC Unicode Normalization Form C
|
||||
// NFD Unicode Normalization Form D
|
||||
// NFKC Unicode Normalization Form KC
|
||||
// NFKD Unicode Normalization Form KD
|
||||
//
|
||||
// For a Form f, this documentation uses the notation f(x) to mean
|
||||
// the bytes or string x converted to the given form.
|
||||
// A position n in x is called a boundary if conversion to the form can
|
||||
// proceed independently on both sides:
|
||||
// f(x) == append(f(x[0:n]), f(x[n:])...)
|
||||
//
|
||||
// References: https://unicode.org/reports/tr15/ and
|
||||
// https://unicode.org/notes/tn5/.
|
||||
type Form int
|
||||
|
||||
const (
|
||||
NFC Form = iota
|
||||
NFD
|
||||
NFKC
|
||||
NFKD
|
||||
)
|
||||
|
||||
// Bytes returns f(b). May return b if f(b) = b.
|
||||
func (f Form) Bytes(b []byte) []byte {
|
||||
src := inputBytes(b)
|
||||
ft := formTable[f]
|
||||
n, ok := ft.quickSpan(src, 0, len(b), true)
|
||||
if ok {
|
||||
return b
|
||||
}
|
||||
out := make([]byte, n, len(b))
|
||||
copy(out, b[0:n])
|
||||
rb := reorderBuffer{f: *ft, src: src, nsrc: len(b), out: out, flushF: appendFlush}
|
||||
return doAppendInner(&rb, n)
|
||||
}
|
||||
|
||||
// String returns f(s).
|
||||
func (f Form) String(s string) string {
|
||||
src := inputString(s)
|
||||
ft := formTable[f]
|
||||
n, ok := ft.quickSpan(src, 0, len(s), true)
|
||||
if ok {
|
||||
return s
|
||||
}
|
||||
out := make([]byte, n, len(s))
|
||||
copy(out, s[0:n])
|
||||
rb := reorderBuffer{f: *ft, src: src, nsrc: len(s), out: out, flushF: appendFlush}
|
||||
return string(doAppendInner(&rb, n))
|
||||
}
|
||||
|
||||
// IsNormal returns true if b == f(b).
|
||||
func (f Form) IsNormal(b []byte) bool {
|
||||
src := inputBytes(b)
|
||||
ft := formTable[f]
|
||||
bp, ok := ft.quickSpan(src, 0, len(b), true)
|
||||
if ok {
|
||||
return true
|
||||
}
|
||||
rb := reorderBuffer{f: *ft, src: src, nsrc: len(b)}
|
||||
rb.setFlusher(nil, cmpNormalBytes)
|
||||
for bp < len(b) {
|
||||
rb.out = b[bp:]
|
||||
if bp = decomposeSegment(&rb, bp, true); bp < 0 {
|
||||
return false
|
||||
}
|
||||
bp, _ = rb.f.quickSpan(rb.src, bp, len(b), true)
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
func cmpNormalBytes(rb *reorderBuffer) bool {
|
||||
b := rb.out
|
||||
for i := 0; i < rb.nrune; i++ {
|
||||
info := rb.rune[i]
|
||||
if int(info.size) > len(b) {
|
||||
return false
|
||||
}
|
||||
p := info.pos
|
||||
pe := p + info.size
|
||||
for ; p < pe; p++ {
|
||||
if b[0] != rb.byte[p] {
|
||||
return false
|
||||
}
|
||||
b = b[1:]
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// IsNormalString returns true if s == f(s).
|
||||
func (f Form) IsNormalString(s string) bool {
|
||||
src := inputString(s)
|
||||
ft := formTable[f]
|
||||
bp, ok := ft.quickSpan(src, 0, len(s), true)
|
||||
if ok {
|
||||
return true
|
||||
}
|
||||
rb := reorderBuffer{f: *ft, src: src, nsrc: len(s)}
|
||||
rb.setFlusher(nil, func(rb *reorderBuffer) bool {
|
||||
for i := 0; i < rb.nrune; i++ {
|
||||
info := rb.rune[i]
|
||||
if bp+int(info.size) > len(s) {
|
||||
return false
|
||||
}
|
||||
p := info.pos
|
||||
pe := p + info.size
|
||||
for ; p < pe; p++ {
|
||||
if s[bp] != rb.byte[p] {
|
||||
return false
|
||||
}
|
||||
bp++
|
||||
}
|
||||
}
|
||||
return true
|
||||
})
|
||||
for bp < len(s) {
|
||||
if bp = decomposeSegment(&rb, bp, true); bp < 0 {
|
||||
return false
|
||||
}
|
||||
bp, _ = rb.f.quickSpan(rb.src, bp, len(s), true)
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// patchTail fixes a case where a rune may be incorrectly normalized
|
||||
// if it is followed by illegal continuation bytes. It returns the
|
||||
// patched buffer and whether the decomposition is still in progress.
|
||||
func patchTail(rb *reorderBuffer) bool {
|
||||
info, p := lastRuneStart(&rb.f, rb.out)
|
||||
if p == -1 || info.size == 0 {
|
||||
return true
|
||||
}
|
||||
end := p + int(info.size)
|
||||
extra := len(rb.out) - end
|
||||
if extra > 0 {
|
||||
// Potentially allocating memory. However, this only
|
||||
// happens with ill-formed UTF-8.
|
||||
x := make([]byte, 0)
|
||||
x = append(x, rb.out[len(rb.out)-extra:]...)
|
||||
rb.out = rb.out[:end]
|
||||
decomposeToLastBoundary(rb)
|
||||
rb.doFlush()
|
||||
rb.out = append(rb.out, x...)
|
||||
return false
|
||||
}
|
||||
buf := rb.out[p:]
|
||||
rb.out = rb.out[:p]
|
||||
decomposeToLastBoundary(rb)
|
||||
if s := rb.ss.next(info); s == ssStarter {
|
||||
rb.doFlush()
|
||||
rb.ss.first(info)
|
||||
} else if s == ssOverflow {
|
||||
rb.doFlush()
|
||||
rb.insertCGJ()
|
||||
rb.ss = 0
|
||||
}
|
||||
rb.insertUnsafe(inputBytes(buf), 0, info)
|
||||
return true
|
||||
}
|
||||
|
||||
func appendQuick(rb *reorderBuffer, i int) int {
|
||||
if rb.nsrc == i {
|
||||
return i
|
||||
}
|
||||
end, _ := rb.f.quickSpan(rb.src, i, rb.nsrc, true)
|
||||
rb.out = rb.src.appendSlice(rb.out, i, end)
|
||||
return end
|
||||
}
|
||||
|
||||
// Append returns f(append(out, b...)).
|
||||
// The buffer out must be nil, empty, or equal to f(out).
|
||||
func (f Form) Append(out []byte, src ...byte) []byte {
|
||||
return f.doAppend(out, inputBytes(src), len(src))
|
||||
}
|
||||
|
||||
func (f Form) doAppend(out []byte, src input, n int) []byte {
|
||||
if n == 0 {
|
||||
return out
|
||||
}
|
||||
ft := formTable[f]
|
||||
// Attempt to do a quickSpan first so we can avoid initializing the reorderBuffer.
|
||||
if len(out) == 0 {
|
||||
p, _ := ft.quickSpan(src, 0, n, true)
|
||||
out = src.appendSlice(out, 0, p)
|
||||
if p == n {
|
||||
return out
|
||||
}
|
||||
rb := reorderBuffer{f: *ft, src: src, nsrc: n, out: out, flushF: appendFlush}
|
||||
return doAppendInner(&rb, p)
|
||||
}
|
||||
rb := reorderBuffer{f: *ft, src: src, nsrc: n}
|
||||
return doAppend(&rb, out, 0)
|
||||
}
|
||||
|
||||
func doAppend(rb *reorderBuffer, out []byte, p int) []byte {
|
||||
rb.setFlusher(out, appendFlush)
|
||||
src, n := rb.src, rb.nsrc
|
||||
doMerge := len(out) > 0
|
||||
if q := src.skipContinuationBytes(p); q > p {
|
||||
// Move leading non-starters to destination.
|
||||
rb.out = src.appendSlice(rb.out, p, q)
|
||||
p = q
|
||||
doMerge = patchTail(rb)
|
||||
}
|
||||
fd := &rb.f
|
||||
if doMerge {
|
||||
var info Properties
|
||||
if p < n {
|
||||
info = fd.info(src, p)
|
||||
if !info.BoundaryBefore() || info.nLeadingNonStarters() > 0 {
|
||||
if p == 0 {
|
||||
decomposeToLastBoundary(rb)
|
||||
}
|
||||
p = decomposeSegment(rb, p, true)
|
||||
}
|
||||
}
|
||||
if info.size == 0 {
|
||||
rb.doFlush()
|
||||
// Append incomplete UTF-8 encoding.
|
||||
return src.appendSlice(rb.out, p, n)
|
||||
}
|
||||
if rb.nrune > 0 {
|
||||
return doAppendInner(rb, p)
|
||||
}
|
||||
}
|
||||
p = appendQuick(rb, p)
|
||||
return doAppendInner(rb, p)
|
||||
}
|
||||
|
||||
func doAppendInner(rb *reorderBuffer, p int) []byte {
|
||||
for n := rb.nsrc; p < n; {
|
||||
p = decomposeSegment(rb, p, true)
|
||||
p = appendQuick(rb, p)
|
||||
}
|
||||
return rb.out
|
||||
}
|
||||
|
||||
// AppendString returns f(append(out, []byte(s))).
|
||||
// The buffer out must be nil, empty, or equal to f(out).
|
||||
func (f Form) AppendString(out []byte, src string) []byte {
|
||||
return f.doAppend(out, inputString(src), len(src))
|
||||
}
|
||||
|
||||
// QuickSpan returns a boundary n such that b[0:n] == f(b[0:n]).
|
||||
// It is not guaranteed to return the largest such n.
|
||||
func (f Form) QuickSpan(b []byte) int {
|
||||
n, _ := formTable[f].quickSpan(inputBytes(b), 0, len(b), true)
|
||||
return n
|
||||
}
|
||||
|
||||
// Span implements transform.SpanningTransformer. It returns a boundary n such
|
||||
// that b[0:n] == f(b[0:n]). It is not guaranteed to return the largest such n.
|
||||
func (f Form) Span(b []byte, atEOF bool) (n int, err error) {
|
||||
n, ok := formTable[f].quickSpan(inputBytes(b), 0, len(b), atEOF)
|
||||
if n < len(b) {
|
||||
if !ok {
|
||||
err = transform.ErrEndOfSpan
|
||||
} else {
|
||||
err = transform.ErrShortSrc
|
||||
}
|
||||
}
|
||||
return n, err
|
||||
}
|
||||
|
||||
// SpanString returns a boundary n such that s[0:n] == f(s[0:n]).
|
||||
// It is not guaranteed to return the largest such n.
|
||||
func (f Form) SpanString(s string, atEOF bool) (n int, err error) {
|
||||
n, ok := formTable[f].quickSpan(inputString(s), 0, len(s), atEOF)
|
||||
if n < len(s) {
|
||||
if !ok {
|
||||
err = transform.ErrEndOfSpan
|
||||
} else {
|
||||
err = transform.ErrShortSrc
|
||||
}
|
||||
}
|
||||
return n, err
|
||||
}
|
||||
|
||||
// quickSpan returns a boundary n such that src[0:n] == f(src[0:n]) and
|
||||
// whether any non-normalized parts were found. If atEOF is false, n will
|
||||
// not point past the last segment if this segment might be become
|
||||
// non-normalized by appending other runes.
|
||||
func (f *formInfo) quickSpan(src input, i, end int, atEOF bool) (n int, ok bool) {
|
||||
var lastCC uint8
|
||||
ss := streamSafe(0)
|
||||
lastSegStart := i
|
||||
for n = end; i < n; {
|
||||
if j := src.skipASCII(i, n); i != j {
|
||||
i = j
|
||||
lastSegStart = i - 1
|
||||
lastCC = 0
|
||||
ss = 0
|
||||
continue
|
||||
}
|
||||
info := f.info(src, i)
|
||||
if info.size == 0 {
|
||||
if atEOF {
|
||||
// include incomplete runes
|
||||
return n, true
|
||||
}
|
||||
return lastSegStart, true
|
||||
}
|
||||
// This block needs to be before the next, because it is possible to
|
||||
// have an overflow for runes that are starters (e.g. with U+FF9E).
|
||||
switch ss.next(info) {
|
||||
case ssStarter:
|
||||
lastSegStart = i
|
||||
case ssOverflow:
|
||||
return lastSegStart, false
|
||||
case ssSuccess:
|
||||
if lastCC > info.ccc {
|
||||
return lastSegStart, false
|
||||
}
|
||||
}
|
||||
if f.composing {
|
||||
if !info.isYesC() {
|
||||
break
|
||||
}
|
||||
} else {
|
||||
if !info.isYesD() {
|
||||
break
|
||||
}
|
||||
}
|
||||
lastCC = info.ccc
|
||||
i += int(info.size)
|
||||
}
|
||||
if i == n {
|
||||
if !atEOF {
|
||||
n = lastSegStart
|
||||
}
|
||||
return n, true
|
||||
}
|
||||
return lastSegStart, false
|
||||
}
|
||||
|
||||
// QuickSpanString returns a boundary n such that s[0:n] == f(s[0:n]).
|
||||
// It is not guaranteed to return the largest such n.
|
||||
func (f Form) QuickSpanString(s string) int {
|
||||
n, _ := formTable[f].quickSpan(inputString(s), 0, len(s), true)
|
||||
return n
|
||||
}
|
||||
|
||||
// FirstBoundary returns the position i of the first boundary in b
|
||||
// or -1 if b contains no boundary.
|
||||
func (f Form) FirstBoundary(b []byte) int {
|
||||
return f.firstBoundary(inputBytes(b), len(b))
|
||||
}
|
||||
|
||||
func (f Form) firstBoundary(src input, nsrc int) int {
|
||||
i := src.skipContinuationBytes(0)
|
||||
if i >= nsrc {
|
||||
return -1
|
||||
}
|
||||
fd := formTable[f]
|
||||
ss := streamSafe(0)
|
||||
// We should call ss.first here, but we can't as the first rune is
|
||||
// skipped already. This means FirstBoundary can't really determine
|
||||
// CGJ insertion points correctly. Luckily it doesn't have to.
|
||||
for {
|
||||
info := fd.info(src, i)
|
||||
if info.size == 0 {
|
||||
return -1
|
||||
}
|
||||
if s := ss.next(info); s != ssSuccess {
|
||||
return i
|
||||
}
|
||||
i += int(info.size)
|
||||
if i >= nsrc {
|
||||
if !info.BoundaryAfter() && !ss.isMax() {
|
||||
return -1
|
||||
}
|
||||
return nsrc
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// FirstBoundaryInString returns the position i of the first boundary in s
|
||||
// or -1 if s contains no boundary.
|
||||
func (f Form) FirstBoundaryInString(s string) int {
|
||||
return f.firstBoundary(inputString(s), len(s))
|
||||
}
|
||||
|
||||
// NextBoundary reports the index of the boundary between the first and next
|
||||
// segment in b or -1 if atEOF is false and there are not enough bytes to
|
||||
// determine this boundary.
|
||||
func (f Form) NextBoundary(b []byte, atEOF bool) int {
|
||||
return f.nextBoundary(inputBytes(b), len(b), atEOF)
|
||||
}
|
||||
|
||||
// NextBoundaryInString reports the index of the boundary between the first and
|
||||
// next segment in b or -1 if atEOF is false and there are not enough bytes to
|
||||
// determine this boundary.
|
||||
func (f Form) NextBoundaryInString(s string, atEOF bool) int {
|
||||
return f.nextBoundary(inputString(s), len(s), atEOF)
|
||||
}
|
||||
|
||||
func (f Form) nextBoundary(src input, nsrc int, atEOF bool) int {
|
||||
if nsrc == 0 {
|
||||
if atEOF {
|
||||
return 0
|
||||
}
|
||||
return -1
|
||||
}
|
||||
fd := formTable[f]
|
||||
info := fd.info(src, 0)
|
||||
if info.size == 0 {
|
||||
if atEOF {
|
||||
return 1
|
||||
}
|
||||
return -1
|
||||
}
|
||||
ss := streamSafe(0)
|
||||
ss.first(info)
|
||||
|
||||
for i := int(info.size); i < nsrc; i += int(info.size) {
|
||||
info = fd.info(src, i)
|
||||
if info.size == 0 {
|
||||
if atEOF {
|
||||
return i
|
||||
}
|
||||
return -1
|
||||
}
|
||||
// TODO: Using streamSafe to determine the boundary isn't the same as
|
||||
// using BoundaryBefore. Determine which should be used.
|
||||
if s := ss.next(info); s != ssSuccess {
|
||||
return i
|
||||
}
|
||||
}
|
||||
if !atEOF && !info.BoundaryAfter() && !ss.isMax() {
|
||||
return -1
|
||||
}
|
||||
return nsrc
|
||||
}
|
||||
|
||||
// LastBoundary returns the position i of the last boundary in b
|
||||
// or -1 if b contains no boundary.
|
||||
func (f Form) LastBoundary(b []byte) int {
|
||||
return lastBoundary(formTable[f], b)
|
||||
}
|
||||
|
||||
func lastBoundary(fd *formInfo, b []byte) int {
|
||||
i := len(b)
|
||||
info, p := lastRuneStart(fd, b)
|
||||
if p == -1 {
|
||||
return -1
|
||||
}
|
||||
if info.size == 0 { // ends with incomplete rune
|
||||
if p == 0 { // starts with incomplete rune
|
||||
return -1
|
||||
}
|
||||
i = p
|
||||
info, p = lastRuneStart(fd, b[:i])
|
||||
if p == -1 { // incomplete UTF-8 encoding or non-starter bytes without a starter
|
||||
return i
|
||||
}
|
||||
}
|
||||
if p+int(info.size) != i { // trailing non-starter bytes: illegal UTF-8
|
||||
return i
|
||||
}
|
||||
if info.BoundaryAfter() {
|
||||
return i
|
||||
}
|
||||
ss := streamSafe(0)
|
||||
v := ss.backwards(info)
|
||||
for i = p; i >= 0 && v != ssStarter; i = p {
|
||||
info, p = lastRuneStart(fd, b[:i])
|
||||
if v = ss.backwards(info); v == ssOverflow {
|
||||
break
|
||||
}
|
||||
if p+int(info.size) != i {
|
||||
if p == -1 { // no boundary found
|
||||
return -1
|
||||
}
|
||||
return i // boundary after an illegal UTF-8 encoding
|
||||
}
|
||||
}
|
||||
return i
|
||||
}
|
||||
|
||||
// decomposeSegment scans the first segment in src into rb. It inserts 0x034f
|
||||
// (Grapheme Joiner) when it encounters a sequence of more than 30 non-starters
|
||||
// and returns the number of bytes consumed from src or iShortDst or iShortSrc.
|
||||
func decomposeSegment(rb *reorderBuffer, sp int, atEOF bool) int {
|
||||
// Force one character to be consumed.
|
||||
info := rb.f.info(rb.src, sp)
|
||||
if info.size == 0 {
|
||||
return 0
|
||||
}
|
||||
if s := rb.ss.next(info); s == ssStarter {
|
||||
// TODO: this could be removed if we don't support merging.
|
||||
if rb.nrune > 0 {
|
||||
goto end
|
||||
}
|
||||
} else if s == ssOverflow {
|
||||
rb.insertCGJ()
|
||||
goto end
|
||||
}
|
||||
if err := rb.insertFlush(rb.src, sp, info); err != iSuccess {
|
||||
return int(err)
|
||||
}
|
||||
for {
|
||||
sp += int(info.size)
|
||||
if sp >= rb.nsrc {
|
||||
if !atEOF && !info.BoundaryAfter() {
|
||||
return int(iShortSrc)
|
||||
}
|
||||
break
|
||||
}
|
||||
info = rb.f.info(rb.src, sp)
|
||||
if info.size == 0 {
|
||||
if !atEOF {
|
||||
return int(iShortSrc)
|
||||
}
|
||||
break
|
||||
}
|
||||
if s := rb.ss.next(info); s == ssStarter {
|
||||
break
|
||||
} else if s == ssOverflow {
|
||||
rb.insertCGJ()
|
||||
break
|
||||
}
|
||||
if err := rb.insertFlush(rb.src, sp, info); err != iSuccess {
|
||||
return int(err)
|
||||
}
|
||||
}
|
||||
end:
|
||||
if !rb.doFlush() {
|
||||
return int(iShortDst)
|
||||
}
|
||||
return sp
|
||||
}
|
||||
|
||||
// lastRuneStart returns the runeInfo and position of the last
|
||||
// rune in buf or the zero runeInfo and -1 if no rune was found.
|
||||
func lastRuneStart(fd *formInfo, buf []byte) (Properties, int) {
|
||||
p := len(buf) - 1
|
||||
for ; p >= 0 && !utf8.RuneStart(buf[p]); p-- {
|
||||
}
|
||||
if p < 0 {
|
||||
return Properties{}, -1
|
||||
}
|
||||
return fd.info(inputBytes(buf), p), p
|
||||
}
|
||||
|
||||
// decomposeToLastBoundary finds an open segment at the end of the buffer
|
||||
// and scans it into rb. Returns the buffer minus the last segment.
|
||||
func decomposeToLastBoundary(rb *reorderBuffer) {
|
||||
fd := &rb.f
|
||||
info, i := lastRuneStart(fd, rb.out)
|
||||
if int(info.size) != len(rb.out)-i {
|
||||
// illegal trailing continuation bytes
|
||||
return
|
||||
}
|
||||
if info.BoundaryAfter() {
|
||||
return
|
||||
}
|
||||
var add [maxNonStarters + 1]Properties // stores runeInfo in reverse order
|
||||
padd := 0
|
||||
ss := streamSafe(0)
|
||||
p := len(rb.out)
|
||||
for {
|
||||
add[padd] = info
|
||||
v := ss.backwards(info)
|
||||
if v == ssOverflow {
|
||||
// Note that if we have an overflow, it the string we are appending to
|
||||
// is not correctly normalized. In this case the behavior is undefined.
|
||||
break
|
||||
}
|
||||
padd++
|
||||
p -= int(info.size)
|
||||
if v == ssStarter || p < 0 {
|
||||
break
|
||||
}
|
||||
info, i = lastRuneStart(fd, rb.out[:p])
|
||||
if int(info.size) != p-i {
|
||||
break
|
||||
}
|
||||
}
|
||||
rb.ss = ss
|
||||
// Copy bytes for insertion as we may need to overwrite rb.out.
|
||||
var buf [maxBufferSize * utf8.UTFMax]byte
|
||||
cp := buf[:copy(buf[:], rb.out[p:])]
|
||||
rb.out = rb.out[:p]
|
||||
for padd--; padd >= 0; padd-- {
|
||||
info = add[padd]
|
||||
rb.insertUnsafe(inputBytes(cp), 0, info)
|
||||
cp = cp[info.size:]
|
||||
}
|
||||
}
|
|
@ -0,0 +1,125 @@
|
|||
// Copyright 2011 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package norm
|
||||
|
||||
import "io"
|
||||
|
||||
type normWriter struct {
|
||||
rb reorderBuffer
|
||||
w io.Writer
|
||||
buf []byte
|
||||
}
|
||||
|
||||
// Write implements the standard write interface. If the last characters are
|
||||
// not at a normalization boundary, the bytes will be buffered for the next
|
||||
// write. The remaining bytes will be written on close.
|
||||
func (w *normWriter) Write(data []byte) (n int, err error) {
|
||||
// Process data in pieces to keep w.buf size bounded.
|
||||
const chunk = 4000
|
||||
|
||||
for len(data) > 0 {
|
||||
// Normalize into w.buf.
|
||||
m := len(data)
|
||||
if m > chunk {
|
||||
m = chunk
|
||||
}
|
||||
w.rb.src = inputBytes(data[:m])
|
||||
w.rb.nsrc = m
|
||||
w.buf = doAppend(&w.rb, w.buf, 0)
|
||||
data = data[m:]
|
||||
n += m
|
||||
|
||||
// Write out complete prefix, save remainder.
|
||||
// Note that lastBoundary looks back at most 31 runes.
|
||||
i := lastBoundary(&w.rb.f, w.buf)
|
||||
if i == -1 {
|
||||
i = 0
|
||||
}
|
||||
if i > 0 {
|
||||
if _, err = w.w.Write(w.buf[:i]); err != nil {
|
||||
break
|
||||
}
|
||||
bn := copy(w.buf, w.buf[i:])
|
||||
w.buf = w.buf[:bn]
|
||||
}
|
||||
}
|
||||
return n, err
|
||||
}
|
||||
|
||||
// Close forces data that remains in the buffer to be written.
|
||||
func (w *normWriter) Close() error {
|
||||
if len(w.buf) > 0 {
|
||||
_, err := w.w.Write(w.buf)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// Writer returns a new writer that implements Write(b)
|
||||
// by writing f(b) to w. The returned writer may use an
|
||||
// internal buffer to maintain state across Write calls.
|
||||
// Calling its Close method writes any buffered data to w.
|
||||
func (f Form) Writer(w io.Writer) io.WriteCloser {
|
||||
wr := &normWriter{rb: reorderBuffer{}, w: w}
|
||||
wr.rb.init(f, nil)
|
||||
return wr
|
||||
}
|
||||
|
||||
type normReader struct {
|
||||
rb reorderBuffer
|
||||
r io.Reader
|
||||
inbuf []byte
|
||||
outbuf []byte
|
||||
bufStart int
|
||||
lastBoundary int
|
||||
err error
|
||||
}
|
||||
|
||||
// Read implements the standard read interface.
|
||||
func (r *normReader) Read(p []byte) (int, error) {
|
||||
for {
|
||||
if r.lastBoundary-r.bufStart > 0 {
|
||||
n := copy(p, r.outbuf[r.bufStart:r.lastBoundary])
|
||||
r.bufStart += n
|
||||
if r.lastBoundary-r.bufStart > 0 {
|
||||
return n, nil
|
||||
}
|
||||
return n, r.err
|
||||
}
|
||||
if r.err != nil {
|
||||
return 0, r.err
|
||||
}
|
||||
outn := copy(r.outbuf, r.outbuf[r.lastBoundary:])
|
||||
r.outbuf = r.outbuf[0:outn]
|
||||
r.bufStart = 0
|
||||
|
||||
n, err := r.r.Read(r.inbuf)
|
||||
r.rb.src = inputBytes(r.inbuf[0:n])
|
||||
r.rb.nsrc, r.err = n, err
|
||||
if n > 0 {
|
||||
r.outbuf = doAppend(&r.rb, r.outbuf, 0)
|
||||
}
|
||||
if err == io.EOF {
|
||||
r.lastBoundary = len(r.outbuf)
|
||||
} else {
|
||||
r.lastBoundary = lastBoundary(&r.rb.f, r.outbuf)
|
||||
if r.lastBoundary == -1 {
|
||||
r.lastBoundary = 0
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Reader returns a new reader that implements Read
|
||||
// by reading data from r and returning f(data).
|
||||
func (f Form) Reader(r io.Reader) io.Reader {
|
||||
const chunk = 4000
|
||||
buf := make([]byte, chunk)
|
||||
rr := &normReader{rb: reorderBuffer{}, r: r, inbuf: buf}
|
||||
rr.rb.init(f, buf)
|
||||
return rr
|
||||
}
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,88 @@
|
|||
// Copyright 2013 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package norm
|
||||
|
||||
import (
|
||||
"unicode/utf8"
|
||||
|
||||
"golang.org/x/text/transform"
|
||||
)
|
||||
|
||||
// Reset implements the Reset method of the transform.Transformer interface.
|
||||
func (Form) Reset() {}
|
||||
|
||||
// Transform implements the Transform method of the transform.Transformer
|
||||
// interface. It may need to write segments of up to MaxSegmentSize at once.
|
||||
// Users should either catch ErrShortDst and allow dst to grow or have dst be at
|
||||
// least of size MaxTransformChunkSize to be guaranteed of progress.
|
||||
func (f Form) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
|
||||
// Cap the maximum number of src bytes to check.
|
||||
b := src
|
||||
eof := atEOF
|
||||
if ns := len(dst); ns < len(b) {
|
||||
err = transform.ErrShortDst
|
||||
eof = false
|
||||
b = b[:ns]
|
||||
}
|
||||
i, ok := formTable[f].quickSpan(inputBytes(b), 0, len(b), eof)
|
||||
n := copy(dst, b[:i])
|
||||
if !ok {
|
||||
nDst, nSrc, err = f.transform(dst[n:], src[n:], atEOF)
|
||||
return nDst + n, nSrc + n, err
|
||||
}
|
||||
|
||||
if err == nil && n < len(src) && !atEOF {
|
||||
err = transform.ErrShortSrc
|
||||
}
|
||||
return n, n, err
|
||||
}
|
||||
|
||||
func flushTransform(rb *reorderBuffer) bool {
|
||||
// Write out (must fully fit in dst, or else it is an ErrShortDst).
|
||||
if len(rb.out) < rb.nrune*utf8.UTFMax {
|
||||
return false
|
||||
}
|
||||
rb.out = rb.out[rb.flushCopy(rb.out):]
|
||||
return true
|
||||
}
|
||||
|
||||
var errs = []error{nil, transform.ErrShortDst, transform.ErrShortSrc}
|
||||
|
||||
// transform implements the transform.Transformer interface. It is only called
|
||||
// when quickSpan does not pass for a given string.
|
||||
func (f Form) transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
|
||||
// TODO: get rid of reorderBuffer. See CL 23460044.
|
||||
rb := reorderBuffer{}
|
||||
rb.init(f, src)
|
||||
for {
|
||||
// Load segment into reorder buffer.
|
||||
rb.setFlusher(dst[nDst:], flushTransform)
|
||||
end := decomposeSegment(&rb, nSrc, atEOF)
|
||||
if end < 0 {
|
||||
return nDst, nSrc, errs[-end]
|
||||
}
|
||||
nDst = len(dst) - len(rb.out)
|
||||
nSrc = end
|
||||
|
||||
// Next quickSpan.
|
||||
end = rb.nsrc
|
||||
eof := atEOF
|
||||
if n := nSrc + len(dst) - nDst; n < end {
|
||||
err = transform.ErrShortDst
|
||||
end = n
|
||||
eof = false
|
||||
}
|
||||
end, ok := rb.f.quickSpan(rb.src, nSrc, end, eof)
|
||||
n := copy(dst[nDst:], rb.src.bytes[nSrc:end])
|
||||
nSrc += n
|
||||
nDst += n
|
||||
if ok {
|
||||
if err == nil && n < rb.nsrc && !atEOF {
|
||||
err = transform.ErrShortSrc
|
||||
}
|
||||
return nDst, nSrc, err
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,54 @@
|
|||
// Copyright 2011 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package norm
|
||||
|
||||
type valueRange struct {
|
||||
value uint16 // header: value:stride
|
||||
lo, hi byte // header: lo:n
|
||||
}
|
||||
|
||||
type sparseBlocks struct {
|
||||
values []valueRange
|
||||
offset []uint16
|
||||
}
|
||||
|
||||
var nfcSparse = sparseBlocks{
|
||||
values: nfcSparseValues[:],
|
||||
offset: nfcSparseOffset[:],
|
||||
}
|
||||
|
||||
var nfkcSparse = sparseBlocks{
|
||||
values: nfkcSparseValues[:],
|
||||
offset: nfkcSparseOffset[:],
|
||||
}
|
||||
|
||||
var (
|
||||
nfcData = newNfcTrie(0)
|
||||
nfkcData = newNfkcTrie(0)
|
||||
)
|
||||
|
||||
// lookupValue determines the type of block n and looks up the value for b.
|
||||
// For n < t.cutoff, the block is a simple lookup table. Otherwise, the block
|
||||
// is a list of ranges with an accompanying value. Given a matching range r,
|
||||
// the value for b is by r.value + (b - r.lo) * stride.
|
||||
func (t *sparseBlocks) lookup(n uint32, b byte) uint16 {
|
||||
offset := t.offset[n]
|
||||
header := t.values[offset]
|
||||
lo := offset + 1
|
||||
hi := lo + uint16(header.lo)
|
||||
for lo < hi {
|
||||
m := lo + (hi-lo)/2
|
||||
r := t.values[m]
|
||||
if r.lo <= b && b <= r.hi {
|
||||
return r.value + uint16(b-r.lo)*header.value
|
||||
}
|
||||
if b < r.lo {
|
||||
hi = m
|
||||
} else {
|
||||
lo = m + 1
|
||||
}
|
||||
}
|
||||
return 0
|
||||
}
|
|
@ -531,6 +531,12 @@
|
|||
"revision": "b001fa50d6b27f3f0bb175a87d0cb55426d0a0ae",
|
||||
"revisionTime": "2018-11-28T10:09:59Z"
|
||||
},
|
||||
{
|
||||
"checksumSHA1": "vW7IiPtoA4hQQ/ScHlbmRktY89U=",
|
||||
"path": "github.com/tyler-smith/go-bip39",
|
||||
"revision": "8e7a99b3e716f36d3b080a9a70f9eb45abe4edcc",
|
||||
"revisionTime": "2016-06-29T16:38:56Z"
|
||||
},
|
||||
{
|
||||
"checksumSHA1": "nD6S4KB0S+YHxVMDDE+w3PyXaMk=",
|
||||
"path": "github.com/uber/jaeger-client-go",
|
||||
|
@ -633,12 +639,6 @@
|
|||
"revision": "a51202d6f4a7e5a219e3841a43614ff7187ae7f1",
|
||||
"revisionTime": "2018-06-15T20:27:29Z"
|
||||
},
|
||||
{
|
||||
"checksumSHA1": "vW7IiPtoA4hQQ/ScHlbmRktY89U=",
|
||||
"path": "github.com/tyler-smith/go-bip39",
|
||||
"revision": "8e7a99b3e716f36d3b080a9a70f9eb45abe4edcc",
|
||||
"revisionTime": "2016-06-29T16:38:56Z"
|
||||
},
|
||||
{
|
||||
"checksumSHA1": "GLCPuvePAkWT+opcWq3mNdhOfGM=",
|
||||
"path": "github.com/wsddn/go-ecdh",
|
||||
|
@ -915,6 +915,12 @@
|
|||
"revision": "e3703dcdd614d2d7488fff034c75c551ea25da95",
|
||||
"revisionTime": "2018-12-15T16:57:46Z"
|
||||
},
|
||||
{
|
||||
"checksumSHA1": "lBB8oUHgIK0RUuDchkQVfMXJQh0=",
|
||||
"path": "golang.org/x/text/unicode/norm",
|
||||
"revision": "31e7599a6c37728c25ca34167be099d072ad335d",
|
||||
"revisionTime": "2019-04-05T05:38:27Z"
|
||||
},
|
||||
{
|
||||
"checksumSHA1": "CEFTYXtWmgSh+3Ik1NmDaJcz4E0=",
|
||||
"path": "gopkg.in/check.v1",
|
||||
|
|
Loading…
Reference in New Issue