Merge bfc3aaee4c
into 23800122b3
This commit is contained in:
commit
87adf35072
|
@ -0,0 +1,55 @@
|
|||
// Copyright 2024 The go-ethereum Authors
|
||||
// This file is part of the go-ethereum library.
|
||||
//
|
||||
// The go-ethereum library is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU Lesser General Public License as published by
|
||||
// the Free Software Foundation, either version 3 of the License, or
|
||||
// (at your option) any later version.
|
||||
//
|
||||
// The go-ethereum library is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU Lesser General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public License
|
||||
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
package trie
|
||||
|
||||
// bytesPool is a pool for byteslices. It is safe for concurrent use.
|
||||
type bytesPool struct {
|
||||
c chan []byte
|
||||
w int
|
||||
}
|
||||
|
||||
// newBytesPool creates a new bytesPool. The sliceCap sets the capacity of
|
||||
// newly allocated slices, and the nitems determines how many items the pool
|
||||
// will hold, at maximum.
|
||||
func newBytesPool(sliceCap, nitems int) *bytesPool {
|
||||
return &bytesPool{
|
||||
c: make(chan []byte, nitems),
|
||||
w: sliceCap,
|
||||
}
|
||||
}
|
||||
|
||||
// Get returns a slice. Safe for concurrent use.
|
||||
func (bp *bytesPool) Get() []byte {
|
||||
select {
|
||||
case b := <-bp.c:
|
||||
return b
|
||||
default:
|
||||
return make([]byte, 0, bp.w)
|
||||
}
|
||||
}
|
||||
|
||||
// Put returns a slice to the pool. Safe for concurrent use. This method
|
||||
// will ignore slices that are too small or too large (>3x the cap)
|
||||
func (bp *bytesPool) Put(b []byte) {
|
||||
if c := cap(b); c < bp.w || c > 3*bp.w {
|
||||
return
|
||||
}
|
||||
select {
|
||||
case bp.c <- b:
|
||||
default:
|
||||
}
|
||||
}
|
|
@ -104,6 +104,17 @@ func keybytesToHex(str []byte) []byte {
|
|||
return nibbles
|
||||
}
|
||||
|
||||
// writeHexKey writes the hexkey into the given slice.
|
||||
// OBS! This method omits the termination flag.
|
||||
// OBS! The dst slice must be at least 2x as large as the key
|
||||
func writeHexKey(dst []byte, key []byte) {
|
||||
_ = dst[2*len(key)-1]
|
||||
for i, b := range key {
|
||||
dst[i*2] = b / 16
|
||||
dst[i*2+1] = b % 16
|
||||
}
|
||||
}
|
||||
|
||||
// hexToKeybytes turns hex nibbles into key bytes.
|
||||
// This can only be used for keys of even length.
|
||||
func hexToKeybytes(hex []byte) []byte {
|
||||
|
|
|
@ -188,6 +188,14 @@ func (h *hasher) hashData(data []byte) hashNode {
|
|||
return n
|
||||
}
|
||||
|
||||
// hashDataTo hashes the provided data to the given destination buffer. The caller
|
||||
// must ensure that the dst buffer is of appropriate size.
|
||||
func (h *hasher) hashDataTo(dst, data []byte) {
|
||||
h.sha.Reset()
|
||||
h.sha.Write(data)
|
||||
h.sha.Read(dst)
|
||||
}
|
||||
|
||||
// proofHash is used to construct trie proofs, and returns the 'collapsed'
|
||||
// node (for later RLP encoding) as well as the hashed node -- unless the
|
||||
// node is smaller than 32 bytes, in which case it will be returned as is.
|
||||
|
|
29
trie/node.go
29
trie/node.go
|
@ -45,6 +45,21 @@ type (
|
|||
}
|
||||
hashNode []byte
|
||||
valueNode []byte
|
||||
|
||||
//fullnodeEncoder is a type used exclusively for encoding. Briefly instantiating
|
||||
// a fullnodeEncoder and initializing with existing slices is less memory
|
||||
// intense than using the fullNode type.
|
||||
fullnodeEncoder struct {
|
||||
Children [17][]byte
|
||||
}
|
||||
|
||||
//shortNodeEncoder is a type used exclusively for encoding. Briefly instantiating
|
||||
// a shortNodeEncoder and initializing with existing slices is less memory
|
||||
// intense than using the shortNode type.
|
||||
shortNodeEncoder struct {
|
||||
Key []byte
|
||||
Val []byte
|
||||
}
|
||||
)
|
||||
|
||||
// nilValueNode is used when collapsing internal trie nodes for hashing, since
|
||||
|
@ -89,6 +104,7 @@ func (n *fullNode) fstring(ind string) string {
|
|||
}
|
||||
return resp + fmt.Sprintf("\n%s] ", ind)
|
||||
}
|
||||
|
||||
func (n *shortNode) fstring(ind string) string {
|
||||
return fmt.Sprintf("{%x: %v} ", n.Key, n.Val.fstring(ind+" "))
|
||||
}
|
||||
|
@ -99,19 +115,6 @@ func (n valueNode) fstring(ind string) string {
|
|||
return fmt.Sprintf("%x ", []byte(n))
|
||||
}
|
||||
|
||||
// rawNode is a simple binary blob used to differentiate between collapsed trie
|
||||
// nodes and already encoded RLP binary blobs (while at the same time store them
|
||||
// in the same cache fields).
|
||||
type rawNode []byte
|
||||
|
||||
func (n rawNode) cache() (hashNode, bool) { panic("this should never end up in a live trie") }
|
||||
func (n rawNode) fstring(ind string) string { panic("this should never end up in a live trie") }
|
||||
|
||||
func (n rawNode) EncodeRLP(w io.Writer) error {
|
||||
_, err := w.Write(n)
|
||||
return err
|
||||
}
|
||||
|
||||
// mustDecodeNode is a wrapper of decodeNode and panic if any error is encountered.
|
||||
func mustDecodeNode(hash, buf []byte) node {
|
||||
n, err := decodeNode(hash, buf)
|
||||
|
|
|
@ -40,6 +40,20 @@ func (n *fullNode) encode(w rlp.EncoderBuffer) {
|
|||
w.ListEnd(offset)
|
||||
}
|
||||
|
||||
func (n *fullnodeEncoder) encode(w rlp.EncoderBuffer) {
|
||||
offset := w.List()
|
||||
for _, c := range n.Children {
|
||||
if c == nil {
|
||||
w.Write(rlp.EmptyString)
|
||||
} else if len(c) < 32 {
|
||||
w.Write(c) // rawNode
|
||||
} else {
|
||||
w.WriteBytes(c) // hashNode
|
||||
}
|
||||
}
|
||||
w.ListEnd(offset)
|
||||
}
|
||||
|
||||
func (n *shortNode) encode(w rlp.EncoderBuffer) {
|
||||
offset := w.List()
|
||||
w.WriteBytes(n.Key)
|
||||
|
@ -51,6 +65,20 @@ func (n *shortNode) encode(w rlp.EncoderBuffer) {
|
|||
w.ListEnd(offset)
|
||||
}
|
||||
|
||||
func (n *shortNodeEncoder) encode(w rlp.EncoderBuffer) {
|
||||
offset := w.List()
|
||||
w.WriteBytes(n.Key)
|
||||
|
||||
if n.Val == nil {
|
||||
w.Write(rlp.EmptyString)
|
||||
} else if len(n.Val) < 32 {
|
||||
w.Write(n.Val) // rawNode
|
||||
} else {
|
||||
w.WriteBytes(n.Val) // hashNode
|
||||
}
|
||||
w.ListEnd(offset)
|
||||
}
|
||||
|
||||
func (n hashNode) encode(w rlp.EncoderBuffer) {
|
||||
w.WriteBytes(n)
|
||||
}
|
||||
|
@ -58,7 +86,3 @@ func (n hashNode) encode(w rlp.EncoderBuffer) {
|
|||
func (n valueNode) encode(w rlp.EncoderBuffer) {
|
||||
w.WriteBytes(n)
|
||||
}
|
||||
|
||||
func (n rawNode) encode(w rlp.EncoderBuffer) {
|
||||
w.Write(n)
|
||||
}
|
||||
|
|
|
@ -27,6 +27,7 @@ import (
|
|||
|
||||
var (
|
||||
stPool = sync.Pool{New: func() any { return new(stNode) }}
|
||||
bPool = newBytesPool(32, 100)
|
||||
_ = types.TrieHasher((*StackTrie)(nil))
|
||||
)
|
||||
|
||||
|
@ -47,6 +48,8 @@ type StackTrie struct {
|
|||
h *hasher
|
||||
last []byte
|
||||
onTrieNode OnTrieNode
|
||||
kBuf []byte // buf space used for hex-key during insertions
|
||||
pBuf []byte // buf space used for path during insertions
|
||||
}
|
||||
|
||||
// NewStackTrie allocates and initializes an empty trie. The committed nodes
|
||||
|
@ -56,6 +59,8 @@ func NewStackTrie(onTrieNode OnTrieNode) *StackTrie {
|
|||
root: stPool.Get().(*stNode),
|
||||
h: newHasher(false),
|
||||
onTrieNode: onTrieNode,
|
||||
kBuf: make([]byte, 0, 64),
|
||||
pBuf: make([]byte, 0, 32),
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -64,7 +69,16 @@ func (t *StackTrie) Update(key, value []byte) error {
|
|||
if len(value) == 0 {
|
||||
return errors.New("trying to insert empty (deletion)")
|
||||
}
|
||||
k := t.TrieKey(key)
|
||||
var k []byte
|
||||
{ // Need to expand the 'key' into hex-form. We use the dedicated buf for that.
|
||||
if cap(t.kBuf) < 2*len(key) { // realloc to ensure sufficient cap
|
||||
t.kBuf = make([]byte, 2*len(key))
|
||||
}
|
||||
// resize to ensure correct size
|
||||
t.kBuf = t.kBuf[:2*len(key)]
|
||||
writeHexKey(t.kBuf, key)
|
||||
k = t.kBuf
|
||||
}
|
||||
if bytes.Compare(t.last, k) >= 0 {
|
||||
return errors.New("non-ascending key order")
|
||||
}
|
||||
|
@ -73,7 +87,7 @@ func (t *StackTrie) Update(key, value []byte) error {
|
|||
} else {
|
||||
t.last = append(t.last[:0], k...) // reuse key slice
|
||||
}
|
||||
t.insert(t.root, k, value, nil)
|
||||
t.insert(t.root, k, value, t.pBuf[:0])
|
||||
return nil
|
||||
}
|
||||
|
||||
|
@ -129,6 +143,12 @@ const (
|
|||
)
|
||||
|
||||
func (n *stNode) reset() *stNode {
|
||||
if n.typ == hashedNode {
|
||||
// On hashnodes, we 'own' the val: it is guaranteed to be not held
|
||||
// by external caller. Hence, when we arrive here, we can put it back
|
||||
// into the pool
|
||||
bPool.Put(n.val)
|
||||
}
|
||||
n.key = n.key[:0]
|
||||
n.val = nil
|
||||
for i := range n.children {
|
||||
|
@ -150,8 +170,11 @@ func (n *stNode) getDiffIndex(key []byte) int {
|
|||
return len(n.key)
|
||||
}
|
||||
|
||||
// Helper function to that inserts a (key, value) pair into
|
||||
// the trie.
|
||||
// Helper function to that inserts a (key, value) pair into the trie.
|
||||
// - The key is not retained by this method, but always copied if needed.
|
||||
// - The value is retained by this method, as long as the leaf that it represents
|
||||
// remains unhashed. However: it is never modified.
|
||||
// - The path is not retained by this method.
|
||||
func (t *StackTrie) insert(st *stNode, key, value []byte, path []byte) {
|
||||
switch st.typ {
|
||||
case branchNode: /* Branch */
|
||||
|
@ -283,7 +306,7 @@ func (t *StackTrie) insert(st *stNode, key, value []byte, path []byte) {
|
|||
|
||||
case emptyNode: /* Empty */
|
||||
st.typ = leafNode
|
||||
st.key = key
|
||||
st.key = append(st.key, key...)
|
||||
st.val = value
|
||||
|
||||
case hashedNode:
|
||||
|
@ -318,35 +341,32 @@ func (t *StackTrie) hash(st *stNode, path []byte) {
|
|||
return
|
||||
|
||||
case branchNode:
|
||||
var nodes fullNode
|
||||
var nodes fullnodeEncoder
|
||||
for i, child := range st.children {
|
||||
if child == nil {
|
||||
nodes.Children[i] = nilValueNode
|
||||
continue
|
||||
}
|
||||
t.hash(child, append(path, byte(i)))
|
||||
|
||||
if len(child.val) < 32 {
|
||||
nodes.Children[i] = rawNode(child.val)
|
||||
} else {
|
||||
nodes.Children[i] = hashNode(child.val)
|
||||
nodes.Children[i] = child.val
|
||||
}
|
||||
nodes.encode(t.h.encbuf)
|
||||
blob = t.h.encodedBytes()
|
||||
for i, child := range st.children {
|
||||
if child == nil {
|
||||
continue
|
||||
}
|
||||
st.children[i] = nil
|
||||
stPool.Put(child.reset()) // Release child back to pool.
|
||||
}
|
||||
nodes.encode(t.h.encbuf)
|
||||
blob = t.h.encodedBytes()
|
||||
|
||||
case extNode:
|
||||
// recursively hash and commit child as the first step
|
||||
t.hash(st.children[0], append(path, st.key...))
|
||||
|
||||
// encode the extension node
|
||||
n := shortNode{Key: hexToCompactInPlace(st.key)}
|
||||
if len(st.children[0].val) < 32 {
|
||||
n.Val = rawNode(st.children[0].val)
|
||||
} else {
|
||||
n.Val = hashNode(st.children[0].val)
|
||||
n := shortNodeEncoder{
|
||||
Key: hexToCompactInPlace(st.key),
|
||||
Val: st.children[0].val,
|
||||
}
|
||||
n.encode(t.h.encbuf)
|
||||
blob = t.h.encodedBytes()
|
||||
|
@ -356,9 +376,13 @@ func (t *StackTrie) hash(st *stNode, path []byte) {
|
|||
|
||||
case leafNode:
|
||||
st.key = append(st.key, byte(16))
|
||||
n := shortNode{Key: hexToCompactInPlace(st.key), Val: valueNode(st.val)}
|
||||
|
||||
n.encode(t.h.encbuf)
|
||||
{
|
||||
w := t.h.encbuf
|
||||
offset := w.List()
|
||||
w.WriteBytes(hexToCompactInPlace(st.key))
|
||||
w.WriteBytes(st.val)
|
||||
w.ListEnd(offset)
|
||||
}
|
||||
blob = t.h.encodedBytes()
|
||||
|
||||
default:
|
||||
|
@ -368,15 +392,23 @@ func (t *StackTrie) hash(st *stNode, path []byte) {
|
|||
st.typ = hashedNode
|
||||
st.key = st.key[:0]
|
||||
|
||||
st.val = nil // Release reference to potentially externally held slice.
|
||||
|
||||
// Skip committing the non-root node if the size is smaller than 32 bytes
|
||||
// as tiny nodes are always embedded in their parent except root node.
|
||||
if len(blob) < 32 && len(path) > 0 {
|
||||
st.val = common.CopyBytes(blob)
|
||||
val := bPool.Get()
|
||||
val = val[:len(blob)]
|
||||
copy(val, blob)
|
||||
st.val = val
|
||||
return
|
||||
}
|
||||
// Write the hash to the 'val'. We allocate a new val here to not mutate
|
||||
// input values.
|
||||
st.val = t.h.hashData(blob)
|
||||
val := bPool.Get()
|
||||
val = val[:32]
|
||||
t.h.hashDataTo(val, blob)
|
||||
st.val = val
|
||||
|
||||
// Invoke the callback it's provided. Notably, the path and blob slices are
|
||||
// volatile, please deep-copy the slices in callback if the contents need
|
||||
|
|
|
@ -18,6 +18,7 @@ package trie
|
|||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/binary"
|
||||
"math/big"
|
||||
"testing"
|
||||
|
||||
|
@ -398,3 +399,48 @@ func TestStackTrieErrors(t *testing.T) {
|
|||
assert.NotNil(t, s.Update([]byte{0x10}, []byte{0xb}), "out of order insert")
|
||||
assert.NotNil(t, s.Update([]byte{0xaa}, []byte{0xb}), "repeat insert same key")
|
||||
}
|
||||
|
||||
func BenchmarkInsert100K(b *testing.B) {
|
||||
var num = 100_000
|
||||
var key = make([]byte, 8)
|
||||
var val = make([]byte, 20)
|
||||
var hash common.Hash
|
||||
b.ReportAllocs()
|
||||
for i := 0; i < b.N; i++ {
|
||||
s := NewStackTrie(nil)
|
||||
var k uint64
|
||||
for j := 0; j < num; j++ {
|
||||
binary.BigEndian.PutUint64(key, k)
|
||||
if err := s.Update(key, val); err != nil {
|
||||
b.Fatal(err)
|
||||
}
|
||||
k += 1024
|
||||
}
|
||||
if hash == (common.Hash{}) {
|
||||
hash = s.Hash()
|
||||
} else {
|
||||
if hash != s.Hash() && false {
|
||||
b.Fatalf("hash wrong, have %x want %x", s.Hash(), hash)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestInsert100K(t *testing.T) {
|
||||
var num = 100_000
|
||||
var key = make([]byte, 8)
|
||||
var val = make([]byte, 20)
|
||||
s := NewStackTrie(nil)
|
||||
var k uint64
|
||||
for j := 0; j < num; j++ {
|
||||
binary.BigEndian.PutUint64(key, k)
|
||||
if err := s.Update(key, val); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
k += 1024
|
||||
}
|
||||
want := common.HexToHash("0xb0071bd257342925d9d8a9f002b9d2b646a35437aa8b089628ab56e428d29a1a")
|
||||
if have := s.Hash(); have != want {
|
||||
t.Fatalf("hash wrong, have %x want %x", have, want)
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue