core/state/snapshot: implement snapshot layer iteration
This commit is contained in:
parent
22c494d399
commit
7e38996301
|
@ -18,6 +18,7 @@ package snapshot
|
|||
|
||||
import (
|
||||
"encoding/binary"
|
||||
"bytes"
|
||||
"fmt"
|
||||
"math"
|
||||
"math/rand"
|
||||
|
@ -475,3 +476,291 @@ func (dl *diffLayer) StorageList(accountHash common.Hash) []common.Hash {
|
|||
dl.storageList[accountHash] = accountStorageList
|
||||
return accountStorageList
|
||||
}
|
||||
|
||||
type Iterator interface {
|
||||
// Next steps the iterator forward one element, and returns false if
|
||||
// the iterator is exhausted
|
||||
Next() bool
|
||||
// Key returns the current key
|
||||
Key() common.Hash
|
||||
// Seek steps the iterator forward as many elements as needed, so that after
|
||||
// calling Next(), the iterator will be at a key higher than the given hash
|
||||
Seek(common.Hash)
|
||||
}
|
||||
|
||||
func (dl *diffLayer) newIterator() Iterator {
|
||||
dl.AccountList()
|
||||
return &dlIterator{dl, -1}
|
||||
}
|
||||
|
||||
type dlIterator struct {
|
||||
layer *diffLayer
|
||||
index int
|
||||
}
|
||||
|
||||
func (it *dlIterator) Next() bool {
|
||||
if it.index < len(it.layer.accountList) {
|
||||
it.index++
|
||||
}
|
||||
return it.index < len(it.layer.accountList)
|
||||
}
|
||||
|
||||
func (it *dlIterator) Key() common.Hash {
|
||||
if it.index < len(it.layer.accountList) {
|
||||
return it.layer.accountList[it.index]
|
||||
}
|
||||
return common.Hash{}
|
||||
}
|
||||
|
||||
func (it *dlIterator) Seek(key common.Hash) {
|
||||
// Search uses binary search to find and return the smallest index i
|
||||
// in [0, n) at which f(i) is true
|
||||
size := len(it.layer.accountList)
|
||||
index := sort.Search(size,
|
||||
func(i int) bool {
|
||||
v := it.layer.accountList[i]
|
||||
return bytes.Compare(key[:], v[:]) < 0
|
||||
})
|
||||
it.index = index - 1
|
||||
}
|
||||
|
||||
type binaryIterator struct {
|
||||
a Iterator
|
||||
b Iterator
|
||||
aDone bool
|
||||
bDone bool
|
||||
k common.Hash
|
||||
}
|
||||
|
||||
func (dl *diffLayer) newBinaryIterator() Iterator {
|
||||
parent, ok := dl.parent.(*diffLayer)
|
||||
if !ok {
|
||||
// parent is the disk layer
|
||||
return dl.newIterator()
|
||||
}
|
||||
l := &binaryIterator{
|
||||
a: dl.newIterator(),
|
||||
b: parent.newBinaryIterator()}
|
||||
|
||||
l.aDone = !l.a.Next()
|
||||
l.bDone = !l.b.Next()
|
||||
return l
|
||||
}
|
||||
|
||||
func (it *binaryIterator) Next() bool {
|
||||
|
||||
if it.aDone && it.bDone {
|
||||
return false
|
||||
}
|
||||
nextB := it.b.Key()
|
||||
first:
|
||||
nextA := it.a.Key()
|
||||
if it.aDone {
|
||||
it.bDone = !it.b.Next()
|
||||
it.k = nextB
|
||||
return true
|
||||
}
|
||||
if it.bDone {
|
||||
it.aDone = !it.a.Next()
|
||||
it.k = nextA
|
||||
return true
|
||||
}
|
||||
if diff := bytes.Compare(nextA[:], nextB[:]); diff < 0 {
|
||||
it.aDone = !it.a.Next()
|
||||
it.k = nextA
|
||||
return true
|
||||
} else if diff == 0 {
|
||||
// Now we need to advance one of them
|
||||
it.aDone = !it.a.Next()
|
||||
goto first
|
||||
}
|
||||
it.bDone = !it.b.Next()
|
||||
it.k = nextB
|
||||
return true
|
||||
}
|
||||
|
||||
func (it *binaryIterator) Key() common.Hash {
|
||||
return it.k
|
||||
}
|
||||
func (it *binaryIterator) Seek(key common.Hash) {
|
||||
panic("todo: implement")
|
||||
}
|
||||
|
||||
func (dl *diffLayer) iterators() []Iterator {
|
||||
if parent, ok := dl.parent.(*diffLayer); ok {
|
||||
iterators := parent.iterators()
|
||||
return append(iterators, dl.newIterator())
|
||||
}
|
||||
return []Iterator{dl.newIterator()}
|
||||
}
|
||||
|
||||
// fastIterator is a more optimized multi-layer iterator which maintains a
|
||||
// direct mapping of all iterators leading down to the bottom layer
|
||||
type fastIterator struct {
|
||||
iterators []Iterator
|
||||
initiated bool
|
||||
}
|
||||
|
||||
// Len returns the number of active iterators
|
||||
func (fi *fastIterator) Len() int {
|
||||
return len(fi.iterators)
|
||||
}
|
||||
|
||||
// Less implements sort.Interface
|
||||
func (fi *fastIterator) Less(i, j int) bool {
|
||||
a := fi.iterators[i].Key()
|
||||
b := fi.iterators[j].Key()
|
||||
return bytes.Compare(a[:], b[:]) < 0
|
||||
}
|
||||
|
||||
// Swap implements sort.Interface
|
||||
func (fi *fastIterator) Swap(i, j int) {
|
||||
fi.iterators[i], fi.iterators[j] = fi.iterators[j], fi.iterators[i]
|
||||
}
|
||||
|
||||
// Next implements the Iterator interface. It returns false if no more elemnts
|
||||
// can be retrieved (false == exhausted)
|
||||
func (fi *fastIterator) Next() bool {
|
||||
if len(fi.iterators) == 0 {
|
||||
return false
|
||||
}
|
||||
if !fi.initiated {
|
||||
// Don't forward first time -- we had to 'Next' once in order to
|
||||
// do the sorting already
|
||||
fi.initiated = true
|
||||
return true
|
||||
}
|
||||
return fi.innerNext(0)
|
||||
}
|
||||
|
||||
// innerNext handles the next operation internally,
|
||||
// and should be invoked when we know that two elements in the list may have
|
||||
// the same value.
|
||||
// For example, if the list becomes [2,3,5,5,8,9,10], then we should invoke
|
||||
// innerNext(3), which will call Next on elem 3 (the second '5'). It will continue
|
||||
// along the list and apply the same operation if needed
|
||||
func (fi *fastIterator) innerNext(pos int) bool {
|
||||
if !fi.iterators[pos].Next() {
|
||||
//Exhausted, remove this iterator
|
||||
fi.remove(pos)
|
||||
if len(fi.iterators) == 0 {
|
||||
return false
|
||||
}
|
||||
return true
|
||||
}
|
||||
if pos == len(fi.iterators)-1 {
|
||||
// Only one iterator left
|
||||
return true
|
||||
}
|
||||
// We next:ed the elem at 'pos'. Now we may have to re-sort that elem
|
||||
val, neighbour := fi.iterators[pos].Key(), fi.iterators[pos+1].Key()
|
||||
diff := bytes.Compare(val[:], neighbour[:])
|
||||
if diff < 0 {
|
||||
// It is still in correct place
|
||||
return true
|
||||
}
|
||||
if diff == 0 {
|
||||
// It has same value as the neighbour. So still in correct place, but
|
||||
// we need to iterate on the neighbour
|
||||
fi.innerNext(pos + 1)
|
||||
return true
|
||||
}
|
||||
// At this point, the elem is in the wrong location, but the
|
||||
// remaining list is sorted. Find out where to move the elem
|
||||
iterationNeeded := false
|
||||
index := sort.Search(len(fi.iterators), func(n int) bool {
|
||||
if n <= pos {
|
||||
// No need to search 'behind' us
|
||||
return false
|
||||
}
|
||||
if n == len(fi.iterators)-1 {
|
||||
// Can always place an elem last
|
||||
return true
|
||||
}
|
||||
neighbour := fi.iterators[n+1].Key()
|
||||
diff := bytes.Compare(val[:], neighbour[:])
|
||||
if diff == 0 {
|
||||
// The elem we're placing it next to has the same value,
|
||||
// so it's going to need further iteration
|
||||
iterationNeeded = true
|
||||
}
|
||||
return diff < 0
|
||||
})
|
||||
fi.move(pos, index)
|
||||
if iterationNeeded {
|
||||
fi.innerNext(index)
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// move moves an iterator to another position in the list
|
||||
func (fi *fastIterator) move(index, newpos int) {
|
||||
if newpos > len(fi.iterators)-1 {
|
||||
newpos = len(fi.iterators) - 1
|
||||
}
|
||||
var (
|
||||
elem = fi.iterators[index]
|
||||
middle = fi.iterators[index+1 : newpos+1]
|
||||
suffix []Iterator
|
||||
)
|
||||
if newpos < len(fi.iterators)-1 {
|
||||
suffix = fi.iterators[newpos+1:]
|
||||
}
|
||||
fi.iterators = append(fi.iterators[:index], middle...)
|
||||
fi.iterators = append(fi.iterators, elem)
|
||||
fi.iterators = append(fi.iterators, suffix...)
|
||||
}
|
||||
|
||||
// remove drops an iterator from the list
|
||||
func (fi *fastIterator) remove(index int) {
|
||||
fi.iterators = append(fi.iterators[:index], fi.iterators[index+1:]...)
|
||||
}
|
||||
|
||||
// Key returns the current key
|
||||
func (fi *fastIterator) Key() common.Hash {
|
||||
return fi.iterators[0].Key()
|
||||
}
|
||||
|
||||
func (fi *fastIterator) Seek(key common.Hash) {
|
||||
// We need to apply this across all iterators
|
||||
var seen = make(map[common.Hash]struct{})
|
||||
|
||||
length := len(fi.iterators)
|
||||
for i, it := range fi.iterators {
|
||||
it.Seek(key)
|
||||
for {
|
||||
if !it.Next() {
|
||||
// To be removed
|
||||
// swap it to the last position for now
|
||||
fi.iterators[i], fi.iterators[length-1] = fi.iterators[length-1], fi.iterators[i]
|
||||
length--
|
||||
break
|
||||
}
|
||||
v := it.Key()
|
||||
if _, exist := seen[v]; !exist {
|
||||
seen[v] = struct{}{}
|
||||
break
|
||||
}
|
||||
}
|
||||
}
|
||||
// Now remove those that were placed in the end
|
||||
fi.iterators = fi.iterators[:length]
|
||||
// The list is now totally unsorted, need to re-sort the entire list
|
||||
sort.Sort(fi)
|
||||
fi.initiated = false
|
||||
}
|
||||
|
||||
// The fast iterator does not query parents as much.
|
||||
func (dl *diffLayer) newFastIterator() Iterator {
|
||||
f := &fastIterator{dl.iterators(), false}
|
||||
f.Seek(common.Hash{})
|
||||
return f
|
||||
}
|
||||
|
||||
// Debug is a convencience helper during testing
|
||||
func (fi *fastIterator) Debug() {
|
||||
for _, it := range fi.iterators {
|
||||
fmt.Printf(" %v ", it.Key()[31])
|
||||
}
|
||||
fmt.Println()
|
||||
}
|
||||
|
|
|
@ -18,6 +18,7 @@ package snapshot
|
|||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/binary"
|
||||
"math/big"
|
||||
"math/rand"
|
||||
"testing"
|
||||
|
@ -347,3 +348,365 @@ func BenchmarkJournal(b *testing.B) {
|
|||
layer.Journal(new(bytes.Buffer))
|
||||
}
|
||||
}
|
||||
|
||||
// TestIteratorBasics tests some simple single-layer iteration
|
||||
func TestIteratorBasics(t *testing.T) {
|
||||
var (
|
||||
accounts = make(map[common.Hash][]byte)
|
||||
storage = make(map[common.Hash]map[common.Hash][]byte)
|
||||
)
|
||||
// Fill up a parent
|
||||
for i := 0; i < 100; i++ {
|
||||
h := randomHash()
|
||||
data := randomAccount()
|
||||
accounts[h] = data
|
||||
if rand.Intn(20) < 10 {
|
||||
accStorage := make(map[common.Hash][]byte)
|
||||
value := make([]byte, 32)
|
||||
rand.Read(value)
|
||||
accStorage[randomHash()] = value
|
||||
storage[h] = accStorage
|
||||
}
|
||||
}
|
||||
// Add some (identical) layers on top
|
||||
parent := newDiffLayer(emptyLayer{}, common.Hash{}, accounts, storage)
|
||||
it := parent.newIterator()
|
||||
verifyIterator(t, 100, it)
|
||||
}
|
||||
|
||||
type testIterator struct {
|
||||
values []byte
|
||||
}
|
||||
|
||||
func newTestIterator(values ...byte) *testIterator {
|
||||
return &testIterator{values}
|
||||
}
|
||||
func (ti *testIterator) Next() bool {
|
||||
ti.values = ti.values[1:]
|
||||
if len(ti.values) == 0 {
|
||||
return false
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
func (ti *testIterator) Key() common.Hash {
|
||||
return common.BytesToHash([]byte{ti.values[0]})
|
||||
}
|
||||
|
||||
func (ti *testIterator) Seek(common.Hash) {
|
||||
panic("implement me")
|
||||
}
|
||||
|
||||
func TestFastIteratorBasics(t *testing.T) {
|
||||
type testCase struct {
|
||||
lists [][]byte
|
||||
expKeys []byte
|
||||
}
|
||||
for i, tc := range []testCase{
|
||||
{lists: [][]byte{{0, 1, 8}, {1, 2, 8}, {2, 9}, {4},
|
||||
{7, 14, 15}, {9, 13, 15, 16}},
|
||||
expKeys: []byte{0, 1, 2, 4, 7, 8, 9, 13, 14, 15, 16}},
|
||||
{lists: [][]byte{{0, 8}, {1, 2, 8}, {7, 14, 15}, {8, 9},
|
||||
{9, 10}, {10, 13, 15, 16}},
|
||||
expKeys: []byte{0, 1, 2, 7, 8, 9, 10, 13, 14, 15, 16}},
|
||||
} {
|
||||
var iterators []Iterator
|
||||
for _, data := range tc.lists {
|
||||
iterators = append(iterators, newTestIterator(data...))
|
||||
|
||||
}
|
||||
fi := &fastIterator{
|
||||
iterators: iterators,
|
||||
initiated: false,
|
||||
}
|
||||
count := 0
|
||||
for fi.Next() {
|
||||
if got, exp := fi.Key()[31], tc.expKeys[count]; exp != got {
|
||||
t.Errorf("tc %d, [%d]: got %d exp %d", i, count, got, exp)
|
||||
}
|
||||
count++
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func verifyIterator(t *testing.T, expCount int, it Iterator) {
|
||||
var (
|
||||
i = 0
|
||||
last = common.Hash{}
|
||||
)
|
||||
for it.Next() {
|
||||
v := it.Key()
|
||||
if bytes.Compare(last[:], v[:]) >= 0 {
|
||||
t.Errorf("Wrong order:\n%x \n>=\n%x", last, v)
|
||||
}
|
||||
i++
|
||||
}
|
||||
if i != expCount {
|
||||
t.Errorf("iterator len wrong, expected %d, got %d", expCount, i)
|
||||
}
|
||||
}
|
||||
|
||||
// TestIteratorTraversal tests some simple multi-layer iteration
|
||||
func TestIteratorTraversal(t *testing.T) {
|
||||
var (
|
||||
storage = make(map[common.Hash]map[common.Hash][]byte)
|
||||
)
|
||||
|
||||
mkAccounts := func(args ...string) map[common.Hash][]byte {
|
||||
accounts := make(map[common.Hash][]byte)
|
||||
for _, h := range args {
|
||||
accounts[common.HexToHash(h)] = randomAccount()
|
||||
}
|
||||
return accounts
|
||||
}
|
||||
// entries in multiple layers should only become output once
|
||||
parent := newDiffLayer(emptyLayer{}, common.Hash{},
|
||||
mkAccounts("0xaa", "0xee", "0xff", "0xf0"), storage)
|
||||
|
||||
child := parent.Update(common.Hash{},
|
||||
mkAccounts("0xbb", "0xdd", "0xf0"), storage)
|
||||
|
||||
child = child.Update(common.Hash{},
|
||||
mkAccounts("0xcc", "0xf0", "0xff"), storage)
|
||||
|
||||
// single layer iterator
|
||||
verifyIterator(t, 3, child.newIterator())
|
||||
// multi-layered binary iterator
|
||||
verifyIterator(t, 7, child.newBinaryIterator())
|
||||
// multi-layered fast iterator
|
||||
verifyIterator(t, 7, child.newFastIterator())
|
||||
}
|
||||
|
||||
func TestIteratorLargeTraversal(t *testing.T) {
|
||||
// This testcase is a bit notorious -- all layers contain the exact
|
||||
// same 200 accounts.
|
||||
var storage = make(map[common.Hash]map[common.Hash][]byte)
|
||||
mkAccounts := func(num int) map[common.Hash][]byte {
|
||||
accounts := make(map[common.Hash][]byte)
|
||||
for i := 0; i < num; i++ {
|
||||
h := common.Hash{}
|
||||
binary.BigEndian.PutUint64(h[:], uint64(i+1))
|
||||
accounts[h] = randomAccount()
|
||||
}
|
||||
return accounts
|
||||
}
|
||||
parent := newDiffLayer(emptyLayer{}, common.Hash{},
|
||||
mkAccounts(200), storage)
|
||||
child := parent.Update(common.Hash{},
|
||||
mkAccounts(200), storage)
|
||||
for i := 2; i < 100; i++ {
|
||||
child = child.Update(common.Hash{},
|
||||
mkAccounts(200), storage)
|
||||
}
|
||||
// single layer iterator
|
||||
verifyIterator(t, 200, child.newIterator())
|
||||
// multi-layered binary iterator
|
||||
verifyIterator(t, 200, child.newBinaryIterator())
|
||||
// multi-layered fast iterator
|
||||
verifyIterator(t, 200, child.newFastIterator())
|
||||
}
|
||||
|
||||
// BenchmarkIteratorTraversal is a bit a bit notorious -- all layers contain the exact
|
||||
// same 200 accounts. That means that we need to process 2000 items, but only
|
||||
// spit out 200 values eventually.
|
||||
//
|
||||
//BenchmarkIteratorTraversal/binary_iterator-6 2008 573290 ns/op 9520 B/op 199 allocs/op
|
||||
//BenchmarkIteratorTraversal/fast_iterator-6 1946 575596 ns/op 20146 B/op 134 allocs/op
|
||||
func BenchmarkIteratorTraversal(b *testing.B) {
|
||||
|
||||
var storage = make(map[common.Hash]map[common.Hash][]byte)
|
||||
|
||||
mkAccounts := func(num int) map[common.Hash][]byte {
|
||||
accounts := make(map[common.Hash][]byte)
|
||||
for i := 0; i < num; i++ {
|
||||
h := common.Hash{}
|
||||
binary.BigEndian.PutUint64(h[:], uint64(i+1))
|
||||
accounts[h] = randomAccount()
|
||||
}
|
||||
return accounts
|
||||
}
|
||||
parent := newDiffLayer(emptyLayer{}, common.Hash{},
|
||||
mkAccounts(200), storage)
|
||||
|
||||
child := parent.Update(common.Hash{},
|
||||
mkAccounts(200), storage)
|
||||
|
||||
for i := 2; i < 100; i++ {
|
||||
child = child.Update(common.Hash{},
|
||||
mkAccounts(200), storage)
|
||||
|
||||
}
|
||||
// We call this once before the benchmark, so the creation of
|
||||
// sorted accountlists are not included in the results.
|
||||
child.newBinaryIterator()
|
||||
b.Run("binary iterator", func(b *testing.B) {
|
||||
for i := 0; i < b.N; i++ {
|
||||
got := 0
|
||||
it := child.newBinaryIterator()
|
||||
for it.Next() {
|
||||
got++
|
||||
}
|
||||
if exp := 200; got != exp {
|
||||
b.Errorf("iterator len wrong, expected %d, got %d", exp, got)
|
||||
}
|
||||
}
|
||||
})
|
||||
b.Run("fast iterator", func(b *testing.B) {
|
||||
for i := 0; i < b.N; i++ {
|
||||
got := 0
|
||||
it := child.newFastIterator()
|
||||
for it.Next() {
|
||||
got++
|
||||
}
|
||||
if exp := 200; got != exp {
|
||||
b.Errorf("iterator len wrong, expected %d, got %d", exp, got)
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
// BenchmarkIteratorLargeBaselayer is a pretty realistic benchmark, where
|
||||
// the baselayer is a lot larger than the upper layer.
|
||||
//
|
||||
// This is heavy on the binary iterator, which in most cases will have to
|
||||
// call recursively 100 times for the majority of the values
|
||||
//
|
||||
// BenchmarkIteratorLargeBaselayer/binary_iterator-6 585 2067377 ns/op 9520 B/op 199 allocs/op
|
||||
// BenchmarkIteratorLargeBaselayer/fast_iterator-6 13198 91043 ns/op 8601 B/op 118 allocs/op
|
||||
func BenchmarkIteratorLargeBaselayer(b *testing.B) {
|
||||
var storage = make(map[common.Hash]map[common.Hash][]byte)
|
||||
|
||||
mkAccounts := func(num int) map[common.Hash][]byte {
|
||||
accounts := make(map[common.Hash][]byte)
|
||||
for i := 0; i < num; i++ {
|
||||
h := common.Hash{}
|
||||
binary.BigEndian.PutUint64(h[:], uint64(i+1))
|
||||
accounts[h] = randomAccount()
|
||||
}
|
||||
return accounts
|
||||
}
|
||||
|
||||
parent := newDiffLayer(emptyLayer{}, common.Hash{},
|
||||
mkAccounts(2000), storage)
|
||||
|
||||
child := parent.Update(common.Hash{},
|
||||
mkAccounts(20), storage)
|
||||
|
||||
for i := 2; i < 100; i++ {
|
||||
child = child.Update(common.Hash{},
|
||||
mkAccounts(20), storage)
|
||||
|
||||
}
|
||||
// We call this once before the benchmark, so the creation of
|
||||
// sorted accountlists are not included in the results.
|
||||
child.newBinaryIterator()
|
||||
b.Run("binary iterator", func(b *testing.B) {
|
||||
for i := 0; i < b.N; i++ {
|
||||
got := 0
|
||||
it := child.newBinaryIterator()
|
||||
for it.Next() {
|
||||
got++
|
||||
}
|
||||
if exp := 2000; got != exp {
|
||||
b.Errorf("iterator len wrong, expected %d, got %d", exp, got)
|
||||
}
|
||||
}
|
||||
})
|
||||
b.Run("fast iterator", func(b *testing.B) {
|
||||
for i := 0; i < b.N; i++ {
|
||||
got := 0
|
||||
it := child.newFastIterator()
|
||||
for it.Next() {
|
||||
got++
|
||||
}
|
||||
if exp := 2000; got != exp {
|
||||
b.Errorf("iterator len wrong, expected %d, got %d", exp, got)
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
// TestIteratorFlatting tests what happens when we
|
||||
// - have a live iterator on child C (parent C1 -> C2 .. CN)
|
||||
// - flattens C2 all the way into CN
|
||||
// - continues iterating
|
||||
// Right now, this "works" simply because the keys do not change -- the
|
||||
// iterator is not aware that a layer has become stale. This naive
|
||||
// solution probably won't work in the long run, however
|
||||
func TestIteratorFlattning(t *testing.T) {
|
||||
var (
|
||||
storage = make(map[common.Hash]map[common.Hash][]byte)
|
||||
)
|
||||
mkAccounts := func(args ...string) map[common.Hash][]byte {
|
||||
accounts := make(map[common.Hash][]byte)
|
||||
for _, h := range args {
|
||||
accounts[common.HexToHash(h)] = randomAccount()
|
||||
}
|
||||
return accounts
|
||||
}
|
||||
// entries in multiple layers should only become output once
|
||||
parent := newDiffLayer(emptyLayer{}, common.Hash{},
|
||||
mkAccounts("0xaa", "0xee", "0xff", "0xf0"), storage)
|
||||
|
||||
child := parent.Update(common.Hash{},
|
||||
mkAccounts("0xbb", "0xdd", "0xf0"), storage)
|
||||
|
||||
child = child.Update(common.Hash{},
|
||||
mkAccounts("0xcc", "0xf0", "0xff"), storage)
|
||||
|
||||
it := child.newFastIterator()
|
||||
child.parent.(*diffLayer).flatten()
|
||||
// The parent should now be stale
|
||||
verifyIterator(t, 7, it)
|
||||
}
|
||||
|
||||
func TestIteratorSeek(t *testing.T) {
|
||||
storage := make(map[common.Hash]map[common.Hash][]byte)
|
||||
mkAccounts := func(args ...string) map[common.Hash][]byte {
|
||||
accounts := make(map[common.Hash][]byte)
|
||||
for _, h := range args {
|
||||
accounts[common.HexToHash(h)] = randomAccount()
|
||||
}
|
||||
return accounts
|
||||
}
|
||||
parent := newDiffLayer(emptyLayer{}, common.Hash{},
|
||||
mkAccounts("0xaa", "0xee", "0xff", "0xf0"), storage)
|
||||
it := parent.newIterator()
|
||||
// expected: ee, f0, ff
|
||||
it.Seek(common.HexToHash("0xdd"))
|
||||
verifyIterator(t, 3, it)
|
||||
|
||||
it = parent.newIterator().(*dlIterator)
|
||||
// expected: ee, f0, ff
|
||||
it.Seek(common.HexToHash("0xaa"))
|
||||
verifyIterator(t, 3, it)
|
||||
|
||||
it = parent.newIterator().(*dlIterator)
|
||||
// expected: nothing
|
||||
it.Seek(common.HexToHash("0xff"))
|
||||
verifyIterator(t, 0, it)
|
||||
|
||||
child := parent.Update(common.Hash{},
|
||||
mkAccounts("0xbb", "0xdd", "0xf0"), storage)
|
||||
|
||||
child = child.Update(common.Hash{},
|
||||
mkAccounts("0xcc", "0xf0", "0xff"), storage)
|
||||
|
||||
it = child.newFastIterator()
|
||||
// expected: cc, dd, ee, f0, ff
|
||||
it.Seek(common.HexToHash("0xbb"))
|
||||
verifyIterator(t, 5, it)
|
||||
|
||||
it = child.newFastIterator()
|
||||
it.Seek(common.HexToHash("0xef"))
|
||||
// exp: f0, ff
|
||||
verifyIterator(t, 2, it)
|
||||
|
||||
it = child.newFastIterator()
|
||||
it.Seek(common.HexToHash("0xf0"))
|
||||
verifyIterator(t, 1, it)
|
||||
|
||||
it.Seek(common.HexToHash("0xff"))
|
||||
verifyIterator(t, 0, it)
|
||||
|
||||
}
|
||||
|
|
|
@ -0,0 +1,60 @@
|
|||
|
||||
## How the fast iterator works
|
||||
|
||||
Consider the following example, where we have `6` iterators, sorted from
|
||||
left to right in ascending order.
|
||||
|
||||
Our 'primary' `A` iterator is on the left, containing the elements `[0,1,8]`
|
||||
```
|
||||
A B C D E F
|
||||
|
||||
0 1 2 4 7 9
|
||||
1 2 9 - 14 13
|
||||
8 8 - 15 15
|
||||
- - - 16
|
||||
-
|
||||
```
|
||||
When we call `Next` on the primary iterator, we get (ignoring the future keys)
|
||||
|
||||
```
|
||||
A B C D E F
|
||||
|
||||
1 1 2 4 7 9
|
||||
```
|
||||
We detect that we now got an equality between our element and the next element.
|
||||
And we need to continue `Next`ing on the next element
|
||||
|
||||
```
|
||||
1 2 2 4 7 9
|
||||
```
|
||||
And move on:
|
||||
```
|
||||
A B C D E F
|
||||
|
||||
1 2 9 4 7 9
|
||||
```
|
||||
Now we broke out of the equality, but we need to re-sort the element `C`
|
||||
|
||||
```
|
||||
A B D E F C
|
||||
|
||||
1 2 4 7 9 9
|
||||
```
|
||||
|
||||
And after shifting it rightwards, we check equality again, and find `C == F`, and thus
|
||||
call `Next` on `C`
|
||||
|
||||
```
|
||||
A B D E F C
|
||||
|
||||
1 2 4 7 9 -
|
||||
```
|
||||
At this point, `C` was exhausted, and is removed
|
||||
|
||||
```
|
||||
A B D E F
|
||||
|
||||
1 2 4 7 9
|
||||
```
|
||||
And we're done with this step.
|
||||
|
Loading…
Reference in New Issue