Merge branch 'develop'

This commit is contained in:
obscuren 2015-05-26 14:51:41 +02:00
commit 2f2dd80e48
30 changed files with 7998 additions and 1486 deletions

4
Godeps/Godeps.json generated
View File

@ -15,6 +15,10 @@
"Comment": "1.2.0-95-g9b2bd2b", "Comment": "1.2.0-95-g9b2bd2b",
"Rev": "9b2bd2b3489748d4d0a204fa4eb2ee9e89e0ebc6" "Rev": "9b2bd2b3489748d4d0a204fa4eb2ee9e89e0ebc6"
}, },
{
"ImportPath": "github.com/davecgh/go-spew/spew",
"Rev": "3e6e67c4dcea3ac2f25fd4731abc0e1deaf36216"
},
{ {
"ImportPath": "github.com/ethereum/ethash", "ImportPath": "github.com/ethereum/ethash",
"Comment": "v23.1-206-gf0e6321", "Comment": "v23.1-206-gf0e6321",

View File

@ -0,0 +1,450 @@
/*
* Copyright (c) 2013 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew
import (
"bytes"
"fmt"
"io"
"reflect"
"sort"
"strconv"
"unsafe"
)
const (
// ptrSize is the size of a pointer on the current arch.
ptrSize = unsafe.Sizeof((*byte)(nil))
)
var (
// offsetPtr, offsetScalar, and offsetFlag are the offsets for the
// internal reflect.Value fields. These values are valid before golang
// commit ecccf07e7f9d which changed the format. The are also valid
// after commit 82f48826c6c7 which changed the format again to mirror
// the original format. Code in the init function updates these offsets
// as necessary.
offsetPtr = uintptr(ptrSize)
offsetScalar = uintptr(0)
offsetFlag = uintptr(ptrSize * 2)
// flagKindWidth and flagKindShift indicate various bits that the
// reflect package uses internally to track kind information.
//
// flagRO indicates whether or not the value field of a reflect.Value is
// read-only.
//
// flagIndir indicates whether the value field of a reflect.Value is
// the actual data or a pointer to the data.
//
// These values are valid before golang commit 90a7c3c86944 which
// changed their positions. Code in the init function updates these
// flags as necessary.
flagKindWidth = uintptr(5)
flagKindShift = uintptr(flagKindWidth - 1)
flagRO = uintptr(1 << 0)
flagIndir = uintptr(1 << 1)
)
func init() {
// Older versions of reflect.Value stored small integers directly in the
// ptr field (which is named val in the older versions). Versions
// between commits ecccf07e7f9d and 82f48826c6c7 added a new field named
// scalar for this purpose which unfortunately came before the flag
// field, so the offset of the flag field is different for those
// versions.
//
// This code constructs a new reflect.Value from a known small integer
// and checks if the size of the reflect.Value struct indicates it has
// the scalar field. When it does, the offsets are updated accordingly.
vv := reflect.ValueOf(0xf00)
if unsafe.Sizeof(vv) == (ptrSize * 4) {
offsetScalar = ptrSize * 2
offsetFlag = ptrSize * 3
}
// Commit 90a7c3c86944 changed the flag positions such that the low
// order bits are the kind. This code extracts the kind from the flags
// field and ensures it's the correct type. When it's not, the flag
// order has been changed to the newer format, so the flags are updated
// accordingly.
upf := unsafe.Pointer(uintptr(unsafe.Pointer(&vv)) + offsetFlag)
upfv := *(*uintptr)(upf)
flagKindMask := uintptr((1<<flagKindWidth - 1) << flagKindShift)
if (upfv&flagKindMask)>>flagKindShift != uintptr(reflect.Int) {
flagKindShift = 0
flagRO = 1 << 5
flagIndir = 1 << 6
}
}
// unsafeReflectValue converts the passed reflect.Value into a one that bypasses
// the typical safety restrictions preventing access to unaddressable and
// unexported data. It works by digging the raw pointer to the underlying
// value out of the protected value and generating a new unprotected (unsafe)
// reflect.Value to it.
//
// This allows us to check for implementations of the Stringer and error
// interfaces to be used for pretty printing ordinarily unaddressable and
// inaccessible values such as unexported struct fields.
func unsafeReflectValue(v reflect.Value) (rv reflect.Value) {
indirects := 1
vt := v.Type()
upv := unsafe.Pointer(uintptr(unsafe.Pointer(&v)) + offsetPtr)
rvf := *(*uintptr)(unsafe.Pointer(uintptr(unsafe.Pointer(&v)) + offsetFlag))
if rvf&flagIndir != 0 {
vt = reflect.PtrTo(v.Type())
indirects++
} else if offsetScalar != 0 {
// The value is in the scalar field when it's not one of the
// reference types.
switch vt.Kind() {
case reflect.Uintptr:
case reflect.Chan:
case reflect.Func:
case reflect.Map:
case reflect.Ptr:
case reflect.UnsafePointer:
default:
upv = unsafe.Pointer(uintptr(unsafe.Pointer(&v)) +
offsetScalar)
}
}
pv := reflect.NewAt(vt, upv)
rv = pv
for i := 0; i < indirects; i++ {
rv = rv.Elem()
}
return rv
}
// Some constants in the form of bytes to avoid string overhead. This mirrors
// the technique used in the fmt package.
var (
panicBytes = []byte("(PANIC=")
plusBytes = []byte("+")
iBytes = []byte("i")
trueBytes = []byte("true")
falseBytes = []byte("false")
interfaceBytes = []byte("(interface {})")
commaNewlineBytes = []byte(",\n")
newlineBytes = []byte("\n")
openBraceBytes = []byte("{")
openBraceNewlineBytes = []byte("{\n")
closeBraceBytes = []byte("}")
asteriskBytes = []byte("*")
colonBytes = []byte(":")
colonSpaceBytes = []byte(": ")
openParenBytes = []byte("(")
closeParenBytes = []byte(")")
spaceBytes = []byte(" ")
pointerChainBytes = []byte("->")
nilAngleBytes = []byte("<nil>")
maxNewlineBytes = []byte("<max depth reached>\n")
maxShortBytes = []byte("<max>")
circularBytes = []byte("<already shown>")
circularShortBytes = []byte("<shown>")
invalidAngleBytes = []byte("<invalid>")
openBracketBytes = []byte("[")
closeBracketBytes = []byte("]")
percentBytes = []byte("%")
precisionBytes = []byte(".")
openAngleBytes = []byte("<")
closeAngleBytes = []byte(">")
openMapBytes = []byte("map[")
closeMapBytes = []byte("]")
lenEqualsBytes = []byte("len=")
capEqualsBytes = []byte("cap=")
)
// hexDigits is used to map a decimal value to a hex digit.
var hexDigits = "0123456789abcdef"
// catchPanic handles any panics that might occur during the handleMethods
// calls.
func catchPanic(w io.Writer, v reflect.Value) {
if err := recover(); err != nil {
w.Write(panicBytes)
fmt.Fprintf(w, "%v", err)
w.Write(closeParenBytes)
}
}
// handleMethods attempts to call the Error and String methods on the underlying
// type the passed reflect.Value represents and outputes the result to Writer w.
//
// It handles panics in any called methods by catching and displaying the error
// as the formatted value.
func handleMethods(cs *ConfigState, w io.Writer, v reflect.Value) (handled bool) {
// We need an interface to check if the type implements the error or
// Stringer interface. However, the reflect package won't give us an
// interface on certain things like unexported struct fields in order
// to enforce visibility rules. We use unsafe to bypass these restrictions
// since this package does not mutate the values.
if !v.CanInterface() {
v = unsafeReflectValue(v)
}
// Choose whether or not to do error and Stringer interface lookups against
// the base type or a pointer to the base type depending on settings.
// Technically calling one of these methods with a pointer receiver can
// mutate the value, however, types which choose to satisify an error or
// Stringer interface with a pointer receiver should not be mutating their
// state inside these interface methods.
var viface interface{}
if !cs.DisablePointerMethods {
if !v.CanAddr() {
v = unsafeReflectValue(v)
}
viface = v.Addr().Interface()
} else {
if v.CanAddr() {
v = v.Addr()
}
viface = v.Interface()
}
// Is it an error or Stringer?
switch iface := viface.(type) {
case error:
defer catchPanic(w, v)
if cs.ContinueOnMethod {
w.Write(openParenBytes)
w.Write([]byte(iface.Error()))
w.Write(closeParenBytes)
w.Write(spaceBytes)
return false
}
w.Write([]byte(iface.Error()))
return true
case fmt.Stringer:
defer catchPanic(w, v)
if cs.ContinueOnMethod {
w.Write(openParenBytes)
w.Write([]byte(iface.String()))
w.Write(closeParenBytes)
w.Write(spaceBytes)
return false
}
w.Write([]byte(iface.String()))
return true
}
return false
}
// printBool outputs a boolean value as true or false to Writer w.
func printBool(w io.Writer, val bool) {
if val {
w.Write(trueBytes)
} else {
w.Write(falseBytes)
}
}
// printInt outputs a signed integer value to Writer w.
func printInt(w io.Writer, val int64, base int) {
w.Write([]byte(strconv.FormatInt(val, base)))
}
// printUint outputs an unsigned integer value to Writer w.
func printUint(w io.Writer, val uint64, base int) {
w.Write([]byte(strconv.FormatUint(val, base)))
}
// printFloat outputs a floating point value using the specified precision,
// which is expected to be 32 or 64bit, to Writer w.
func printFloat(w io.Writer, val float64, precision int) {
w.Write([]byte(strconv.FormatFloat(val, 'g', -1, precision)))
}
// printComplex outputs a complex value using the specified float precision
// for the real and imaginary parts to Writer w.
func printComplex(w io.Writer, c complex128, floatPrecision int) {
r := real(c)
w.Write(openParenBytes)
w.Write([]byte(strconv.FormatFloat(r, 'g', -1, floatPrecision)))
i := imag(c)
if i >= 0 {
w.Write(plusBytes)
}
w.Write([]byte(strconv.FormatFloat(i, 'g', -1, floatPrecision)))
w.Write(iBytes)
w.Write(closeParenBytes)
}
// printHexPtr outputs a uintptr formatted as hexidecimal with a leading '0x'
// prefix to Writer w.
func printHexPtr(w io.Writer, p uintptr) {
// Null pointer.
num := uint64(p)
if num == 0 {
w.Write(nilAngleBytes)
return
}
// Max uint64 is 16 bytes in hex + 2 bytes for '0x' prefix
buf := make([]byte, 18)
// It's simpler to construct the hex string right to left.
base := uint64(16)
i := len(buf) - 1
for num >= base {
buf[i] = hexDigits[num%base]
num /= base
i--
}
buf[i] = hexDigits[num]
// Add '0x' prefix.
i--
buf[i] = 'x'
i--
buf[i] = '0'
// Strip unused leading bytes.
buf = buf[i:]
w.Write(buf)
}
// valuesSorter implements sort.Interface to allow a slice of reflect.Value
// elements to be sorted.
type valuesSorter struct {
values []reflect.Value
strings []string // either nil or same len and values
cs *ConfigState
}
// newValuesSorter initializes a valuesSorter instance, which holds a set of
// surrogate keys on which the data should be sorted. It uses flags in
// ConfigState to decide if and how to populate those surrogate keys.
func newValuesSorter(values []reflect.Value, cs *ConfigState) sort.Interface {
vs := &valuesSorter{values: values, cs: cs}
if canSortSimply(vs.values[0].Kind()) {
return vs
}
if !cs.DisableMethods {
vs.strings = make([]string, len(values))
for i := range vs.values {
b := bytes.Buffer{}
if !handleMethods(cs, &b, vs.values[i]) {
vs.strings = nil
break
}
vs.strings[i] = b.String()
}
}
if vs.strings == nil && cs.SpewKeys {
vs.strings = make([]string, len(values))
for i := range vs.values {
vs.strings[i] = Sprintf("%#v", vs.values[i].Interface())
}
}
return vs
}
// canSortSimply tests whether a reflect.Kind is a primitive that can be sorted
// directly, or whether it should be considered for sorting by surrogate keys
// (if the ConfigState allows it).
func canSortSimply(kind reflect.Kind) bool {
// This switch parallels valueSortLess, except for the default case.
switch kind {
case reflect.Bool:
return true
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
return true
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
return true
case reflect.Float32, reflect.Float64:
return true
case reflect.String:
return true
case reflect.Uintptr:
return true
case reflect.Array:
return true
}
return false
}
// Len returns the number of values in the slice. It is part of the
// sort.Interface implementation.
func (s *valuesSorter) Len() int {
return len(s.values)
}
// Swap swaps the values at the passed indices. It is part of the
// sort.Interface implementation.
func (s *valuesSorter) Swap(i, j int) {
s.values[i], s.values[j] = s.values[j], s.values[i]
if s.strings != nil {
s.strings[i], s.strings[j] = s.strings[j], s.strings[i]
}
}
// valueSortLess returns whether the first value should sort before the second
// value. It is used by valueSorter.Less as part of the sort.Interface
// implementation.
func valueSortLess(a, b reflect.Value) bool {
switch a.Kind() {
case reflect.Bool:
return !a.Bool() && b.Bool()
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
return a.Int() < b.Int()
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
return a.Uint() < b.Uint()
case reflect.Float32, reflect.Float64:
return a.Float() < b.Float()
case reflect.String:
return a.String() < b.String()
case reflect.Uintptr:
return a.Uint() < b.Uint()
case reflect.Array:
// Compare the contents of both arrays.
l := a.Len()
for i := 0; i < l; i++ {
av := a.Index(i)
bv := b.Index(i)
if av.Interface() == bv.Interface() {
continue
}
return valueSortLess(av, bv)
}
}
return a.String() < b.String()
}
// Less returns whether the value at index i should sort before the
// value at index j. It is part of the sort.Interface implementation.
func (s *valuesSorter) Less(i, j int) bool {
if s.strings == nil {
return valueSortLess(s.values[i], s.values[j])
}
return s.strings[i] < s.strings[j]
}
// sortValues is a sort function that handles both native types and any type that
// can be converted to error or Stringer. Other inputs are sorted according to
// their Value.String() value to ensure display stability.
func sortValues(values []reflect.Value, cs *ConfigState) {
if len(values) == 0 {
return
}
sort.Sort(newValuesSorter(values, cs))
}

View File

@ -0,0 +1,298 @@
/*
* Copyright (c) 2013 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew_test
import (
"fmt"
"reflect"
"testing"
"github.com/davecgh/go-spew/spew"
)
// custom type to test Stinger interface on non-pointer receiver.
type stringer string
// String implements the Stringer interface for testing invocation of custom
// stringers on types with non-pointer receivers.
func (s stringer) String() string {
return "stringer " + string(s)
}
// custom type to test Stinger interface on pointer receiver.
type pstringer string
// String implements the Stringer interface for testing invocation of custom
// stringers on types with only pointer receivers.
func (s *pstringer) String() string {
return "stringer " + string(*s)
}
// xref1 and xref2 are cross referencing structs for testing circular reference
// detection.
type xref1 struct {
ps2 *xref2
}
type xref2 struct {
ps1 *xref1
}
// indirCir1, indirCir2, and indirCir3 are used to generate an indirect circular
// reference for testing detection.
type indirCir1 struct {
ps2 *indirCir2
}
type indirCir2 struct {
ps3 *indirCir3
}
type indirCir3 struct {
ps1 *indirCir1
}
// embed is used to test embedded structures.
type embed struct {
a string
}
// embedwrap is used to test embedded structures.
type embedwrap struct {
*embed
e *embed
}
// panicer is used to intentionally cause a panic for testing spew properly
// handles them
type panicer int
func (p panicer) String() string {
panic("test panic")
}
// customError is used to test custom error interface invocation.
type customError int
func (e customError) Error() string {
return fmt.Sprintf("error: %d", int(e))
}
// stringizeWants converts a slice of wanted test output into a format suitable
// for a test error message.
func stringizeWants(wants []string) string {
s := ""
for i, want := range wants {
if i > 0 {
s += fmt.Sprintf("want%d: %s", i+1, want)
} else {
s += "want: " + want
}
}
return s
}
// testFailed returns whether or not a test failed by checking if the result
// of the test is in the slice of wanted strings.
func testFailed(result string, wants []string) bool {
for _, want := range wants {
if result == want {
return false
}
}
return true
}
type sortableStruct struct {
x int
}
func (ss sortableStruct) String() string {
return fmt.Sprintf("ss.%d", ss.x)
}
type unsortableStruct struct {
x int
}
type sortTestCase struct {
input []reflect.Value
expected []reflect.Value
}
func helpTestSortValues(tests []sortTestCase, cs *spew.ConfigState, t *testing.T) {
getInterfaces := func(values []reflect.Value) []interface{} {
interfaces := []interface{}{}
for _, v := range values {
interfaces = append(interfaces, v.Interface())
}
return interfaces
}
for _, test := range tests {
spew.SortValues(test.input, cs)
// reflect.DeepEqual cannot really make sense of reflect.Value,
// probably because of all the pointer tricks. For instance,
// v(2.0) != v(2.0) on a 32-bits system. Turn them into interface{}
// instead.
input := getInterfaces(test.input)
expected := getInterfaces(test.expected)
if !reflect.DeepEqual(input, expected) {
t.Errorf("Sort mismatch:\n %v != %v", input, expected)
}
}
}
// TestSortValues ensures the sort functionality for relect.Value based sorting
// works as intended.
func TestSortValues(t *testing.T) {
v := reflect.ValueOf
a := v("a")
b := v("b")
c := v("c")
embedA := v(embed{"a"})
embedB := v(embed{"b"})
embedC := v(embed{"c"})
tests := []sortTestCase{
// No values.
{
[]reflect.Value{},
[]reflect.Value{},
},
// Bools.
{
[]reflect.Value{v(false), v(true), v(false)},
[]reflect.Value{v(false), v(false), v(true)},
},
// Ints.
{
[]reflect.Value{v(2), v(1), v(3)},
[]reflect.Value{v(1), v(2), v(3)},
},
// Uints.
{
[]reflect.Value{v(uint8(2)), v(uint8(1)), v(uint8(3))},
[]reflect.Value{v(uint8(1)), v(uint8(2)), v(uint8(3))},
},
// Floats.
{
[]reflect.Value{v(2.0), v(1.0), v(3.0)},
[]reflect.Value{v(1.0), v(2.0), v(3.0)},
},
// Strings.
{
[]reflect.Value{b, a, c},
[]reflect.Value{a, b, c},
},
// Array
{
[]reflect.Value{v([3]int{3, 2, 1}), v([3]int{1, 3, 2}), v([3]int{1, 2, 3})},
[]reflect.Value{v([3]int{1, 2, 3}), v([3]int{1, 3, 2}), v([3]int{3, 2, 1})},
},
// Uintptrs.
{
[]reflect.Value{v(uintptr(2)), v(uintptr(1)), v(uintptr(3))},
[]reflect.Value{v(uintptr(1)), v(uintptr(2)), v(uintptr(3))},
},
// SortableStructs.
{
// Note: not sorted - DisableMethods is set.
[]reflect.Value{v(sortableStruct{2}), v(sortableStruct{1}), v(sortableStruct{3})},
[]reflect.Value{v(sortableStruct{2}), v(sortableStruct{1}), v(sortableStruct{3})},
},
// UnsortableStructs.
{
// Note: not sorted - SpewKeys is false.
[]reflect.Value{v(unsortableStruct{2}), v(unsortableStruct{1}), v(unsortableStruct{3})},
[]reflect.Value{v(unsortableStruct{2}), v(unsortableStruct{1}), v(unsortableStruct{3})},
},
// Invalid.
{
[]reflect.Value{embedB, embedA, embedC},
[]reflect.Value{embedB, embedA, embedC},
},
}
cs := spew.ConfigState{DisableMethods: true, SpewKeys: false}
helpTestSortValues(tests, &cs, t)
}
// TestSortValuesWithMethods ensures the sort functionality for relect.Value
// based sorting works as intended when using string methods.
func TestSortValuesWithMethods(t *testing.T) {
v := reflect.ValueOf
a := v("a")
b := v("b")
c := v("c")
tests := []sortTestCase{
// Ints.
{
[]reflect.Value{v(2), v(1), v(3)},
[]reflect.Value{v(1), v(2), v(3)},
},
// Strings.
{
[]reflect.Value{b, a, c},
[]reflect.Value{a, b, c},
},
// SortableStructs.
{
[]reflect.Value{v(sortableStruct{2}), v(sortableStruct{1}), v(sortableStruct{3})},
[]reflect.Value{v(sortableStruct{1}), v(sortableStruct{2}), v(sortableStruct{3})},
},
// UnsortableStructs.
{
// Note: not sorted - SpewKeys is false.
[]reflect.Value{v(unsortableStruct{2}), v(unsortableStruct{1}), v(unsortableStruct{3})},
[]reflect.Value{v(unsortableStruct{2}), v(unsortableStruct{1}), v(unsortableStruct{3})},
},
}
cs := spew.ConfigState{DisableMethods: false, SpewKeys: false}
helpTestSortValues(tests, &cs, t)
}
// TestSortValuesWithSpew ensures the sort functionality for relect.Value
// based sorting works as intended when using spew to stringify keys.
func TestSortValuesWithSpew(t *testing.T) {
v := reflect.ValueOf
a := v("a")
b := v("b")
c := v("c")
tests := []sortTestCase{
// Ints.
{
[]reflect.Value{v(2), v(1), v(3)},
[]reflect.Value{v(1), v(2), v(3)},
},
// Strings.
{
[]reflect.Value{b, a, c},
[]reflect.Value{a, b, c},
},
// SortableStructs.
{
[]reflect.Value{v(sortableStruct{2}), v(sortableStruct{1}), v(sortableStruct{3})},
[]reflect.Value{v(sortableStruct{1}), v(sortableStruct{2}), v(sortableStruct{3})},
},
// UnsortableStructs.
{
[]reflect.Value{v(unsortableStruct{2}), v(unsortableStruct{1}), v(unsortableStruct{3})},
[]reflect.Value{v(unsortableStruct{1}), v(unsortableStruct{2}), v(unsortableStruct{3})},
},
}
cs := spew.ConfigState{DisableMethods: true, SpewKeys: true}
helpTestSortValues(tests, &cs, t)
}

View File

@ -0,0 +1,294 @@
/*
* Copyright (c) 2013 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew
import (
"bytes"
"fmt"
"io"
"os"
)
// ConfigState houses the configuration options used by spew to format and
// display values. There is a global instance, Config, that is used to control
// all top-level Formatter and Dump functionality. Each ConfigState instance
// provides methods equivalent to the top-level functions.
//
// The zero value for ConfigState provides no indentation. You would typically
// want to set it to a space or a tab.
//
// Alternatively, you can use NewDefaultConfig to get a ConfigState instance
// with default settings. See the documentation of NewDefaultConfig for default
// values.
type ConfigState struct {
// Indent specifies the string to use for each indentation level. The
// global config instance that all top-level functions use set this to a
// single space by default. If you would like more indentation, you might
// set this to a tab with "\t" or perhaps two spaces with " ".
Indent string
// MaxDepth controls the maximum number of levels to descend into nested
// data structures. The default, 0, means there is no limit.
//
// NOTE: Circular data structures are properly detected, so it is not
// necessary to set this value unless you specifically want to limit deeply
// nested data structures.
MaxDepth int
// DisableMethods specifies whether or not error and Stringer interfaces are
// invoked for types that implement them.
DisableMethods bool
// DisablePointerMethods specifies whether or not to check for and invoke
// error and Stringer interfaces on types which only accept a pointer
// receiver when the current type is not a pointer.
//
// NOTE: This might be an unsafe action since calling one of these methods
// with a pointer receiver could technically mutate the value, however,
// in practice, types which choose to satisify an error or Stringer
// interface with a pointer receiver should not be mutating their state
// inside these interface methods.
DisablePointerMethods bool
// ContinueOnMethod specifies whether or not recursion should continue once
// a custom error or Stringer interface is invoked. The default, false,
// means it will print the results of invoking the custom error or Stringer
// interface and return immediately instead of continuing to recurse into
// the internals of the data type.
//
// NOTE: This flag does not have any effect if method invocation is disabled
// via the DisableMethods or DisablePointerMethods options.
ContinueOnMethod bool
// SortKeys specifies map keys should be sorted before being printed. Use
// this to have a more deterministic, diffable output. Note that only
// native types (bool, int, uint, floats, uintptr and string) and types
// that support the error or Stringer interfaces (if methods are
// enabled) are supported, with other types sorted according to the
// reflect.Value.String() output which guarantees display stability.
SortKeys bool
// SpewKeys specifies that, as a last resort attempt, map keys should
// be spewed to strings and sorted by those strings. This is only
// considered if SortKeys is true.
SpewKeys bool
}
// Config is the active configuration of the top-level functions.
// The configuration can be changed by modifying the contents of spew.Config.
var Config = ConfigState{Indent: " "}
// Errorf is a wrapper for fmt.Errorf that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the formatted string as a value that satisfies error. See NewFormatter
// for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Errorf(format, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Errorf(format string, a ...interface{}) (err error) {
return fmt.Errorf(format, c.convertArgs(a)...)
}
// Fprint is a wrapper for fmt.Fprint that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprint(w, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Fprint(w io.Writer, a ...interface{}) (n int, err error) {
return fmt.Fprint(w, c.convertArgs(a)...)
}
// Fprintf is a wrapper for fmt.Fprintf that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprintf(w, format, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error) {
return fmt.Fprintf(w, format, c.convertArgs(a)...)
}
// Fprintln is a wrapper for fmt.Fprintln that treats each argument as if it
// passed with a Formatter interface returned by c.NewFormatter. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprintln(w, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Fprintln(w io.Writer, a ...interface{}) (n int, err error) {
return fmt.Fprintln(w, c.convertArgs(a)...)
}
// Print is a wrapper for fmt.Print that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Print(c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Print(a ...interface{}) (n int, err error) {
return fmt.Print(c.convertArgs(a)...)
}
// Printf is a wrapper for fmt.Printf that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Printf(format, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Printf(format string, a ...interface{}) (n int, err error) {
return fmt.Printf(format, c.convertArgs(a)...)
}
// Println is a wrapper for fmt.Println that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Println(c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Println(a ...interface{}) (n int, err error) {
return fmt.Println(c.convertArgs(a)...)
}
// Sprint is a wrapper for fmt.Sprint that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprint(c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Sprint(a ...interface{}) string {
return fmt.Sprint(c.convertArgs(a)...)
}
// Sprintf is a wrapper for fmt.Sprintf that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprintf(format, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Sprintf(format string, a ...interface{}) string {
return fmt.Sprintf(format, c.convertArgs(a)...)
}
// Sprintln is a wrapper for fmt.Sprintln that treats each argument as if it
// were passed with a Formatter interface returned by c.NewFormatter. It
// returns the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprintln(c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Sprintln(a ...interface{}) string {
return fmt.Sprintln(c.convertArgs(a)...)
}
/*
NewFormatter returns a custom formatter that satisfies the fmt.Formatter
interface. As a result, it integrates cleanly with standard fmt package
printing functions. The formatter is useful for inline printing of smaller data
types similar to the standard %v format specifier.
The custom formatter only responds to the %v (most compact), %+v (adds pointer
addresses), %#v (adds types), and %#+v (adds types and pointer addresses) verb
combinations. Any other verbs such as %x and %q will be sent to the the
standard fmt package for formatting. In addition, the custom formatter ignores
the width and precision arguments (however they will still work on the format
specifiers not handled by the custom formatter).
Typically this function shouldn't be called directly. It is much easier to make
use of the custom formatter by calling one of the convenience functions such as
c.Printf, c.Println, or c.Printf.
*/
func (c *ConfigState) NewFormatter(v interface{}) fmt.Formatter {
return newFormatter(c, v)
}
// Fdump formats and displays the passed arguments to io.Writer w. It formats
// exactly the same as Dump.
func (c *ConfigState) Fdump(w io.Writer, a ...interface{}) {
fdump(c, w, a...)
}
/*
Dump displays the passed parameters to standard out with newlines, customizable
indentation, and additional debug information such as complete types and all
pointer addresses used to indirect to the final value. It provides the
following features over the built-in printing facilities provided by the fmt
package:
* Pointers are dereferenced and followed
* Circular data structures are detected and handled properly
* Custom Stringer/error interfaces are optionally invoked, including
on unexported types
* Custom types which only implement the Stringer/error interfaces via
a pointer receiver are optionally invoked when passing non-pointer
variables
* Byte arrays and slices are dumped like the hexdump -C command which
includes offsets, byte values in hex, and ASCII output
The configuration options are controlled by modifying the public members
of c. See ConfigState for options documentation.
See Fdump if you would prefer dumping to an arbitrary io.Writer or Sdump to
get the formatted result as a string.
*/
func (c *ConfigState) Dump(a ...interface{}) {
fdump(c, os.Stdout, a...)
}
// Sdump returns a string with the passed arguments formatted exactly the same
// as Dump.
func (c *ConfigState) Sdump(a ...interface{}) string {
var buf bytes.Buffer
fdump(c, &buf, a...)
return buf.String()
}
// convertArgs accepts a slice of arguments and returns a slice of the same
// length with each argument converted to a spew Formatter interface using
// the ConfigState associated with s.
func (c *ConfigState) convertArgs(args []interface{}) (formatters []interface{}) {
formatters = make([]interface{}, len(args))
for index, arg := range args {
formatters[index] = newFormatter(c, arg)
}
return formatters
}
// NewDefaultConfig returns a ConfigState with the following default settings.
//
// Indent: " "
// MaxDepth: 0
// DisableMethods: false
// DisablePointerMethods: false
// ContinueOnMethod: false
// SortKeys: false
func NewDefaultConfig() *ConfigState {
return &ConfigState{Indent: " "}
}

View File

@ -0,0 +1,202 @@
/*
* Copyright (c) 2013 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
Package spew implements a deep pretty printer for Go data structures to aid in
debugging.
A quick overview of the additional features spew provides over the built-in
printing facilities for Go data types are as follows:
* Pointers are dereferenced and followed
* Circular data structures are detected and handled properly
* Custom Stringer/error interfaces are optionally invoked, including
on unexported types
* Custom types which only implement the Stringer/error interfaces via
a pointer receiver are optionally invoked when passing non-pointer
variables
* Byte arrays and slices are dumped like the hexdump -C command which
includes offsets, byte values in hex, and ASCII output (only when using
Dump style)
There are two different approaches spew allows for dumping Go data structures:
* Dump style which prints with newlines, customizable indentation,
and additional debug information such as types and all pointer addresses
used to indirect to the final value
* A custom Formatter interface that integrates cleanly with the standard fmt
package and replaces %v, %+v, %#v, and %#+v to provide inline printing
similar to the default %v while providing the additional functionality
outlined above and passing unsupported format verbs such as %x and %q
along to fmt
Quick Start
This section demonstrates how to quickly get started with spew. See the
sections below for further details on formatting and configuration options.
To dump a variable with full newlines, indentation, type, and pointer
information use Dump, Fdump, or Sdump:
spew.Dump(myVar1, myVar2, ...)
spew.Fdump(someWriter, myVar1, myVar2, ...)
str := spew.Sdump(myVar1, myVar2, ...)
Alternatively, if you would prefer to use format strings with a compacted inline
printing style, use the convenience wrappers Printf, Fprintf, etc with
%v (most compact), %+v (adds pointer addresses), %#v (adds types), or
%#+v (adds types and pointer addresses):
spew.Printf("myVar1: %v -- myVar2: %+v", myVar1, myVar2)
spew.Printf("myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
spew.Fprintf(someWriter, "myVar1: %v -- myVar2: %+v", myVar1, myVar2)
spew.Fprintf(someWriter, "myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
Configuration Options
Configuration of spew is handled by fields in the ConfigState type. For
convenience, all of the top-level functions use a global state available
via the spew.Config global.
It is also possible to create a ConfigState instance that provides methods
equivalent to the top-level functions. This allows concurrent configuration
options. See the ConfigState documentation for more details.
The following configuration options are available:
* Indent
String to use for each indentation level for Dump functions.
It is a single space by default. A popular alternative is "\t".
* MaxDepth
Maximum number of levels to descend into nested data structures.
There is no limit by default.
* DisableMethods
Disables invocation of error and Stringer interface methods.
Method invocation is enabled by default.
* DisablePointerMethods
Disables invocation of error and Stringer interface methods on types
which only accept pointer receivers from non-pointer variables.
Pointer method invocation is enabled by default.
* ContinueOnMethod
Enables recursion into types after invoking error and Stringer interface
methods. Recursion after method invocation is disabled by default.
* SortKeys
Specifies map keys should be sorted before being printed. Use
this to have a more deterministic, diffable output. Note that
only native types (bool, int, uint, floats, uintptr and string)
and types which implement error or Stringer interfaces are
supported with other types sorted according to the
reflect.Value.String() output which guarantees display
stability. Natural map order is used by default.
* SpewKeys
Specifies that, as a last resort attempt, map keys should be
spewed to strings and sorted by those strings. This is only
considered if SortKeys is true.
Dump Usage
Simply call spew.Dump with a list of variables you want to dump:
spew.Dump(myVar1, myVar2, ...)
You may also call spew.Fdump if you would prefer to output to an arbitrary
io.Writer. For example, to dump to standard error:
spew.Fdump(os.Stderr, myVar1, myVar2, ...)
A third option is to call spew.Sdump to get the formatted output as a string:
str := spew.Sdump(myVar1, myVar2, ...)
Sample Dump Output
See the Dump example for details on the setup of the types and variables being
shown here.
(main.Foo) {
unexportedField: (*main.Bar)(0xf84002e210)({
flag: (main.Flag) flagTwo,
data: (uintptr) <nil>
}),
ExportedField: (map[interface {}]interface {}) (len=1) {
(string) (len=3) "one": (bool) true
}
}
Byte (and uint8) arrays and slices are displayed uniquely like the hexdump -C
command as shown.
([]uint8) (len=32 cap=32) {
00000000 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20 |............... |
00000010 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 30 |!"#$%&'()*+,-./0|
00000020 31 32 |12|
}
Custom Formatter
Spew provides a custom formatter that implements the fmt.Formatter interface
so that it integrates cleanly with standard fmt package printing functions. The
formatter is useful for inline printing of smaller data types similar to the
standard %v format specifier.
The custom formatter only responds to the %v (most compact), %+v (adds pointer
addresses), %#v (adds types), or %#+v (adds types and pointer addresses) verb
combinations. Any other verbs such as %x and %q will be sent to the the
standard fmt package for formatting. In addition, the custom formatter ignores
the width and precision arguments (however they will still work on the format
specifiers not handled by the custom formatter).
Custom Formatter Usage
The simplest way to make use of the spew custom formatter is to call one of the
convenience functions such as spew.Printf, spew.Println, or spew.Printf. The
functions have syntax you are most likely already familiar with:
spew.Printf("myVar1: %v -- myVar2: %+v", myVar1, myVar2)
spew.Printf("myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
spew.Println(myVar, myVar2)
spew.Fprintf(os.Stderr, "myVar1: %v -- myVar2: %+v", myVar1, myVar2)
spew.Fprintf(os.Stderr, "myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
See the Index for the full list convenience functions.
Sample Formatter Output
Double pointer to a uint8:
%v: <**>5
%+v: <**>(0xf8400420d0->0xf8400420c8)5
%#v: (**uint8)5
%#+v: (**uint8)(0xf8400420d0->0xf8400420c8)5
Pointer to circular struct with a uint8 field and a pointer to itself:
%v: <*>{1 <*><shown>}
%+v: <*>(0xf84003e260){ui8:1 c:<*>(0xf84003e260)<shown>}
%#v: (*main.circular){ui8:(uint8)1 c:(*main.circular)<shown>}
%#+v: (*main.circular)(0xf84003e260){ui8:(uint8)1 c:(*main.circular)(0xf84003e260)<shown>}
See the Printf example for details on the setup of variables being shown
here.
Errors
Since it is possible for custom Stringer/error interfaces to panic, spew
detects them and handles them internally by printing the panic information
inline with the output. Since spew is intended to provide deep pretty printing
capabilities on structures, it intentionally does not return any errors.
*/
package spew

View File

@ -0,0 +1,506 @@
/*
* Copyright (c) 2013 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew
import (
"bytes"
"encoding/hex"
"fmt"
"io"
"os"
"reflect"
"regexp"
"strconv"
"strings"
)
var (
// uint8Type is a reflect.Type representing a uint8. It is used to
// convert cgo types to uint8 slices for hexdumping.
uint8Type = reflect.TypeOf(uint8(0))
// cCharRE is a regular expression that matches a cgo char.
// It is used to detect character arrays to hexdump them.
cCharRE = regexp.MustCompile("^.*\\._Ctype_char$")
// cUnsignedCharRE is a regular expression that matches a cgo unsigned
// char. It is used to detect unsigned character arrays to hexdump
// them.
cUnsignedCharRE = regexp.MustCompile("^.*\\._Ctype_unsignedchar$")
// cUint8tCharRE is a regular expression that matches a cgo uint8_t.
// It is used to detect uint8_t arrays to hexdump them.
cUint8tCharRE = regexp.MustCompile("^.*\\._Ctype_uint8_t$")
)
// dumpState contains information about the state of a dump operation.
type dumpState struct {
w io.Writer
depth int
pointers map[uintptr]int
ignoreNextType bool
ignoreNextIndent bool
cs *ConfigState
}
// indent performs indentation according to the depth level and cs.Indent
// option.
func (d *dumpState) indent() {
if d.ignoreNextIndent {
d.ignoreNextIndent = false
return
}
d.w.Write(bytes.Repeat([]byte(d.cs.Indent), d.depth))
}
// unpackValue returns values inside of non-nil interfaces when possible.
// This is useful for data types like structs, arrays, slices, and maps which
// can contain varying types packed inside an interface.
func (d *dumpState) unpackValue(v reflect.Value) reflect.Value {
if v.Kind() == reflect.Interface && !v.IsNil() {
v = v.Elem()
}
return v
}
// dumpPtr handles formatting of pointers by indirecting them as necessary.
func (d *dumpState) dumpPtr(v reflect.Value) {
// Remove pointers at or below the current depth from map used to detect
// circular refs.
for k, depth := range d.pointers {
if depth >= d.depth {
delete(d.pointers, k)
}
}
// Keep list of all dereferenced pointers to show later.
pointerChain := make([]uintptr, 0)
// Figure out how many levels of indirection there are by dereferencing
// pointers and unpacking interfaces down the chain while detecting circular
// references.
nilFound := false
cycleFound := false
indirects := 0
ve := v
for ve.Kind() == reflect.Ptr {
if ve.IsNil() {
nilFound = true
break
}
indirects++
addr := ve.Pointer()
pointerChain = append(pointerChain, addr)
if pd, ok := d.pointers[addr]; ok && pd < d.depth {
cycleFound = true
indirects--
break
}
d.pointers[addr] = d.depth
ve = ve.Elem()
if ve.Kind() == reflect.Interface {
if ve.IsNil() {
nilFound = true
break
}
ve = ve.Elem()
}
}
// Display type information.
d.w.Write(openParenBytes)
d.w.Write(bytes.Repeat(asteriskBytes, indirects))
d.w.Write([]byte(ve.Type().String()))
d.w.Write(closeParenBytes)
// Display pointer information.
if len(pointerChain) > 0 {
d.w.Write(openParenBytes)
for i, addr := range pointerChain {
if i > 0 {
d.w.Write(pointerChainBytes)
}
printHexPtr(d.w, addr)
}
d.w.Write(closeParenBytes)
}
// Display dereferenced value.
d.w.Write(openParenBytes)
switch {
case nilFound == true:
d.w.Write(nilAngleBytes)
case cycleFound == true:
d.w.Write(circularBytes)
default:
d.ignoreNextType = true
d.dump(ve)
}
d.w.Write(closeParenBytes)
}
// dumpSlice handles formatting of arrays and slices. Byte (uint8 under
// reflection) arrays and slices are dumped in hexdump -C fashion.
func (d *dumpState) dumpSlice(v reflect.Value) {
// Determine whether this type should be hex dumped or not. Also,
// for types which should be hexdumped, try to use the underlying data
// first, then fall back to trying to convert them to a uint8 slice.
var buf []uint8
doConvert := false
doHexDump := false
numEntries := v.Len()
if numEntries > 0 {
vt := v.Index(0).Type()
vts := vt.String()
switch {
// C types that need to be converted.
case cCharRE.MatchString(vts):
fallthrough
case cUnsignedCharRE.MatchString(vts):
fallthrough
case cUint8tCharRE.MatchString(vts):
doConvert = true
// Try to use existing uint8 slices and fall back to converting
// and copying if that fails.
case vt.Kind() == reflect.Uint8:
// We need an addressable interface to convert the type back
// into a byte slice. However, the reflect package won't give
// us an interface on certain things like unexported struct
// fields in order to enforce visibility rules. We use unsafe
// to bypass these restrictions since this package does not
// mutate the values.
vs := v
if !vs.CanInterface() || !vs.CanAddr() {
vs = unsafeReflectValue(vs)
}
vs = vs.Slice(0, numEntries)
// Use the existing uint8 slice if it can be type
// asserted.
iface := vs.Interface()
if slice, ok := iface.([]uint8); ok {
buf = slice
doHexDump = true
break
}
// The underlying data needs to be converted if it can't
// be type asserted to a uint8 slice.
doConvert = true
}
// Copy and convert the underlying type if needed.
if doConvert && vt.ConvertibleTo(uint8Type) {
// Convert and copy each element into a uint8 byte
// slice.
buf = make([]uint8, numEntries)
for i := 0; i < numEntries; i++ {
vv := v.Index(i)
buf[i] = uint8(vv.Convert(uint8Type).Uint())
}
doHexDump = true
}
}
// Hexdump the entire slice as needed.
if doHexDump {
indent := strings.Repeat(d.cs.Indent, d.depth)
str := indent + hex.Dump(buf)
str = strings.Replace(str, "\n", "\n"+indent, -1)
str = strings.TrimRight(str, d.cs.Indent)
d.w.Write([]byte(str))
return
}
// Recursively call dump for each item.
for i := 0; i < numEntries; i++ {
d.dump(d.unpackValue(v.Index(i)))
if i < (numEntries - 1) {
d.w.Write(commaNewlineBytes)
} else {
d.w.Write(newlineBytes)
}
}
}
// dump is the main workhorse for dumping a value. It uses the passed reflect
// value to figure out what kind of object we are dealing with and formats it
// appropriately. It is a recursive function, however circular data structures
// are detected and handled properly.
func (d *dumpState) dump(v reflect.Value) {
// Handle invalid reflect values immediately.
kind := v.Kind()
if kind == reflect.Invalid {
d.w.Write(invalidAngleBytes)
return
}
// Handle pointers specially.
if kind == reflect.Ptr {
d.indent()
d.dumpPtr(v)
return
}
// Print type information unless already handled elsewhere.
if !d.ignoreNextType {
d.indent()
d.w.Write(openParenBytes)
d.w.Write([]byte(v.Type().String()))
d.w.Write(closeParenBytes)
d.w.Write(spaceBytes)
}
d.ignoreNextType = false
// Display length and capacity if the built-in len and cap functions
// work with the value's kind and the len/cap itself is non-zero.
valueLen, valueCap := 0, 0
switch v.Kind() {
case reflect.Array, reflect.Slice, reflect.Chan:
valueLen, valueCap = v.Len(), v.Cap()
case reflect.Map, reflect.String:
valueLen = v.Len()
}
if valueLen != 0 || valueCap != 0 {
d.w.Write(openParenBytes)
if valueLen != 0 {
d.w.Write(lenEqualsBytes)
printInt(d.w, int64(valueLen), 10)
}
if valueCap != 0 {
if valueLen != 0 {
d.w.Write(spaceBytes)
}
d.w.Write(capEqualsBytes)
printInt(d.w, int64(valueCap), 10)
}
d.w.Write(closeParenBytes)
d.w.Write(spaceBytes)
}
// Call Stringer/error interfaces if they exist and the handle methods flag
// is enabled
if !d.cs.DisableMethods {
if (kind != reflect.Invalid) && (kind != reflect.Interface) {
if handled := handleMethods(d.cs, d.w, v); handled {
return
}
}
}
switch kind {
case reflect.Invalid:
// Do nothing. We should never get here since invalid has already
// been handled above.
case reflect.Bool:
printBool(d.w, v.Bool())
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
printInt(d.w, v.Int(), 10)
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
printUint(d.w, v.Uint(), 10)
case reflect.Float32:
printFloat(d.w, v.Float(), 32)
case reflect.Float64:
printFloat(d.w, v.Float(), 64)
case reflect.Complex64:
printComplex(d.w, v.Complex(), 32)
case reflect.Complex128:
printComplex(d.w, v.Complex(), 64)
case reflect.Slice:
if v.IsNil() {
d.w.Write(nilAngleBytes)
break
}
fallthrough
case reflect.Array:
d.w.Write(openBraceNewlineBytes)
d.depth++
if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) {
d.indent()
d.w.Write(maxNewlineBytes)
} else {
d.dumpSlice(v)
}
d.depth--
d.indent()
d.w.Write(closeBraceBytes)
case reflect.String:
d.w.Write([]byte(strconv.Quote(v.String())))
case reflect.Interface:
// The only time we should get here is for nil interfaces due to
// unpackValue calls.
if v.IsNil() {
d.w.Write(nilAngleBytes)
}
case reflect.Ptr:
// Do nothing. We should never get here since pointers have already
// been handled above.
case reflect.Map:
// nil maps should be indicated as different than empty maps
if v.IsNil() {
d.w.Write(nilAngleBytes)
break
}
d.w.Write(openBraceNewlineBytes)
d.depth++
if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) {
d.indent()
d.w.Write(maxNewlineBytes)
} else {
numEntries := v.Len()
keys := v.MapKeys()
if d.cs.SortKeys {
sortValues(keys, d.cs)
}
for i, key := range keys {
d.dump(d.unpackValue(key))
d.w.Write(colonSpaceBytes)
d.ignoreNextIndent = true
d.dump(d.unpackValue(v.MapIndex(key)))
if i < (numEntries - 1) {
d.w.Write(commaNewlineBytes)
} else {
d.w.Write(newlineBytes)
}
}
}
d.depth--
d.indent()
d.w.Write(closeBraceBytes)
case reflect.Struct:
d.w.Write(openBraceNewlineBytes)
d.depth++
if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) {
d.indent()
d.w.Write(maxNewlineBytes)
} else {
vt := v.Type()
numFields := v.NumField()
for i := 0; i < numFields; i++ {
d.indent()
vtf := vt.Field(i)
d.w.Write([]byte(vtf.Name))
d.w.Write(colonSpaceBytes)
d.ignoreNextIndent = true
d.dump(d.unpackValue(v.Field(i)))
if i < (numFields - 1) {
d.w.Write(commaNewlineBytes)
} else {
d.w.Write(newlineBytes)
}
}
}
d.depth--
d.indent()
d.w.Write(closeBraceBytes)
case reflect.Uintptr:
printHexPtr(d.w, uintptr(v.Uint()))
case reflect.UnsafePointer, reflect.Chan, reflect.Func:
printHexPtr(d.w, v.Pointer())
// There were not any other types at the time this code was written, but
// fall back to letting the default fmt package handle it in case any new
// types are added.
default:
if v.CanInterface() {
fmt.Fprintf(d.w, "%v", v.Interface())
} else {
fmt.Fprintf(d.w, "%v", v.String())
}
}
}
// fdump is a helper function to consolidate the logic from the various public
// methods which take varying writers and config states.
func fdump(cs *ConfigState, w io.Writer, a ...interface{}) {
for _, arg := range a {
if arg == nil {
w.Write(interfaceBytes)
w.Write(spaceBytes)
w.Write(nilAngleBytes)
w.Write(newlineBytes)
continue
}
d := dumpState{w: w, cs: cs}
d.pointers = make(map[uintptr]int)
d.dump(reflect.ValueOf(arg))
d.w.Write(newlineBytes)
}
}
// Fdump formats and displays the passed arguments to io.Writer w. It formats
// exactly the same as Dump.
func Fdump(w io.Writer, a ...interface{}) {
fdump(&Config, w, a...)
}
// Sdump returns a string with the passed arguments formatted exactly the same
// as Dump.
func Sdump(a ...interface{}) string {
var buf bytes.Buffer
fdump(&Config, &buf, a...)
return buf.String()
}
/*
Dump displays the passed parameters to standard out with newlines, customizable
indentation, and additional debug information such as complete types and all
pointer addresses used to indirect to the final value. It provides the
following features over the built-in printing facilities provided by the fmt
package:
* Pointers are dereferenced and followed
* Circular data structures are detected and handled properly
* Custom Stringer/error interfaces are optionally invoked, including
on unexported types
* Custom types which only implement the Stringer/error interfaces via
a pointer receiver are optionally invoked when passing non-pointer
variables
* Byte arrays and slices are dumped like the hexdump -C command which
includes offsets, byte values in hex, and ASCII output
The configuration options are controlled by an exported package global,
spew.Config. See ConfigState for options documentation.
See Fdump if you would prefer dumping to an arbitrary io.Writer or Sdump to
get the formatted result as a string.
*/
func Dump(a ...interface{}) {
fdump(&Config, os.Stdout, a...)
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,97 @@
// Copyright (c) 2013 Dave Collins <dave@davec.name>
//
// Permission to use, copy, modify, and distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
// NOTE: Due to the following build constraints, this file will only be compiled
// when both cgo is supported and "-tags testcgo" is added to the go test
// command line. This means the cgo tests are only added (and hence run) when
// specifially requested. This configuration is used because spew itself
// does not require cgo to run even though it does handle certain cgo types
// specially. Rather than forcing all clients to require cgo and an external
// C compiler just to run the tests, this scheme makes them optional.
// +build cgo,testcgo
package spew_test
import (
"fmt"
"github.com/davecgh/go-spew/spew/testdata"
)
func addCgoDumpTests() {
// C char pointer.
v := testdata.GetCgoCharPointer()
nv := testdata.GetCgoNullCharPointer()
pv := &v
vcAddr := fmt.Sprintf("%p", v)
vAddr := fmt.Sprintf("%p", pv)
pvAddr := fmt.Sprintf("%p", &pv)
vt := "*testdata._Ctype_char"
vs := "116"
addDumpTest(v, "("+vt+")("+vcAddr+")("+vs+")\n")
addDumpTest(pv, "(*"+vt+")("+vAddr+"->"+vcAddr+")("+vs+")\n")
addDumpTest(&pv, "(**"+vt+")("+pvAddr+"->"+vAddr+"->"+vcAddr+")("+vs+")\n")
addDumpTest(nv, "("+vt+")(<nil>)\n")
// C char array.
v2, v2l, v2c := testdata.GetCgoCharArray()
v2Len := fmt.Sprintf("%d", v2l)
v2Cap := fmt.Sprintf("%d", v2c)
v2t := "[6]testdata._Ctype_char"
v2s := "(len=" + v2Len + " cap=" + v2Cap + ") " +
"{\n 00000000 74 65 73 74 32 00 " +
" |test2.|\n}"
addDumpTest(v2, "("+v2t+") "+v2s+"\n")
// C unsigned char array.
v3, v3l, v3c := testdata.GetCgoUnsignedCharArray()
v3Len := fmt.Sprintf("%d", v3l)
v3Cap := fmt.Sprintf("%d", v3c)
v3t := "[6]testdata._Ctype_unsignedchar"
v3s := "(len=" + v3Len + " cap=" + v3Cap + ") " +
"{\n 00000000 74 65 73 74 33 00 " +
" |test3.|\n}"
addDumpTest(v3, "("+v3t+") "+v3s+"\n")
// C signed char array.
v4, v4l, v4c := testdata.GetCgoSignedCharArray()
v4Len := fmt.Sprintf("%d", v4l)
v4Cap := fmt.Sprintf("%d", v4c)
v4t := "[6]testdata._Ctype_schar"
v4t2 := "testdata._Ctype_schar"
v4s := "(len=" + v4Len + " cap=" + v4Cap + ") " +
"{\n (" + v4t2 + ") 116,\n (" + v4t2 + ") 101,\n (" + v4t2 +
") 115,\n (" + v4t2 + ") 116,\n (" + v4t2 + ") 52,\n (" + v4t2 +
") 0\n}"
addDumpTest(v4, "("+v4t+") "+v4s+"\n")
// C uint8_t array.
v5, v5l, v5c := testdata.GetCgoUint8tArray()
v5Len := fmt.Sprintf("%d", v5l)
v5Cap := fmt.Sprintf("%d", v5c)
v5t := "[6]testdata._Ctype_uint8_t"
v5s := "(len=" + v5Len + " cap=" + v5Cap + ") " +
"{\n 00000000 74 65 73 74 35 00 " +
" |test5.|\n}"
addDumpTest(v5, "("+v5t+") "+v5s+"\n")
// C typedefed unsigned char array.
v6, v6l, v6c := testdata.GetCgoTypdefedUnsignedCharArray()
v6Len := fmt.Sprintf("%d", v6l)
v6Cap := fmt.Sprintf("%d", v6c)
v6t := "[6]testdata._Ctype_custom_uchar_t"
v6s := "(len=" + v6Len + " cap=" + v6Cap + ") " +
"{\n 00000000 74 65 73 74 36 00 " +
" |test6.|\n}"
addDumpTest(v6, "("+v6t+") "+v6s+"\n")
}

View File

@ -0,0 +1,26 @@
// Copyright (c) 2013 Dave Collins <dave@davec.name>
//
// Permission to use, copy, modify, and distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
// NOTE: Due to the following build constraints, this file will only be compiled
// when either cgo is not supported or "-tags testcgo" is not added to the go
// test command line. This file intentionally does not setup any cgo tests in
// this scenario.
// +build !cgo !testcgo
package spew_test
func addCgoDumpTests() {
// Don't add any tests for cgo since this file is only compiled when
// there should not be any cgo tests.
}

View File

@ -0,0 +1,230 @@
/*
* Copyright (c) 2013 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew_test
import (
"fmt"
"github.com/davecgh/go-spew/spew"
)
type Flag int
const (
flagOne Flag = iota
flagTwo
)
var flagStrings = map[Flag]string{
flagOne: "flagOne",
flagTwo: "flagTwo",
}
func (f Flag) String() string {
if s, ok := flagStrings[f]; ok {
return s
}
return fmt.Sprintf("Unknown flag (%d)", int(f))
}
type Bar struct {
flag Flag
data uintptr
}
type Foo struct {
unexportedField Bar
ExportedField map[interface{}]interface{}
}
// This example demonstrates how to use Dump to dump variables to stdout.
func ExampleDump() {
// The following package level declarations are assumed for this example:
/*
type Flag int
const (
flagOne Flag = iota
flagTwo
)
var flagStrings = map[Flag]string{
flagOne: "flagOne",
flagTwo: "flagTwo",
}
func (f Flag) String() string {
if s, ok := flagStrings[f]; ok {
return s
}
return fmt.Sprintf("Unknown flag (%d)", int(f))
}
type Bar struct {
flag Flag
data uintptr
}
type Foo struct {
unexportedField Bar
ExportedField map[interface{}]interface{}
}
*/
// Setup some sample data structures for the example.
bar := Bar{Flag(flagTwo), uintptr(0)}
s1 := Foo{bar, map[interface{}]interface{}{"one": true}}
f := Flag(5)
b := []byte{
0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18,
0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20,
0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28,
0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 0x30,
0x31, 0x32,
}
// Dump!
spew.Dump(s1, f, b)
// Output:
// (spew_test.Foo) {
// unexportedField: (spew_test.Bar) {
// flag: (spew_test.Flag) flagTwo,
// data: (uintptr) <nil>
// },
// ExportedField: (map[interface {}]interface {}) (len=1) {
// (string) (len=3) "one": (bool) true
// }
// }
// (spew_test.Flag) Unknown flag (5)
// ([]uint8) (len=34 cap=34) {
// 00000000 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20 |............... |
// 00000010 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 30 |!"#$%&'()*+,-./0|
// 00000020 31 32 |12|
// }
//
}
// This example demonstrates how to use Printf to display a variable with a
// format string and inline formatting.
func ExamplePrintf() {
// Create a double pointer to a uint 8.
ui8 := uint8(5)
pui8 := &ui8
ppui8 := &pui8
// Create a circular data type.
type circular struct {
ui8 uint8
c *circular
}
c := circular{ui8: 1}
c.c = &c
// Print!
spew.Printf("ppui8: %v\n", ppui8)
spew.Printf("circular: %v\n", c)
// Output:
// ppui8: <**>5
// circular: {1 <*>{1 <*><shown>}}
}
// This example demonstrates how to use a ConfigState.
func ExampleConfigState() {
// Modify the indent level of the ConfigState only. The global
// configuration is not modified.
scs := spew.ConfigState{Indent: "\t"}
// Output using the ConfigState instance.
v := map[string]int{"one": 1}
scs.Printf("v: %v\n", v)
scs.Dump(v)
// Output:
// v: map[one:1]
// (map[string]int) (len=1) {
// (string) (len=3) "one": (int) 1
// }
}
// This example demonstrates how to use ConfigState.Dump to dump variables to
// stdout
func ExampleConfigState_Dump() {
// See the top-level Dump example for details on the types used in this
// example.
// Create two ConfigState instances with different indentation.
scs := spew.ConfigState{Indent: "\t"}
scs2 := spew.ConfigState{Indent: " "}
// Setup some sample data structures for the example.
bar := Bar{Flag(flagTwo), uintptr(0)}
s1 := Foo{bar, map[interface{}]interface{}{"one": true}}
// Dump using the ConfigState instances.
scs.Dump(s1)
scs2.Dump(s1)
// Output:
// (spew_test.Foo) {
// unexportedField: (spew_test.Bar) {
// flag: (spew_test.Flag) flagTwo,
// data: (uintptr) <nil>
// },
// ExportedField: (map[interface {}]interface {}) (len=1) {
// (string) (len=3) "one": (bool) true
// }
// }
// (spew_test.Foo) {
// unexportedField: (spew_test.Bar) {
// flag: (spew_test.Flag) flagTwo,
// data: (uintptr) <nil>
// },
// ExportedField: (map[interface {}]interface {}) (len=1) {
// (string) (len=3) "one": (bool) true
// }
// }
//
}
// This example demonstrates how to use ConfigState.Printf to display a variable
// with a format string and inline formatting.
func ExampleConfigState_Printf() {
// See the top-level Dump example for details on the types used in this
// example.
// Create two ConfigState instances and modify the method handling of the
// first ConfigState only.
scs := spew.NewDefaultConfig()
scs2 := spew.NewDefaultConfig()
scs.DisableMethods = true
// Alternatively
// scs := spew.ConfigState{Indent: " ", DisableMethods: true}
// scs2 := spew.ConfigState{Indent: " "}
// This is of type Flag which implements a Stringer and has raw value 1.
f := flagTwo
// Dump using the ConfigState instances.
scs.Printf("f: %v\n", f)
scs2.Printf("f: %v\n", f)
// Output:
// f: 1
// f: flagTwo
}

View File

@ -0,0 +1,419 @@
/*
* Copyright (c) 2013 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew
import (
"bytes"
"fmt"
"reflect"
"strconv"
"strings"
)
// supportedFlags is a list of all the character flags supported by fmt package.
const supportedFlags = "0-+# "
// formatState implements the fmt.Formatter interface and contains information
// about the state of a formatting operation. The NewFormatter function can
// be used to get a new Formatter which can be used directly as arguments
// in standard fmt package printing calls.
type formatState struct {
value interface{}
fs fmt.State
depth int
pointers map[uintptr]int
ignoreNextType bool
cs *ConfigState
}
// buildDefaultFormat recreates the original format string without precision
// and width information to pass in to fmt.Sprintf in the case of an
// unrecognized type. Unless new types are added to the language, this
// function won't ever be called.
func (f *formatState) buildDefaultFormat() (format string) {
buf := bytes.NewBuffer(percentBytes)
for _, flag := range supportedFlags {
if f.fs.Flag(int(flag)) {
buf.WriteRune(flag)
}
}
buf.WriteRune('v')
format = buf.String()
return format
}
// constructOrigFormat recreates the original format string including precision
// and width information to pass along to the standard fmt package. This allows
// automatic deferral of all format strings this package doesn't support.
func (f *formatState) constructOrigFormat(verb rune) (format string) {
buf := bytes.NewBuffer(percentBytes)
for _, flag := range supportedFlags {
if f.fs.Flag(int(flag)) {
buf.WriteRune(flag)
}
}
if width, ok := f.fs.Width(); ok {
buf.WriteString(strconv.Itoa(width))
}
if precision, ok := f.fs.Precision(); ok {
buf.Write(precisionBytes)
buf.WriteString(strconv.Itoa(precision))
}
buf.WriteRune(verb)
format = buf.String()
return format
}
// unpackValue returns values inside of non-nil interfaces when possible and
// ensures that types for values which have been unpacked from an interface
// are displayed when the show types flag is also set.
// This is useful for data types like structs, arrays, slices, and maps which
// can contain varying types packed inside an interface.
func (f *formatState) unpackValue(v reflect.Value) reflect.Value {
if v.Kind() == reflect.Interface {
f.ignoreNextType = false
if !v.IsNil() {
v = v.Elem()
}
}
return v
}
// formatPtr handles formatting of pointers by indirecting them as necessary.
func (f *formatState) formatPtr(v reflect.Value) {
// Display nil if top level pointer is nil.
showTypes := f.fs.Flag('#')
if v.IsNil() && (!showTypes || f.ignoreNextType) {
f.fs.Write(nilAngleBytes)
return
}
// Remove pointers at or below the current depth from map used to detect
// circular refs.
for k, depth := range f.pointers {
if depth >= f.depth {
delete(f.pointers, k)
}
}
// Keep list of all dereferenced pointers to possibly show later.
pointerChain := make([]uintptr, 0)
// Figure out how many levels of indirection there are by derferencing
// pointers and unpacking interfaces down the chain while detecting circular
// references.
nilFound := false
cycleFound := false
indirects := 0
ve := v
for ve.Kind() == reflect.Ptr {
if ve.IsNil() {
nilFound = true
break
}
indirects++
addr := ve.Pointer()
pointerChain = append(pointerChain, addr)
if pd, ok := f.pointers[addr]; ok && pd < f.depth {
cycleFound = true
indirects--
break
}
f.pointers[addr] = f.depth
ve = ve.Elem()
if ve.Kind() == reflect.Interface {
if ve.IsNil() {
nilFound = true
break
}
ve = ve.Elem()
}
}
// Display type or indirection level depending on flags.
if showTypes && !f.ignoreNextType {
f.fs.Write(openParenBytes)
f.fs.Write(bytes.Repeat(asteriskBytes, indirects))
f.fs.Write([]byte(ve.Type().String()))
f.fs.Write(closeParenBytes)
} else {
if nilFound || cycleFound {
indirects += strings.Count(ve.Type().String(), "*")
}
f.fs.Write(openAngleBytes)
f.fs.Write([]byte(strings.Repeat("*", indirects)))
f.fs.Write(closeAngleBytes)
}
// Display pointer information depending on flags.
if f.fs.Flag('+') && (len(pointerChain) > 0) {
f.fs.Write(openParenBytes)
for i, addr := range pointerChain {
if i > 0 {
f.fs.Write(pointerChainBytes)
}
printHexPtr(f.fs, addr)
}
f.fs.Write(closeParenBytes)
}
// Display dereferenced value.
switch {
case nilFound == true:
f.fs.Write(nilAngleBytes)
case cycleFound == true:
f.fs.Write(circularShortBytes)
default:
f.ignoreNextType = true
f.format(ve)
}
}
// format is the main workhorse for providing the Formatter interface. It
// uses the passed reflect value to figure out what kind of object we are
// dealing with and formats it appropriately. It is a recursive function,
// however circular data structures are detected and handled properly.
func (f *formatState) format(v reflect.Value) {
// Handle invalid reflect values immediately.
kind := v.Kind()
if kind == reflect.Invalid {
f.fs.Write(invalidAngleBytes)
return
}
// Handle pointers specially.
if kind == reflect.Ptr {
f.formatPtr(v)
return
}
// Print type information unless already handled elsewhere.
if !f.ignoreNextType && f.fs.Flag('#') {
f.fs.Write(openParenBytes)
f.fs.Write([]byte(v.Type().String()))
f.fs.Write(closeParenBytes)
}
f.ignoreNextType = false
// Call Stringer/error interfaces if they exist and the handle methods
// flag is enabled.
if !f.cs.DisableMethods {
if (kind != reflect.Invalid) && (kind != reflect.Interface) {
if handled := handleMethods(f.cs, f.fs, v); handled {
return
}
}
}
switch kind {
case reflect.Invalid:
// Do nothing. We should never get here since invalid has already
// been handled above.
case reflect.Bool:
printBool(f.fs, v.Bool())
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
printInt(f.fs, v.Int(), 10)
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
printUint(f.fs, v.Uint(), 10)
case reflect.Float32:
printFloat(f.fs, v.Float(), 32)
case reflect.Float64:
printFloat(f.fs, v.Float(), 64)
case reflect.Complex64:
printComplex(f.fs, v.Complex(), 32)
case reflect.Complex128:
printComplex(f.fs, v.Complex(), 64)
case reflect.Slice:
if v.IsNil() {
f.fs.Write(nilAngleBytes)
break
}
fallthrough
case reflect.Array:
f.fs.Write(openBracketBytes)
f.depth++
if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) {
f.fs.Write(maxShortBytes)
} else {
numEntries := v.Len()
for i := 0; i < numEntries; i++ {
if i > 0 {
f.fs.Write(spaceBytes)
}
f.ignoreNextType = true
f.format(f.unpackValue(v.Index(i)))
}
}
f.depth--
f.fs.Write(closeBracketBytes)
case reflect.String:
f.fs.Write([]byte(v.String()))
case reflect.Interface:
// The only time we should get here is for nil interfaces due to
// unpackValue calls.
if v.IsNil() {
f.fs.Write(nilAngleBytes)
}
case reflect.Ptr:
// Do nothing. We should never get here since pointers have already
// been handled above.
case reflect.Map:
// nil maps should be indicated as different than empty maps
if v.IsNil() {
f.fs.Write(nilAngleBytes)
break
}
f.fs.Write(openMapBytes)
f.depth++
if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) {
f.fs.Write(maxShortBytes)
} else {
keys := v.MapKeys()
if f.cs.SortKeys {
sortValues(keys, f.cs)
}
for i, key := range keys {
if i > 0 {
f.fs.Write(spaceBytes)
}
f.ignoreNextType = true
f.format(f.unpackValue(key))
f.fs.Write(colonBytes)
f.ignoreNextType = true
f.format(f.unpackValue(v.MapIndex(key)))
}
}
f.depth--
f.fs.Write(closeMapBytes)
case reflect.Struct:
numFields := v.NumField()
f.fs.Write(openBraceBytes)
f.depth++
if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) {
f.fs.Write(maxShortBytes)
} else {
vt := v.Type()
for i := 0; i < numFields; i++ {
if i > 0 {
f.fs.Write(spaceBytes)
}
vtf := vt.Field(i)
if f.fs.Flag('+') || f.fs.Flag('#') {
f.fs.Write([]byte(vtf.Name))
f.fs.Write(colonBytes)
}
f.format(f.unpackValue(v.Field(i)))
}
}
f.depth--
f.fs.Write(closeBraceBytes)
case reflect.Uintptr:
printHexPtr(f.fs, uintptr(v.Uint()))
case reflect.UnsafePointer, reflect.Chan, reflect.Func:
printHexPtr(f.fs, v.Pointer())
// There were not any other types at the time this code was written, but
// fall back to letting the default fmt package handle it if any get added.
default:
format := f.buildDefaultFormat()
if v.CanInterface() {
fmt.Fprintf(f.fs, format, v.Interface())
} else {
fmt.Fprintf(f.fs, format, v.String())
}
}
}
// Format satisfies the fmt.Formatter interface. See NewFormatter for usage
// details.
func (f *formatState) Format(fs fmt.State, verb rune) {
f.fs = fs
// Use standard formatting for verbs that are not v.
if verb != 'v' {
format := f.constructOrigFormat(verb)
fmt.Fprintf(fs, format, f.value)
return
}
if f.value == nil {
if fs.Flag('#') {
fs.Write(interfaceBytes)
}
fs.Write(nilAngleBytes)
return
}
f.format(reflect.ValueOf(f.value))
}
// newFormatter is a helper function to consolidate the logic from the various
// public methods which take varying config states.
func newFormatter(cs *ConfigState, v interface{}) fmt.Formatter {
fs := &formatState{value: v, cs: cs}
fs.pointers = make(map[uintptr]int)
return fs
}
/*
NewFormatter returns a custom formatter that satisfies the fmt.Formatter
interface. As a result, it integrates cleanly with standard fmt package
printing functions. The formatter is useful for inline printing of smaller data
types similar to the standard %v format specifier.
The custom formatter only responds to the %v (most compact), %+v (adds pointer
addresses), %#v (adds types), or %#+v (adds types and pointer addresses) verb
combinations. Any other verbs such as %x and %q will be sent to the the
standard fmt package for formatting. In addition, the custom formatter ignores
the width and precision arguments (however they will still work on the format
specifiers not handled by the custom formatter).
Typically this function shouldn't be called directly. It is much easier to make
use of the custom formatter by calling one of the convenience functions such as
Printf, Println, or Fprintf.
*/
func NewFormatter(v interface{}) fmt.Formatter {
return newFormatter(&Config, v)
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,156 @@
/*
* Copyright (c) 2013 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
This test file is part of the spew package rather than than the spew_test
package because it needs access to internals to properly test certain cases
which are not possible via the public interface since they should never happen.
*/
package spew
import (
"bytes"
"reflect"
"testing"
"unsafe"
)
// dummyFmtState implements a fake fmt.State to use for testing invalid
// reflect.Value handling. This is necessary because the fmt package catches
// invalid values before invoking the formatter on them.
type dummyFmtState struct {
bytes.Buffer
}
func (dfs *dummyFmtState) Flag(f int) bool {
if f == int('+') {
return true
}
return false
}
func (dfs *dummyFmtState) Precision() (int, bool) {
return 0, false
}
func (dfs *dummyFmtState) Width() (int, bool) {
return 0, false
}
// TestInvalidReflectValue ensures the dump and formatter code handles an
// invalid reflect value properly. This needs access to internal state since it
// should never happen in real code and therefore can't be tested via the public
// API.
func TestInvalidReflectValue(t *testing.T) {
i := 1
// Dump invalid reflect value.
v := new(reflect.Value)
buf := new(bytes.Buffer)
d := dumpState{w: buf, cs: &Config}
d.dump(*v)
s := buf.String()
want := "<invalid>"
if s != want {
t.Errorf("InvalidReflectValue #%d\n got: %s want: %s", i, s, want)
}
i++
// Formatter invalid reflect value.
buf2 := new(dummyFmtState)
f := formatState{value: *v, cs: &Config, fs: buf2}
f.format(*v)
s = buf2.String()
want = "<invalid>"
if s != want {
t.Errorf("InvalidReflectValue #%d got: %s want: %s", i, s, want)
}
}
// changeKind uses unsafe to intentionally change the kind of a reflect.Value to
// the maximum kind value which does not exist. This is needed to test the
// fallback code which punts to the standard fmt library for new types that
// might get added to the language.
func changeKind(v *reflect.Value, readOnly bool) {
rvf := (*uintptr)(unsafe.Pointer(uintptr(unsafe.Pointer(v)) + offsetFlag))
*rvf = *rvf | ((1<<flagKindWidth - 1) << flagKindShift)
if readOnly {
*rvf |= flagRO
} else {
*rvf &= ^uintptr(flagRO)
}
}
// TestAddedReflectValue tests functionaly of the dump and formatter code which
// falls back to the standard fmt library for new types that might get added to
// the language.
func TestAddedReflectValue(t *testing.T) {
i := 1
// Dump using a reflect.Value that is exported.
v := reflect.ValueOf(int8(5))
changeKind(&v, false)
buf := new(bytes.Buffer)
d := dumpState{w: buf, cs: &Config}
d.dump(v)
s := buf.String()
want := "(int8) 5"
if s != want {
t.Errorf("TestAddedReflectValue #%d\n got: %s want: %s", i, s, want)
}
i++
// Dump using a reflect.Value that is not exported.
changeKind(&v, true)
buf.Reset()
d.dump(v)
s = buf.String()
want = "(int8) <int8 Value>"
if s != want {
t.Errorf("TestAddedReflectValue #%d\n got: %s want: %s", i, s, want)
}
i++
// Formatter using a reflect.Value that is exported.
changeKind(&v, false)
buf2 := new(dummyFmtState)
f := formatState{value: v, cs: &Config, fs: buf2}
f.format(v)
s = buf2.String()
want = "5"
if s != want {
t.Errorf("TestAddedReflectValue #%d got: %s want: %s", i, s, want)
}
i++
// Formatter using a reflect.Value that is not exported.
changeKind(&v, true)
buf2.Reset()
f = formatState{value: v, cs: &Config, fs: buf2}
f.format(v)
s = buf2.String()
want = "<int8 Value>"
if s != want {
t.Errorf("TestAddedReflectValue #%d got: %s want: %s", i, s, want)
}
}
// SortValues makes the internal sortValues function available to the test
// package.
func SortValues(values []reflect.Value, cs *ConfigState) {
sortValues(values, cs)
}

View File

@ -0,0 +1,148 @@
/*
* Copyright (c) 2013 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew
import (
"fmt"
"io"
)
// Errorf is a wrapper for fmt.Errorf that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the formatted string as a value that satisfies error. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Errorf(format, spew.NewFormatter(a), spew.NewFormatter(b))
func Errorf(format string, a ...interface{}) (err error) {
return fmt.Errorf(format, convertArgs(a)...)
}
// Fprint is a wrapper for fmt.Fprint that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprint(w, spew.NewFormatter(a), spew.NewFormatter(b))
func Fprint(w io.Writer, a ...interface{}) (n int, err error) {
return fmt.Fprint(w, convertArgs(a)...)
}
// Fprintf is a wrapper for fmt.Fprintf that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprintf(w, format, spew.NewFormatter(a), spew.NewFormatter(b))
func Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error) {
return fmt.Fprintf(w, format, convertArgs(a)...)
}
// Fprintln is a wrapper for fmt.Fprintln that treats each argument as if it
// passed with a default Formatter interface returned by NewFormatter. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprintln(w, spew.NewFormatter(a), spew.NewFormatter(b))
func Fprintln(w io.Writer, a ...interface{}) (n int, err error) {
return fmt.Fprintln(w, convertArgs(a)...)
}
// Print is a wrapper for fmt.Print that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Print(spew.NewFormatter(a), spew.NewFormatter(b))
func Print(a ...interface{}) (n int, err error) {
return fmt.Print(convertArgs(a)...)
}
// Printf is a wrapper for fmt.Printf that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Printf(format, spew.NewFormatter(a), spew.NewFormatter(b))
func Printf(format string, a ...interface{}) (n int, err error) {
return fmt.Printf(format, convertArgs(a)...)
}
// Println is a wrapper for fmt.Println that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Println(spew.NewFormatter(a), spew.NewFormatter(b))
func Println(a ...interface{}) (n int, err error) {
return fmt.Println(convertArgs(a)...)
}
// Sprint is a wrapper for fmt.Sprint that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprint(spew.NewFormatter(a), spew.NewFormatter(b))
func Sprint(a ...interface{}) string {
return fmt.Sprint(convertArgs(a)...)
}
// Sprintf is a wrapper for fmt.Sprintf that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprintf(format, spew.NewFormatter(a), spew.NewFormatter(b))
func Sprintf(format string, a ...interface{}) string {
return fmt.Sprintf(format, convertArgs(a)...)
}
// Sprintln is a wrapper for fmt.Sprintln that treats each argument as if it
// were passed with a default Formatter interface returned by NewFormatter. It
// returns the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprintln(spew.NewFormatter(a), spew.NewFormatter(b))
func Sprintln(a ...interface{}) string {
return fmt.Sprintln(convertArgs(a)...)
}
// convertArgs accepts a slice of arguments and returns a slice of the same
// length with each argument converted to a default spew Formatter interface.
func convertArgs(args []interface{}) (formatters []interface{}) {
formatters = make([]interface{}, len(args))
for index, arg := range args {
formatters[index] = NewFormatter(arg)
}
return formatters
}

View File

@ -0,0 +1,308 @@
/*
* Copyright (c) 2013 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew_test
import (
"bytes"
"fmt"
"github.com/davecgh/go-spew/spew"
"io/ioutil"
"os"
"testing"
)
// spewFunc is used to identify which public function of the spew package or
// ConfigState a test applies to.
type spewFunc int
const (
fCSFdump spewFunc = iota
fCSFprint
fCSFprintf
fCSFprintln
fCSPrint
fCSPrintln
fCSSdump
fCSSprint
fCSSprintf
fCSSprintln
fCSErrorf
fCSNewFormatter
fErrorf
fFprint
fFprintln
fPrint
fPrintln
fSdump
fSprint
fSprintf
fSprintln
)
// Map of spewFunc values to names for pretty printing.
var spewFuncStrings = map[spewFunc]string{
fCSFdump: "ConfigState.Fdump",
fCSFprint: "ConfigState.Fprint",
fCSFprintf: "ConfigState.Fprintf",
fCSFprintln: "ConfigState.Fprintln",
fCSSdump: "ConfigState.Sdump",
fCSPrint: "ConfigState.Print",
fCSPrintln: "ConfigState.Println",
fCSSprint: "ConfigState.Sprint",
fCSSprintf: "ConfigState.Sprintf",
fCSSprintln: "ConfigState.Sprintln",
fCSErrorf: "ConfigState.Errorf",
fCSNewFormatter: "ConfigState.NewFormatter",
fErrorf: "spew.Errorf",
fFprint: "spew.Fprint",
fFprintln: "spew.Fprintln",
fPrint: "spew.Print",
fPrintln: "spew.Println",
fSdump: "spew.Sdump",
fSprint: "spew.Sprint",
fSprintf: "spew.Sprintf",
fSprintln: "spew.Sprintln",
}
func (f spewFunc) String() string {
if s, ok := spewFuncStrings[f]; ok {
return s
}
return fmt.Sprintf("Unknown spewFunc (%d)", int(f))
}
// spewTest is used to describe a test to be performed against the public
// functions of the spew package or ConfigState.
type spewTest struct {
cs *spew.ConfigState
f spewFunc
format string
in interface{}
want string
}
// spewTests houses the tests to be performed against the public functions of
// the spew package and ConfigState.
//
// These tests are only intended to ensure the public functions are exercised
// and are intentionally not exhaustive of types. The exhaustive type
// tests are handled in the dump and format tests.
var spewTests []spewTest
// redirStdout is a helper function to return the standard output from f as a
// byte slice.
func redirStdout(f func()) ([]byte, error) {
tempFile, err := ioutil.TempFile("", "ss-test")
if err != nil {
return nil, err
}
fileName := tempFile.Name()
defer os.Remove(fileName) // Ignore error
origStdout := os.Stdout
os.Stdout = tempFile
f()
os.Stdout = origStdout
tempFile.Close()
return ioutil.ReadFile(fileName)
}
func initSpewTests() {
// Config states with various settings.
scsDefault := spew.NewDefaultConfig()
scsNoMethods := &spew.ConfigState{Indent: " ", DisableMethods: true}
scsNoPmethods := &spew.ConfigState{Indent: " ", DisablePointerMethods: true}
scsMaxDepth := &spew.ConfigState{Indent: " ", MaxDepth: 1}
scsContinue := &spew.ConfigState{Indent: " ", ContinueOnMethod: true}
// Variables for tests on types which implement Stringer interface with and
// without a pointer receiver.
ts := stringer("test")
tps := pstringer("test")
// depthTester is used to test max depth handling for structs, array, slices
// and maps.
type depthTester struct {
ic indirCir1
arr [1]string
slice []string
m map[string]int
}
dt := depthTester{indirCir1{nil}, [1]string{"arr"}, []string{"slice"},
map[string]int{"one": 1}}
// Variable for tests on types which implement error interface.
te := customError(10)
spewTests = []spewTest{
{scsDefault, fCSFdump, "", int8(127), "(int8) 127\n"},
{scsDefault, fCSFprint, "", int16(32767), "32767"},
{scsDefault, fCSFprintf, "%v", int32(2147483647), "2147483647"},
{scsDefault, fCSFprintln, "", int(2147483647), "2147483647\n"},
{scsDefault, fCSPrint, "", int64(9223372036854775807), "9223372036854775807"},
{scsDefault, fCSPrintln, "", uint8(255), "255\n"},
{scsDefault, fCSSdump, "", uint8(64), "(uint8) 64\n"},
{scsDefault, fCSSprint, "", complex(1, 2), "(1+2i)"},
{scsDefault, fCSSprintf, "%v", complex(float32(3), 4), "(3+4i)"},
{scsDefault, fCSSprintln, "", complex(float64(5), 6), "(5+6i)\n"},
{scsDefault, fCSErrorf, "%#v", uint16(65535), "(uint16)65535"},
{scsDefault, fCSNewFormatter, "%v", uint32(4294967295), "4294967295"},
{scsDefault, fErrorf, "%v", uint64(18446744073709551615), "18446744073709551615"},
{scsDefault, fFprint, "", float32(3.14), "3.14"},
{scsDefault, fFprintln, "", float64(6.28), "6.28\n"},
{scsDefault, fPrint, "", true, "true"},
{scsDefault, fPrintln, "", false, "false\n"},
{scsDefault, fSdump, "", complex(-10, -20), "(complex128) (-10-20i)\n"},
{scsDefault, fSprint, "", complex(-1, -2), "(-1-2i)"},
{scsDefault, fSprintf, "%v", complex(float32(-3), -4), "(-3-4i)"},
{scsDefault, fSprintln, "", complex(float64(-5), -6), "(-5-6i)\n"},
{scsNoMethods, fCSFprint, "", ts, "test"},
{scsNoMethods, fCSFprint, "", &ts, "<*>test"},
{scsNoMethods, fCSFprint, "", tps, "test"},
{scsNoMethods, fCSFprint, "", &tps, "<*>test"},
{scsNoPmethods, fCSFprint, "", ts, "stringer test"},
{scsNoPmethods, fCSFprint, "", &ts, "<*>stringer test"},
{scsNoPmethods, fCSFprint, "", tps, "test"},
{scsNoPmethods, fCSFprint, "", &tps, "<*>stringer test"},
{scsMaxDepth, fCSFprint, "", dt, "{{<max>} [<max>] [<max>] map[<max>]}"},
{scsMaxDepth, fCSFdump, "", dt, "(spew_test.depthTester) {\n" +
" ic: (spew_test.indirCir1) {\n <max depth reached>\n },\n" +
" arr: ([1]string) (len=1 cap=1) {\n <max depth reached>\n },\n" +
" slice: ([]string) (len=1 cap=1) {\n <max depth reached>\n },\n" +
" m: (map[string]int) (len=1) {\n <max depth reached>\n }\n}\n"},
{scsContinue, fCSFprint, "", ts, "(stringer test) test"},
{scsContinue, fCSFdump, "", ts, "(spew_test.stringer) " +
"(len=4) (stringer test) \"test\"\n"},
{scsContinue, fCSFprint, "", te, "(error: 10) 10"},
{scsContinue, fCSFdump, "", te, "(spew_test.customError) " +
"(error: 10) 10\n"},
}
}
// TestSpew executes all of the tests described by spewTests.
func TestSpew(t *testing.T) {
initSpewTests()
t.Logf("Running %d tests", len(spewTests))
for i, test := range spewTests {
buf := new(bytes.Buffer)
switch test.f {
case fCSFdump:
test.cs.Fdump(buf, test.in)
case fCSFprint:
test.cs.Fprint(buf, test.in)
case fCSFprintf:
test.cs.Fprintf(buf, test.format, test.in)
case fCSFprintln:
test.cs.Fprintln(buf, test.in)
case fCSPrint:
b, err := redirStdout(func() { test.cs.Print(test.in) })
if err != nil {
t.Errorf("%v #%d %v", test.f, i, err)
continue
}
buf.Write(b)
case fCSPrintln:
b, err := redirStdout(func() { test.cs.Println(test.in) })
if err != nil {
t.Errorf("%v #%d %v", test.f, i, err)
continue
}
buf.Write(b)
case fCSSdump:
str := test.cs.Sdump(test.in)
buf.WriteString(str)
case fCSSprint:
str := test.cs.Sprint(test.in)
buf.WriteString(str)
case fCSSprintf:
str := test.cs.Sprintf(test.format, test.in)
buf.WriteString(str)
case fCSSprintln:
str := test.cs.Sprintln(test.in)
buf.WriteString(str)
case fCSErrorf:
err := test.cs.Errorf(test.format, test.in)
buf.WriteString(err.Error())
case fCSNewFormatter:
fmt.Fprintf(buf, test.format, test.cs.NewFormatter(test.in))
case fErrorf:
err := spew.Errorf(test.format, test.in)
buf.WriteString(err.Error())
case fFprint:
spew.Fprint(buf, test.in)
case fFprintln:
spew.Fprintln(buf, test.in)
case fPrint:
b, err := redirStdout(func() { spew.Print(test.in) })
if err != nil {
t.Errorf("%v #%d %v", test.f, i, err)
continue
}
buf.Write(b)
case fPrintln:
b, err := redirStdout(func() { spew.Println(test.in) })
if err != nil {
t.Errorf("%v #%d %v", test.f, i, err)
continue
}
buf.Write(b)
case fSdump:
str := spew.Sdump(test.in)
buf.WriteString(str)
case fSprint:
str := spew.Sprint(test.in)
buf.WriteString(str)
case fSprintf:
str := spew.Sprintf(test.format, test.in)
buf.WriteString(str)
case fSprintln:
str := spew.Sprintln(test.in)
buf.WriteString(str)
default:
t.Errorf("%v #%d unrecognized function", test.f, i)
continue
}
s := buf.String()
if test.want != s {
t.Errorf("ConfigState #%d\n got: %s want: %s", i, s, test.want)
continue
}
}
}

View File

@ -0,0 +1,82 @@
// Copyright (c) 2013 Dave Collins <dave@davec.name>
//
// Permission to use, copy, modify, and distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
// NOTE: Due to the following build constraints, this file will only be compiled
// when both cgo is supported and "-tags testcgo" is added to the go test
// command line. This code should really only be in the dumpcgo_test.go file,
// but unfortunately Go will not allow cgo in test files, so this is a
// workaround to allow cgo types to be tested. This configuration is used
// because spew itself does not require cgo to run even though it does handle
// certain cgo types specially. Rather than forcing all clients to require cgo
// and an external C compiler just to run the tests, this scheme makes them
// optional.
// +build cgo,testcgo
package testdata
/*
#include <stdint.h>
typedef unsigned char custom_uchar_t;
char *ncp = 0;
char *cp = "test";
char ca[6] = {'t', 'e', 's', 't', '2', '\0'};
unsigned char uca[6] = {'t', 'e', 's', 't', '3', '\0'};
signed char sca[6] = {'t', 'e', 's', 't', '4', '\0'};
uint8_t ui8ta[6] = {'t', 'e', 's', 't', '5', '\0'};
custom_uchar_t tuca[6] = {'t', 'e', 's', 't', '6', '\0'};
*/
import "C"
// GetCgoNullCharPointer returns a null char pointer via cgo. This is only
// used for tests.
func GetCgoNullCharPointer() interface{} {
return C.ncp
}
// GetCgoCharPointer returns a char pointer via cgo. This is only used for
// tests.
func GetCgoCharPointer() interface{} {
return C.cp
}
// GetCgoCharArray returns a char array via cgo and the array's len and cap.
// This is only used for tests.
func GetCgoCharArray() (interface{}, int, int) {
return C.ca, len(C.ca), cap(C.ca)
}
// GetCgoUnsignedCharArray returns an unsigned char array via cgo and the
// array's len and cap. This is only used for tests.
func GetCgoUnsignedCharArray() (interface{}, int, int) {
return C.uca, len(C.uca), cap(C.uca)
}
// GetCgoSignedCharArray returns a signed char array via cgo and the array's len
// and cap. This is only used for tests.
func GetCgoSignedCharArray() (interface{}, int, int) {
return C.sca, len(C.sca), cap(C.sca)
}
// GetCgoUint8tArray returns a uint8_t array via cgo and the array's len and
// cap. This is only used for tests.
func GetCgoUint8tArray() (interface{}, int, int) {
return C.ui8ta, len(C.ui8ta), cap(C.ui8ta)
}
// GetCgoTypdefedUnsignedCharArray returns a typedefed unsigned char array via
// cgo and the array's len and cap. This is only used for tests.
func GetCgoTypdefedUnsignedCharArray() (interface{}, int, int) {
return C.tuca, len(C.tuca), cap(C.tuca)
}

View File

@ -535,6 +535,7 @@ func (self *Ethereum) AddPeer(nodeURL string) error {
func (s *Ethereum) Stop() { func (s *Ethereum) Stop() {
s.txSub.Unsubscribe() // quits txBroadcastLoop s.txSub.Unsubscribe() // quits txBroadcastLoop
s.net.Stop()
s.protocolManager.Stop() s.protocolManager.Stop()
s.chainManager.Stop() s.chainManager.Stop()
s.txPool.Stop() s.txPool.Stop()
@ -544,7 +545,6 @@ func (s *Ethereum) Stop() {
} }
s.StopAutoDAG() s.StopAutoDAG()
glog.V(logger.Info).Infoln("Server stopped")
close(s.shutdownChan) close(s.shutdownChan)
} }

276
p2p/dial.go Normal file
View File

@ -0,0 +1,276 @@
package p2p
import (
"container/heap"
"crypto/rand"
"fmt"
"net"
"time"
"github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/logger/glog"
"github.com/ethereum/go-ethereum/p2p/discover"
)
const (
// This is the amount of time spent waiting in between
// redialing a certain node.
dialHistoryExpiration = 30 * time.Second
// Discovery lookup tasks will wait for this long when
// no results are returned. This can happen if the table
// becomes empty (i.e. not often).
emptyLookupDelay = 10 * time.Second
)
// dialstate schedules dials and discovery lookups.
// it get's a chance to compute new tasks on every iteration
// of the main loop in Server.run.
type dialstate struct {
maxDynDials int
ntab discoverTable
lookupRunning bool
bootstrapped bool
dialing map[discover.NodeID]connFlag
lookupBuf []*discover.Node // current discovery lookup results
randomNodes []*discover.Node // filled from Table
static map[discover.NodeID]*discover.Node
hist *dialHistory
}
type discoverTable interface {
Self() *discover.Node
Close()
Bootstrap([]*discover.Node)
Lookup(target discover.NodeID) []*discover.Node
ReadRandomNodes([]*discover.Node) int
}
// the dial history remembers recent dials.
type dialHistory []pastDial
// pastDial is an entry in the dial history.
type pastDial struct {
id discover.NodeID
exp time.Time
}
type task interface {
Do(*Server)
}
// A dialTask is generated for each node that is dialed.
type dialTask struct {
flags connFlag
dest *discover.Node
}
// discoverTask runs discovery table operations.
// Only one discoverTask is active at any time.
//
// If bootstrap is true, the task runs Table.Bootstrap,
// otherwise it performs a random lookup and leaves the
// results in the task.
type discoverTask struct {
bootstrap bool
results []*discover.Node
}
// A waitExpireTask is generated if there are no other tasks
// to keep the loop in Server.run ticking.
type waitExpireTask struct {
time.Duration
}
func newDialState(static []*discover.Node, ntab discoverTable, maxdyn int) *dialstate {
s := &dialstate{
maxDynDials: maxdyn,
ntab: ntab,
static: make(map[discover.NodeID]*discover.Node),
dialing: make(map[discover.NodeID]connFlag),
randomNodes: make([]*discover.Node, maxdyn/2),
hist: new(dialHistory),
}
for _, n := range static {
s.static[n.ID] = n
}
return s
}
func (s *dialstate) addStatic(n *discover.Node) {
s.static[n.ID] = n
}
func (s *dialstate) newTasks(nRunning int, peers map[discover.NodeID]*Peer, now time.Time) []task {
var newtasks []task
addDial := func(flag connFlag, n *discover.Node) bool {
_, dialing := s.dialing[n.ID]
if dialing || peers[n.ID] != nil || s.hist.contains(n.ID) {
return false
}
s.dialing[n.ID] = flag
newtasks = append(newtasks, &dialTask{flags: flag, dest: n})
return true
}
// Compute number of dynamic dials necessary at this point.
needDynDials := s.maxDynDials
for _, p := range peers {
if p.rw.is(dynDialedConn) {
needDynDials--
}
}
for _, flag := range s.dialing {
if flag&dynDialedConn != 0 {
needDynDials--
}
}
// Expire the dial history on every invocation.
s.hist.expire(now)
// Create dials for static nodes if they are not connected.
for _, n := range s.static {
addDial(staticDialedConn, n)
}
// Use random nodes from the table for half of the necessary
// dynamic dials.
randomCandidates := needDynDials / 2
if randomCandidates > 0 && s.bootstrapped {
n := s.ntab.ReadRandomNodes(s.randomNodes)
for i := 0; i < randomCandidates && i < n; i++ {
if addDial(dynDialedConn, s.randomNodes[i]) {
needDynDials--
}
}
}
// Create dynamic dials from random lookup results, removing tried
// items from the result buffer.
i := 0
for ; i < len(s.lookupBuf) && needDynDials > 0; i++ {
if addDial(dynDialedConn, s.lookupBuf[i]) {
needDynDials--
}
}
s.lookupBuf = s.lookupBuf[:copy(s.lookupBuf, s.lookupBuf[i:])]
// Launch a discovery lookup if more candidates are needed. The
// first discoverTask bootstraps the table and won't return any
// results.
if len(s.lookupBuf) < needDynDials && !s.lookupRunning {
s.lookupRunning = true
newtasks = append(newtasks, &discoverTask{bootstrap: !s.bootstrapped})
}
// Launch a timer to wait for the next node to expire if all
// candidates have been tried and no task is currently active.
// This should prevent cases where the dialer logic is not ticked
// because there are no pending events.
if nRunning == 0 && len(newtasks) == 0 && s.hist.Len() > 0 {
t := &waitExpireTask{s.hist.min().exp.Sub(now)}
newtasks = append(newtasks, t)
}
return newtasks
}
func (s *dialstate) taskDone(t task, now time.Time) {
switch t := t.(type) {
case *dialTask:
s.hist.add(t.dest.ID, now.Add(dialHistoryExpiration))
delete(s.dialing, t.dest.ID)
case *discoverTask:
if t.bootstrap {
s.bootstrapped = true
}
s.lookupRunning = false
s.lookupBuf = append(s.lookupBuf, t.results...)
}
}
func (t *dialTask) Do(srv *Server) {
addr := &net.TCPAddr{IP: t.dest.IP, Port: int(t.dest.TCP)}
glog.V(logger.Debug).Infof("dialing %v\n", t.dest)
fd, err := srv.Dialer.Dial("tcp", addr.String())
if err != nil {
glog.V(logger.Detail).Infof("dial error: %v", err)
return
}
srv.setupConn(fd, t.flags, t.dest)
}
func (t *dialTask) String() string {
return fmt.Sprintf("%v %x %v:%d", t.flags, t.dest.ID[:8], t.dest.IP, t.dest.TCP)
}
func (t *discoverTask) Do(srv *Server) {
if t.bootstrap {
srv.ntab.Bootstrap(srv.BootstrapNodes)
} else {
var target discover.NodeID
rand.Read(target[:])
t.results = srv.ntab.Lookup(target)
// newTasks generates a lookup task whenever dynamic dials are
// necessary. Lookups need to take some time, otherwise the
// event loop spins too fast. An empty result can only be
// returned if the table is empty.
if len(t.results) == 0 {
time.Sleep(emptyLookupDelay)
}
}
}
func (t *discoverTask) String() (s string) {
if t.bootstrap {
s = "discovery bootstrap"
} else {
s = "discovery lookup"
}
if len(t.results) > 0 {
s += fmt.Sprintf(" (%d results)", len(t.results))
}
return s
}
func (t waitExpireTask) Do(*Server) {
time.Sleep(t.Duration)
}
func (t waitExpireTask) String() string {
return fmt.Sprintf("wait for dial hist expire (%v)", t.Duration)
}
// Use only these methods to access or modify dialHistory.
func (h dialHistory) min() pastDial {
return h[0]
}
func (h *dialHistory) add(id discover.NodeID, exp time.Time) {
heap.Push(h, pastDial{id, exp})
}
func (h dialHistory) contains(id discover.NodeID) bool {
for _, v := range h {
if v.id == id {
return true
}
}
return false
}
func (h *dialHistory) expire(now time.Time) {
for h.Len() > 0 && h.min().exp.Before(now) {
heap.Pop(h)
}
}
// heap.Interface boilerplate
func (h dialHistory) Len() int { return len(h) }
func (h dialHistory) Less(i, j int) bool { return h[i].exp.Before(h[j].exp) }
func (h dialHistory) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h *dialHistory) Push(x interface{}) {
*h = append(*h, x.(pastDial))
}
func (h *dialHistory) Pop() interface{} {
old := *h
n := len(old)
x := old[n-1]
*h = old[0 : n-1]
return x
}

482
p2p/dial_test.go Normal file
View File

@ -0,0 +1,482 @@
package p2p
import (
"encoding/binary"
"reflect"
"testing"
"time"
"github.com/davecgh/go-spew/spew"
"github.com/ethereum/go-ethereum/p2p/discover"
)
func init() {
spew.Config.Indent = "\t"
}
type dialtest struct {
init *dialstate // state before and after the test.
rounds []round
}
type round struct {
peers []*Peer // current peer set
done []task // tasks that got done this round
new []task // the result must match this one
}
func runDialTest(t *testing.T, test dialtest) {
var (
vtime time.Time
running int
)
pm := func(ps []*Peer) map[discover.NodeID]*Peer {
m := make(map[discover.NodeID]*Peer)
for _, p := range ps {
m[p.rw.id] = p
}
return m
}
for i, round := range test.rounds {
for _, task := range round.done {
running--
if running < 0 {
panic("running task counter underflow")
}
test.init.taskDone(task, vtime)
}
new := test.init.newTasks(running, pm(round.peers), vtime)
if !sametasks(new, round.new) {
t.Errorf("round %d: new tasks mismatch:\ngot %v\nwant %v\nstate: %v\nrunning: %v\n",
i, spew.Sdump(new), spew.Sdump(round.new), spew.Sdump(test.init), spew.Sdump(running))
}
// Time advances by 16 seconds on every round.
vtime = vtime.Add(16 * time.Second)
running += len(new)
}
}
type fakeTable []*discover.Node
func (t fakeTable) Self() *discover.Node { return new(discover.Node) }
func (t fakeTable) Close() {}
func (t fakeTable) Bootstrap([]*discover.Node) {}
func (t fakeTable) Lookup(target discover.NodeID) []*discover.Node {
return nil
}
func (t fakeTable) ReadRandomNodes(buf []*discover.Node) int {
return copy(buf, t)
}
// This test checks that dynamic dials are launched from discovery results.
func TestDialStateDynDial(t *testing.T) {
runDialTest(t, dialtest{
init: newDialState(nil, fakeTable{}, 5),
rounds: []round{
// A discovery query is launched.
{
peers: []*Peer{
{rw: &conn{flags: staticDialedConn, id: uintID(0)}},
{rw: &conn{flags: dynDialedConn, id: uintID(1)}},
{rw: &conn{flags: dynDialedConn, id: uintID(2)}},
},
new: []task{&discoverTask{bootstrap: true}},
},
// Dynamic dials are launched when it completes.
{
peers: []*Peer{
{rw: &conn{flags: staticDialedConn, id: uintID(0)}},
{rw: &conn{flags: dynDialedConn, id: uintID(1)}},
{rw: &conn{flags: dynDialedConn, id: uintID(2)}},
},
done: []task{
&discoverTask{bootstrap: true, results: []*discover.Node{
{ID: uintID(2)}, // this one is already connected and not dialed.
{ID: uintID(3)},
{ID: uintID(4)},
{ID: uintID(5)},
{ID: uintID(6)}, // these are not tried because max dyn dials is 5
{ID: uintID(7)}, // ...
}},
},
new: []task{
&dialTask{dynDialedConn, &discover.Node{ID: uintID(3)}},
&dialTask{dynDialedConn, &discover.Node{ID: uintID(4)}},
&dialTask{dynDialedConn, &discover.Node{ID: uintID(5)}},
},
},
// Some of the dials complete but no new ones are launched yet because
// the sum of active dial count and dynamic peer count is == maxDynDials.
{
peers: []*Peer{
{rw: &conn{flags: staticDialedConn, id: uintID(0)}},
{rw: &conn{flags: dynDialedConn, id: uintID(1)}},
{rw: &conn{flags: dynDialedConn, id: uintID(2)}},
{rw: &conn{flags: dynDialedConn, id: uintID(3)}},
{rw: &conn{flags: dynDialedConn, id: uintID(4)}},
},
done: []task{
&dialTask{dynDialedConn, &discover.Node{ID: uintID(3)}},
&dialTask{dynDialedConn, &discover.Node{ID: uintID(4)}},
},
},
// No new dial tasks are launched in the this round because
// maxDynDials has been reached.
{
peers: []*Peer{
{rw: &conn{flags: staticDialedConn, id: uintID(0)}},
{rw: &conn{flags: dynDialedConn, id: uintID(1)}},
{rw: &conn{flags: dynDialedConn, id: uintID(2)}},
{rw: &conn{flags: dynDialedConn, id: uintID(3)}},
{rw: &conn{flags: dynDialedConn, id: uintID(4)}},
{rw: &conn{flags: dynDialedConn, id: uintID(5)}},
},
done: []task{
&dialTask{dynDialedConn, &discover.Node{ID: uintID(5)}},
},
new: []task{
&waitExpireTask{Duration: 14 * time.Second},
},
},
// In this round, the peer with id 2 drops off. The query
// results from last discovery lookup are reused.
{
peers: []*Peer{
{rw: &conn{flags: staticDialedConn, id: uintID(0)}},
{rw: &conn{flags: dynDialedConn, id: uintID(1)}},
{rw: &conn{flags: dynDialedConn, id: uintID(3)}},
{rw: &conn{flags: dynDialedConn, id: uintID(4)}},
{rw: &conn{flags: dynDialedConn, id: uintID(5)}},
},
new: []task{
&dialTask{dynDialedConn, &discover.Node{ID: uintID(6)}},
},
},
// More peers (3,4) drop off and dial for ID 6 completes.
// The last query result from the discovery lookup is reused
// and a new one is spawned because more candidates are needed.
{
peers: []*Peer{
{rw: &conn{flags: staticDialedConn, id: uintID(0)}},
{rw: &conn{flags: dynDialedConn, id: uintID(1)}},
{rw: &conn{flags: dynDialedConn, id: uintID(5)}},
},
done: []task{
&dialTask{dynDialedConn, &discover.Node{ID: uintID(6)}},
},
new: []task{
&dialTask{dynDialedConn, &discover.Node{ID: uintID(7)}},
&discoverTask{},
},
},
// Peer 7 is connected, but there still aren't enough dynamic peers
// (4 out of 5). However, a discovery is already running, so ensure
// no new is started.
{
peers: []*Peer{
{rw: &conn{flags: staticDialedConn, id: uintID(0)}},
{rw: &conn{flags: dynDialedConn, id: uintID(1)}},
{rw: &conn{flags: dynDialedConn, id: uintID(5)}},
{rw: &conn{flags: dynDialedConn, id: uintID(7)}},
},
done: []task{
&dialTask{dynDialedConn, &discover.Node{ID: uintID(7)}},
},
},
// Finish the running node discovery with an empty set. A new lookup
// should be immediately requested.
{
peers: []*Peer{
{rw: &conn{flags: staticDialedConn, id: uintID(0)}},
{rw: &conn{flags: dynDialedConn, id: uintID(1)}},
{rw: &conn{flags: dynDialedConn, id: uintID(5)}},
{rw: &conn{flags: dynDialedConn, id: uintID(7)}},
},
done: []task{
&discoverTask{},
},
new: []task{
&discoverTask{},
},
},
},
})
}
func TestDialStateDynDialFromTable(t *testing.T) {
// This table always returns the same random nodes
// in the order given below.
table := fakeTable{
{ID: uintID(1)},
{ID: uintID(2)},
{ID: uintID(3)},
{ID: uintID(4)},
{ID: uintID(5)},
{ID: uintID(6)},
{ID: uintID(7)},
{ID: uintID(8)},
}
runDialTest(t, dialtest{
init: newDialState(nil, table, 10),
rounds: []round{
// Discovery bootstrap is launched.
{
new: []task{&discoverTask{bootstrap: true}},
},
// 5 out of 8 of the nodes returned by ReadRandomNodes are dialed.
{
done: []task{
&discoverTask{bootstrap: true},
},
new: []task{
&dialTask{dynDialedConn, &discover.Node{ID: uintID(1)}},
&dialTask{dynDialedConn, &discover.Node{ID: uintID(2)}},
&dialTask{dynDialedConn, &discover.Node{ID: uintID(3)}},
&dialTask{dynDialedConn, &discover.Node{ID: uintID(4)}},
&dialTask{dynDialedConn, &discover.Node{ID: uintID(5)}},
&discoverTask{bootstrap: false},
},
},
// Dialing nodes 1,2 succeeds. Dials from the lookup are launched.
{
peers: []*Peer{
{rw: &conn{flags: dynDialedConn, id: uintID(1)}},
{rw: &conn{flags: dynDialedConn, id: uintID(2)}},
},
done: []task{
&dialTask{dynDialedConn, &discover.Node{ID: uintID(1)}},
&dialTask{dynDialedConn, &discover.Node{ID: uintID(2)}},
&discoverTask{results: []*discover.Node{
{ID: uintID(10)},
{ID: uintID(11)},
{ID: uintID(12)},
}},
},
new: []task{
&dialTask{dynDialedConn, &discover.Node{ID: uintID(10)}},
&dialTask{dynDialedConn, &discover.Node{ID: uintID(11)}},
&dialTask{dynDialedConn, &discover.Node{ID: uintID(12)}},
&discoverTask{bootstrap: false},
},
},
// Dialing nodes 3,4,5 fails. The dials from the lookup succeed.
{
peers: []*Peer{
{rw: &conn{flags: dynDialedConn, id: uintID(1)}},
{rw: &conn{flags: dynDialedConn, id: uintID(2)}},
{rw: &conn{flags: dynDialedConn, id: uintID(10)}},
{rw: &conn{flags: dynDialedConn, id: uintID(11)}},
{rw: &conn{flags: dynDialedConn, id: uintID(12)}},
},
done: []task{
&dialTask{dynDialedConn, &discover.Node{ID: uintID(3)}},
&dialTask{dynDialedConn, &discover.Node{ID: uintID(4)}},
&dialTask{dynDialedConn, &discover.Node{ID: uintID(5)}},
&dialTask{dynDialedConn, &discover.Node{ID: uintID(10)}},
&dialTask{dynDialedConn, &discover.Node{ID: uintID(11)}},
&dialTask{dynDialedConn, &discover.Node{ID: uintID(12)}},
},
},
// Waiting for expiry. No waitExpireTask is launched because the
// discovery query is still running.
{
peers: []*Peer{
{rw: &conn{flags: dynDialedConn, id: uintID(1)}},
{rw: &conn{flags: dynDialedConn, id: uintID(2)}},
{rw: &conn{flags: dynDialedConn, id: uintID(10)}},
{rw: &conn{flags: dynDialedConn, id: uintID(11)}},
{rw: &conn{flags: dynDialedConn, id: uintID(12)}},
},
},
// Nodes 3,4 are not tried again because only the first two
// returned random nodes (nodes 1,2) are tried and they're
// already connected.
{
peers: []*Peer{
{rw: &conn{flags: dynDialedConn, id: uintID(1)}},
{rw: &conn{flags: dynDialedConn, id: uintID(2)}},
{rw: &conn{flags: dynDialedConn, id: uintID(10)}},
{rw: &conn{flags: dynDialedConn, id: uintID(11)}},
{rw: &conn{flags: dynDialedConn, id: uintID(12)}},
},
},
},
})
}
// This test checks that static dials are launched.
func TestDialStateStaticDial(t *testing.T) {
wantStatic := []*discover.Node{
{ID: uintID(1)},
{ID: uintID(2)},
{ID: uintID(3)},
{ID: uintID(4)},
{ID: uintID(5)},
}
runDialTest(t, dialtest{
init: newDialState(wantStatic, fakeTable{}, 0),
rounds: []round{
// Static dials are launched for the nodes that
// aren't yet connected.
{
peers: []*Peer{
{rw: &conn{flags: dynDialedConn, id: uintID(1)}},
{rw: &conn{flags: dynDialedConn, id: uintID(2)}},
},
new: []task{
&dialTask{staticDialedConn, &discover.Node{ID: uintID(3)}},
&dialTask{staticDialedConn, &discover.Node{ID: uintID(4)}},
&dialTask{staticDialedConn, &discover.Node{ID: uintID(5)}},
},
},
// No new tasks are launched in this round because all static
// nodes are either connected or still being dialed.
{
peers: []*Peer{
{rw: &conn{flags: dynDialedConn, id: uintID(1)}},
{rw: &conn{flags: dynDialedConn, id: uintID(2)}},
{rw: &conn{flags: staticDialedConn, id: uintID(3)}},
},
done: []task{
&dialTask{staticDialedConn, &discover.Node{ID: uintID(3)}},
},
},
// No new dial tasks are launched because all static
// nodes are now connected.
{
peers: []*Peer{
{rw: &conn{flags: dynDialedConn, id: uintID(1)}},
{rw: &conn{flags: dynDialedConn, id: uintID(2)}},
{rw: &conn{flags: staticDialedConn, id: uintID(3)}},
{rw: &conn{flags: staticDialedConn, id: uintID(4)}},
{rw: &conn{flags: staticDialedConn, id: uintID(5)}},
},
done: []task{
&dialTask{staticDialedConn, &discover.Node{ID: uintID(4)}},
&dialTask{staticDialedConn, &discover.Node{ID: uintID(5)}},
},
new: []task{
&waitExpireTask{Duration: 14 * time.Second},
},
},
// Wait a round for dial history to expire, no new tasks should spawn.
{
peers: []*Peer{
{rw: &conn{flags: dynDialedConn, id: uintID(1)}},
{rw: &conn{flags: dynDialedConn, id: uintID(2)}},
{rw: &conn{flags: staticDialedConn, id: uintID(3)}},
{rw: &conn{flags: staticDialedConn, id: uintID(4)}},
{rw: &conn{flags: staticDialedConn, id: uintID(5)}},
},
},
// If a static node is dropped, it should be immediately redialed,
// irrespective whether it was originally static or dynamic.
{
peers: []*Peer{
{rw: &conn{flags: dynDialedConn, id: uintID(1)}},
{rw: &conn{flags: staticDialedConn, id: uintID(3)}},
{rw: &conn{flags: staticDialedConn, id: uintID(5)}},
},
new: []task{
&dialTask{staticDialedConn, &discover.Node{ID: uintID(2)}},
&dialTask{staticDialedConn, &discover.Node{ID: uintID(4)}},
},
},
},
})
}
// This test checks that past dials are not retried for some time.
func TestDialStateCache(t *testing.T) {
wantStatic := []*discover.Node{
{ID: uintID(1)},
{ID: uintID(2)},
{ID: uintID(3)},
}
runDialTest(t, dialtest{
init: newDialState(wantStatic, fakeTable{}, 0),
rounds: []round{
// Static dials are launched for the nodes that
// aren't yet connected.
{
peers: nil,
new: []task{
&dialTask{staticDialedConn, &discover.Node{ID: uintID(1)}},
&dialTask{staticDialedConn, &discover.Node{ID: uintID(2)}},
&dialTask{staticDialedConn, &discover.Node{ID: uintID(3)}},
},
},
// No new tasks are launched in this round because all static
// nodes are either connected or still being dialed.
{
peers: []*Peer{
{rw: &conn{flags: staticDialedConn, id: uintID(1)}},
{rw: &conn{flags: staticDialedConn, id: uintID(2)}},
},
done: []task{
&dialTask{staticDialedConn, &discover.Node{ID: uintID(1)}},
&dialTask{staticDialedConn, &discover.Node{ID: uintID(2)}},
},
},
// A salvage task is launched to wait for node 3's history
// entry to expire.
{
peers: []*Peer{
{rw: &conn{flags: dynDialedConn, id: uintID(1)}},
{rw: &conn{flags: dynDialedConn, id: uintID(2)}},
},
done: []task{
&dialTask{staticDialedConn, &discover.Node{ID: uintID(3)}},
},
new: []task{
&waitExpireTask{Duration: 14 * time.Second},
},
},
// Still waiting for node 3's entry to expire in the cache.
{
peers: []*Peer{
{rw: &conn{flags: dynDialedConn, id: uintID(1)}},
{rw: &conn{flags: dynDialedConn, id: uintID(2)}},
},
},
// The cache entry for node 3 has expired and is retried.
{
peers: []*Peer{
{rw: &conn{flags: dynDialedConn, id: uintID(1)}},
{rw: &conn{flags: dynDialedConn, id: uintID(2)}},
},
new: []task{
&dialTask{staticDialedConn, &discover.Node{ID: uintID(3)}},
},
},
},
})
}
// compares task lists but doesn't care about the order.
func sametasks(a, b []task) bool {
if len(a) != len(b) {
return false
}
next:
for _, ta := range a {
for _, tb := range b {
if reflect.DeepEqual(ta, tb) {
continue next
}
}
return false
}
return true
}
func uintID(i uint32) discover.NodeID {
var id discover.NodeID
binary.BigEndian.PutUint32(id[:], i)
return id
}

View File

@ -8,6 +8,7 @@ package discover
import ( import (
"crypto/rand" "crypto/rand"
"encoding/binary"
"net" "net"
"sort" "sort"
"sync" "sync"
@ -90,10 +91,58 @@ func newTable(t transport, ourID NodeID, ourAddr *net.UDPAddr, nodeDBPath string
} }
// Self returns the local node. // Self returns the local node.
// The returned node should not be modified by the caller.
func (tab *Table) Self() *Node { func (tab *Table) Self() *Node {
return tab.self return tab.self
} }
// ReadRandomNodes fills the given slice with random nodes from the
// table. It will not write the same node more than once. The nodes in
// the slice are copies and can be modified by the caller.
func (tab *Table) ReadRandomNodes(buf []*Node) (n int) {
tab.mutex.Lock()
defer tab.mutex.Unlock()
// TODO: tree-based buckets would help here
// Find all non-empty buckets and get a fresh slice of their entries.
var buckets [][]*Node
for _, b := range tab.buckets {
if len(b.entries) > 0 {
buckets = append(buckets, b.entries[:])
}
}
if len(buckets) == 0 {
return 0
}
// Shuffle the buckets.
for i := uint32(len(buckets)) - 1; i > 0; i-- {
j := randUint(i)
buckets[i], buckets[j] = buckets[j], buckets[i]
}
// Move head of each bucket into buf, removing buckets that become empty.
var i, j int
for ; i < len(buf); i, j = i+1, (j+1)%len(buckets) {
b := buckets[j]
buf[i] = &(*b[0])
buckets[j] = b[1:]
if len(b) == 1 {
buckets = append(buckets[:j], buckets[j+1:]...)
}
if len(buckets) == 0 {
break
}
}
return i + 1
}
func randUint(max uint32) uint32 {
if max == 0 {
return 0
}
var b [4]byte
rand.Read(b[:])
return binary.BigEndian.Uint32(b[:]) % max
}
// Close terminates the network listener and flushes the node database. // Close terminates the network listener and flushes the node database.
func (tab *Table) Close() { func (tab *Table) Close() {
tab.net.close() tab.net.close()

View File

@ -210,6 +210,36 @@ func TestTable_closest(t *testing.T) {
} }
} }
func TestTable_ReadRandomNodesGetAll(t *testing.T) {
cfg := &quick.Config{
MaxCount: 200,
Rand: quickrand,
Values: func(args []reflect.Value, rand *rand.Rand) {
args[0] = reflect.ValueOf(make([]*Node, rand.Intn(1000)))
},
}
test := func(buf []*Node) bool {
tab := newTable(nil, NodeID{}, &net.UDPAddr{}, "")
for i := 0; i < len(buf); i++ {
ld := quickrand.Intn(len(tab.buckets))
tab.add([]*Node{nodeAtDistance(tab.self.sha, ld)})
}
gotN := tab.ReadRandomNodes(buf)
if gotN != tab.len() {
t.Errorf("wrong number of nodes, got %d, want %d", gotN, tab.len())
return false
}
if hasDuplicates(buf[:gotN]) {
t.Errorf("result contains duplicates")
return false
}
return true
}
if err := quick.Check(test, cfg); err != nil {
t.Error(err)
}
}
type closeTest struct { type closeTest struct {
Self NodeID Self NodeID
Target common.Hash Target common.Hash
@ -517,7 +547,10 @@ func (n *preminedTestnet) mine(target NodeID) {
func hasDuplicates(slice []*Node) bool { func hasDuplicates(slice []*Node) bool {
seen := make(map[NodeID]bool) seen := make(map[NodeID]bool)
for _, e := range slice { for i, e := range slice {
if e == nil {
panic(fmt.Sprintf("nil *Node at %d", i))
}
if seen[e.ID] { if seen[e.ID] {
return true return true
} }

View File

@ -1,448 +0,0 @@
package p2p
import (
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"errors"
"fmt"
"hash"
"io"
"net"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/crypto/ecies"
"github.com/ethereum/go-ethereum/crypto/secp256k1"
"github.com/ethereum/go-ethereum/crypto/sha3"
"github.com/ethereum/go-ethereum/p2p/discover"
"github.com/ethereum/go-ethereum/rlp"
)
const (
sskLen = 16 // ecies.MaxSharedKeyLength(pubKey) / 2
sigLen = 65 // elliptic S256
pubLen = 64 // 512 bit pubkey in uncompressed representation without format byte
shaLen = 32 // hash length (for nonce etc)
authMsgLen = sigLen + shaLen + pubLen + shaLen + 1
authRespLen = pubLen + shaLen + 1
eciesBytes = 65 + 16 + 32
encAuthMsgLen = authMsgLen + eciesBytes // size of the final ECIES payload sent as initiator's handshake
encAuthRespLen = authRespLen + eciesBytes // size of the final ECIES payload sent as receiver's handshake
)
// conn represents a remote connection after encryption handshake
// and protocol handshake have completed.
//
// The MsgReadWriter is usually layered as follows:
//
// netWrapper (I/O timeouts, thread-safe ReadMsg, WriteMsg)
// rlpxFrameRW (message encoding, encryption, authentication)
// bufio.ReadWriter (buffering)
// net.Conn (network I/O)
//
type conn struct {
MsgReadWriter
*protoHandshake
}
// secrets represents the connection secrets
// which are negotiated during the encryption handshake.
type secrets struct {
RemoteID discover.NodeID
AES, MAC []byte
EgressMAC, IngressMAC hash.Hash
Token []byte
}
// protoHandshake is the RLP structure of the protocol handshake.
type protoHandshake struct {
Version uint64
Name string
Caps []Cap
ListenPort uint64
ID discover.NodeID
}
// setupConn starts a protocol session on the given connection. It
// runs the encryption handshake and the protocol handshake. If dial
// is non-nil, the connection the local node is the initiator. If
// keepconn returns false, the connection will be disconnected with
// DiscTooManyPeers after the key exchange.
func setupConn(fd net.Conn, prv *ecdsa.PrivateKey, our *protoHandshake, dial *discover.Node, keepconn func(discover.NodeID) bool) (*conn, error) {
if dial == nil {
return setupInboundConn(fd, prv, our, keepconn)
} else {
return setupOutboundConn(fd, prv, our, dial, keepconn)
}
}
func setupInboundConn(fd net.Conn, prv *ecdsa.PrivateKey, our *protoHandshake, keepconn func(discover.NodeID) bool) (*conn, error) {
secrets, err := receiverEncHandshake(fd, prv, nil)
if err != nil {
return nil, fmt.Errorf("encryption handshake failed: %v", err)
}
rw := newRlpxFrameRW(fd, secrets)
if !keepconn(secrets.RemoteID) {
SendItems(rw, discMsg, DiscTooManyPeers)
return nil, errors.New("we have too many peers")
}
// Run the protocol handshake using authenticated messages.
rhs, err := readProtocolHandshake(rw, secrets.RemoteID, our)
if err != nil {
return nil, err
}
if err := Send(rw, handshakeMsg, our); err != nil {
return nil, fmt.Errorf("protocol handshake write error: %v", err)
}
return &conn{rw, rhs}, nil
}
func setupOutboundConn(fd net.Conn, prv *ecdsa.PrivateKey, our *protoHandshake, dial *discover.Node, keepconn func(discover.NodeID) bool) (*conn, error) {
secrets, err := initiatorEncHandshake(fd, prv, dial.ID, nil)
if err != nil {
return nil, fmt.Errorf("encryption handshake failed: %v", err)
}
rw := newRlpxFrameRW(fd, secrets)
if !keepconn(secrets.RemoteID) {
SendItems(rw, discMsg, DiscTooManyPeers)
return nil, errors.New("we have too many peers")
}
// Run the protocol handshake using authenticated messages.
//
// Note that even though writing the handshake is first, we prefer
// returning the handshake read error. If the remote side
// disconnects us early with a valid reason, we should return it
// as the error so it can be tracked elsewhere.
werr := make(chan error, 1)
go func() { werr <- Send(rw, handshakeMsg, our) }()
rhs, err := readProtocolHandshake(rw, secrets.RemoteID, our)
if err != nil {
return nil, err
}
if err := <-werr; err != nil {
return nil, fmt.Errorf("protocol handshake write error: %v", err)
}
if rhs.ID != dial.ID {
return nil, errors.New("dialed node id mismatch")
}
return &conn{rw, rhs}, nil
}
// encHandshake contains the state of the encryption handshake.
type encHandshake struct {
initiator bool
remoteID discover.NodeID
remotePub *ecies.PublicKey // remote-pubk
initNonce, respNonce []byte // nonce
randomPrivKey *ecies.PrivateKey // ecdhe-random
remoteRandomPub *ecies.PublicKey // ecdhe-random-pubk
}
// secrets is called after the handshake is completed.
// It extracts the connection secrets from the handshake values.
func (h *encHandshake) secrets(auth, authResp []byte) (secrets, error) {
ecdheSecret, err := h.randomPrivKey.GenerateShared(h.remoteRandomPub, sskLen, sskLen)
if err != nil {
return secrets{}, err
}
// derive base secrets from ephemeral key agreement
sharedSecret := crypto.Sha3(ecdheSecret, crypto.Sha3(h.respNonce, h.initNonce))
aesSecret := crypto.Sha3(ecdheSecret, sharedSecret)
s := secrets{
RemoteID: h.remoteID,
AES: aesSecret,
MAC: crypto.Sha3(ecdheSecret, aesSecret),
Token: crypto.Sha3(sharedSecret),
}
// setup sha3 instances for the MACs
mac1 := sha3.NewKeccak256()
mac1.Write(xor(s.MAC, h.respNonce))
mac1.Write(auth)
mac2 := sha3.NewKeccak256()
mac2.Write(xor(s.MAC, h.initNonce))
mac2.Write(authResp)
if h.initiator {
s.EgressMAC, s.IngressMAC = mac1, mac2
} else {
s.EgressMAC, s.IngressMAC = mac2, mac1
}
return s, nil
}
func (h *encHandshake) ecdhShared(prv *ecdsa.PrivateKey) ([]byte, error) {
return ecies.ImportECDSA(prv).GenerateShared(h.remotePub, sskLen, sskLen)
}
// initiatorEncHandshake negotiates a session token on conn.
// it should be called on the dialing side of the connection.
//
// prv is the local client's private key.
// token is the token from a previous session with this node.
func initiatorEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, remoteID discover.NodeID, token []byte) (s secrets, err error) {
h, err := newInitiatorHandshake(remoteID)
if err != nil {
return s, err
}
auth, err := h.authMsg(prv, token)
if err != nil {
return s, err
}
if _, err = conn.Write(auth); err != nil {
return s, err
}
response := make([]byte, encAuthRespLen)
if _, err = io.ReadFull(conn, response); err != nil {
return s, err
}
if err := h.decodeAuthResp(response, prv); err != nil {
return s, err
}
return h.secrets(auth, response)
}
func newInitiatorHandshake(remoteID discover.NodeID) (*encHandshake, error) {
// generate random initiator nonce
n := make([]byte, shaLen)
if _, err := rand.Read(n); err != nil {
return nil, err
}
// generate random keypair to use for signing
randpriv, err := ecies.GenerateKey(rand.Reader, crypto.S256(), nil)
if err != nil {
return nil, err
}
rpub, err := remoteID.Pubkey()
if err != nil {
return nil, fmt.Errorf("bad remoteID: %v", err)
}
h := &encHandshake{
initiator: true,
remoteID: remoteID,
remotePub: ecies.ImportECDSAPublic(rpub),
initNonce: n,
randomPrivKey: randpriv,
}
return h, nil
}
// authMsg creates an encrypted initiator handshake message.
func (h *encHandshake) authMsg(prv *ecdsa.PrivateKey, token []byte) ([]byte, error) {
var tokenFlag byte
if token == nil {
// no session token found means we need to generate shared secret.
// ecies shared secret is used as initial session token for new peers
// generate shared key from prv and remote pubkey
var err error
if token, err = h.ecdhShared(prv); err != nil {
return nil, err
}
} else {
// for known peers, we use stored token from the previous session
tokenFlag = 0x01
}
// sign known message:
// ecdh-shared-secret^nonce for new peers
// token^nonce for old peers
signed := xor(token, h.initNonce)
signature, err := crypto.Sign(signed, h.randomPrivKey.ExportECDSA())
if err != nil {
return nil, err
}
// encode auth message
// signature || sha3(ecdhe-random-pubk) || pubk || nonce || token-flag
msg := make([]byte, authMsgLen)
n := copy(msg, signature)
n += copy(msg[n:], crypto.Sha3(exportPubkey(&h.randomPrivKey.PublicKey)))
n += copy(msg[n:], crypto.FromECDSAPub(&prv.PublicKey)[1:])
n += copy(msg[n:], h.initNonce)
msg[n] = tokenFlag
// encrypt auth message using remote-pubk
return ecies.Encrypt(rand.Reader, h.remotePub, msg, nil, nil)
}
// decodeAuthResp decode an encrypted authentication response message.
func (h *encHandshake) decodeAuthResp(auth []byte, prv *ecdsa.PrivateKey) error {
msg, err := crypto.Decrypt(prv, auth)
if err != nil {
return fmt.Errorf("could not decrypt auth response (%v)", err)
}
h.respNonce = msg[pubLen : pubLen+shaLen]
h.remoteRandomPub, err = importPublicKey(msg[:pubLen])
if err != nil {
return err
}
// ignore token flag for now
return nil
}
// receiverEncHandshake negotiates a session token on conn.
// it should be called on the listening side of the connection.
//
// prv is the local client's private key.
// token is the token from a previous session with this node.
func receiverEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, token []byte) (s secrets, err error) {
// read remote auth sent by initiator.
auth := make([]byte, encAuthMsgLen)
if _, err := io.ReadFull(conn, auth); err != nil {
return s, err
}
h, err := decodeAuthMsg(prv, token, auth)
if err != nil {
return s, err
}
// send auth response
resp, err := h.authResp(prv, token)
if err != nil {
return s, err
}
if _, err = conn.Write(resp); err != nil {
return s, err
}
return h.secrets(auth, resp)
}
func decodeAuthMsg(prv *ecdsa.PrivateKey, token []byte, auth []byte) (*encHandshake, error) {
var err error
h := new(encHandshake)
// generate random keypair for session
h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil)
if err != nil {
return nil, err
}
// generate random nonce
h.respNonce = make([]byte, shaLen)
if _, err = rand.Read(h.respNonce); err != nil {
return nil, err
}
msg, err := crypto.Decrypt(prv, auth)
if err != nil {
return nil, fmt.Errorf("could not decrypt auth message (%v)", err)
}
// decode message parameters
// signature || sha3(ecdhe-random-pubk) || pubk || nonce || token-flag
h.initNonce = msg[authMsgLen-shaLen-1 : authMsgLen-1]
copy(h.remoteID[:], msg[sigLen+shaLen:sigLen+shaLen+pubLen])
rpub, err := h.remoteID.Pubkey()
if err != nil {
return nil, fmt.Errorf("bad remoteID: %#v", err)
}
h.remotePub = ecies.ImportECDSAPublic(rpub)
// recover remote random pubkey from signed message.
if token == nil {
// TODO: it is an error if the initiator has a token and we don't. check that.
// no session token means we need to generate shared secret.
// ecies shared secret is used as initial session token for new peers.
// generate shared key from prv and remote pubkey.
if token, err = h.ecdhShared(prv); err != nil {
return nil, err
}
}
signedMsg := xor(token, h.initNonce)
remoteRandomPub, err := secp256k1.RecoverPubkey(signedMsg, msg[:sigLen])
if err != nil {
return nil, err
}
h.remoteRandomPub, _ = importPublicKey(remoteRandomPub)
return h, nil
}
// authResp generates the encrypted authentication response message.
func (h *encHandshake) authResp(prv *ecdsa.PrivateKey, token []byte) ([]byte, error) {
// responder auth message
// E(remote-pubk, ecdhe-random-pubk || nonce || 0x0)
resp := make([]byte, authRespLen)
n := copy(resp, exportPubkey(&h.randomPrivKey.PublicKey))
n += copy(resp[n:], h.respNonce)
if token == nil {
resp[n] = 0
} else {
resp[n] = 1
}
// encrypt using remote-pubk
return ecies.Encrypt(rand.Reader, h.remotePub, resp, nil, nil)
}
// importPublicKey unmarshals 512 bit public keys.
func importPublicKey(pubKey []byte) (*ecies.PublicKey, error) {
var pubKey65 []byte
switch len(pubKey) {
case 64:
// add 'uncompressed key' flag
pubKey65 = append([]byte{0x04}, pubKey...)
case 65:
pubKey65 = pubKey
default:
return nil, fmt.Errorf("invalid public key length %v (expect 64/65)", len(pubKey))
}
// TODO: fewer pointless conversions
return ecies.ImportECDSAPublic(crypto.ToECDSAPub(pubKey65)), nil
}
func exportPubkey(pub *ecies.PublicKey) []byte {
if pub == nil {
panic("nil pubkey")
}
return elliptic.Marshal(pub.Curve, pub.X, pub.Y)[1:]
}
func xor(one, other []byte) (xor []byte) {
xor = make([]byte, len(one))
for i := 0; i < len(one); i++ {
xor[i] = one[i] ^ other[i]
}
return xor
}
func readProtocolHandshake(rw MsgReadWriter, wantID discover.NodeID, our *protoHandshake) (*protoHandshake, error) {
msg, err := rw.ReadMsg()
if err != nil {
return nil, err
}
if msg.Code == discMsg {
// disconnect before protocol handshake is valid according to the
// spec and we send it ourself if Server.addPeer fails.
var reason [1]DiscReason
rlp.Decode(msg.Payload, &reason)
return nil, reason[0]
}
if msg.Code != handshakeMsg {
return nil, fmt.Errorf("expected handshake, got %x", msg.Code)
}
if msg.Size > baseProtocolMaxMsgSize {
return nil, fmt.Errorf("message too big (%d > %d)", msg.Size, baseProtocolMaxMsgSize)
}
var hs protoHandshake
if err := msg.Decode(&hs); err != nil {
return nil, err
}
// validate handshake info
if hs.Version != our.Version {
SendItems(rw, discMsg, DiscIncompatibleVersion)
return nil, fmt.Errorf("required version %d, received %d\n", baseProtocolVersion, hs.Version)
}
if (hs.ID == discover.NodeID{}) {
SendItems(rw, discMsg, DiscInvalidIdentity)
return nil, errors.New("invalid public key in handshake")
}
if hs.ID != wantID {
SendItems(rw, discMsg, DiscUnexpectedIdentity)
return nil, errors.New("handshake node ID does not match encryption handshake")
}
return &hs, nil
}

View File

@ -1,172 +0,0 @@
package p2p
import (
"bytes"
"crypto/rand"
"fmt"
"net"
"reflect"
"testing"
"time"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/crypto/ecies"
"github.com/ethereum/go-ethereum/p2p/discover"
)
func TestSharedSecret(t *testing.T) {
prv0, _ := crypto.GenerateKey() // = ecdsa.GenerateKey(crypto.S256(), rand.Reader)
pub0 := &prv0.PublicKey
prv1, _ := crypto.GenerateKey()
pub1 := &prv1.PublicKey
ss0, err := ecies.ImportECDSA(prv0).GenerateShared(ecies.ImportECDSAPublic(pub1), sskLen, sskLen)
if err != nil {
return
}
ss1, err := ecies.ImportECDSA(prv1).GenerateShared(ecies.ImportECDSAPublic(pub0), sskLen, sskLen)
if err != nil {
return
}
t.Logf("Secret:\n%v %x\n%v %x", len(ss0), ss0, len(ss0), ss1)
if !bytes.Equal(ss0, ss1) {
t.Errorf("dont match :(")
}
}
func TestEncHandshake(t *testing.T) {
for i := 0; i < 20; i++ {
start := time.Now()
if err := testEncHandshake(nil); err != nil {
t.Fatalf("i=%d %v", i, err)
}
t.Logf("(without token) %d %v\n", i+1, time.Since(start))
}
for i := 0; i < 20; i++ {
tok := make([]byte, shaLen)
rand.Reader.Read(tok)
start := time.Now()
if err := testEncHandshake(tok); err != nil {
t.Fatalf("i=%d %v", i, err)
}
t.Logf("(with token) %d %v\n", i+1, time.Since(start))
}
}
func testEncHandshake(token []byte) error {
type result struct {
side string
s secrets
err error
}
var (
prv0, _ = crypto.GenerateKey()
prv1, _ = crypto.GenerateKey()
rw0, rw1 = net.Pipe()
output = make(chan result)
)
go func() {
r := result{side: "initiator"}
defer func() { output <- r }()
pub1s := discover.PubkeyID(&prv1.PublicKey)
r.s, r.err = initiatorEncHandshake(rw0, prv0, pub1s, token)
if r.err != nil {
return
}
id1 := discover.PubkeyID(&prv1.PublicKey)
if r.s.RemoteID != id1 {
r.err = fmt.Errorf("remote ID mismatch: got %v, want: %v", r.s.RemoteID, id1)
}
}()
go func() {
r := result{side: "receiver"}
defer func() { output <- r }()
r.s, r.err = receiverEncHandshake(rw1, prv1, token)
if r.err != nil {
return
}
id0 := discover.PubkeyID(&prv0.PublicKey)
if r.s.RemoteID != id0 {
r.err = fmt.Errorf("remote ID mismatch: got %v, want: %v", r.s.RemoteID, id0)
}
}()
// wait for results from both sides
r1, r2 := <-output, <-output
if r1.err != nil {
return fmt.Errorf("%s side error: %v", r1.side, r1.err)
}
if r2.err != nil {
return fmt.Errorf("%s side error: %v", r2.side, r2.err)
}
// don't compare remote node IDs
r1.s.RemoteID, r2.s.RemoteID = discover.NodeID{}, discover.NodeID{}
// flip MACs on one of them so they compare equal
r1.s.EgressMAC, r1.s.IngressMAC = r1.s.IngressMAC, r1.s.EgressMAC
if !reflect.DeepEqual(r1.s, r2.s) {
return fmt.Errorf("secrets mismatch:\n t1: %#v\n t2: %#v", r1.s, r2.s)
}
return nil
}
func TestSetupConn(t *testing.T) {
prv0, _ := crypto.GenerateKey()
prv1, _ := crypto.GenerateKey()
node0 := &discover.Node{
ID: discover.PubkeyID(&prv0.PublicKey),
IP: net.IP{1, 2, 3, 4},
TCP: 33,
}
node1 := &discover.Node{
ID: discover.PubkeyID(&prv1.PublicKey),
IP: net.IP{5, 6, 7, 8},
TCP: 44,
}
hs0 := &protoHandshake{
Version: baseProtocolVersion,
ID: node0.ID,
Caps: []Cap{{"a", 0}, {"b", 2}},
}
hs1 := &protoHandshake{
Version: baseProtocolVersion,
ID: node1.ID,
Caps: []Cap{{"c", 1}, {"d", 3}},
}
fd0, fd1 := net.Pipe()
done := make(chan struct{})
keepalways := func(discover.NodeID) bool { return true }
go func() {
defer close(done)
conn0, err := setupConn(fd0, prv0, hs0, node1, keepalways)
if err != nil {
t.Errorf("outbound side error: %v", err)
return
}
if conn0.ID != node1.ID {
t.Errorf("outbound conn id mismatch: got %v, want %v", conn0.ID, node1.ID)
}
if !reflect.DeepEqual(conn0.Caps, hs1.Caps) {
t.Errorf("outbound caps mismatch: got %v, want %v", conn0.Caps, hs1.Caps)
}
}()
conn1, err := setupConn(fd1, prv1, hs1, nil, keepalways)
if err != nil {
t.Fatalf("inbound side error: %v", err)
}
if conn1.ID != node0.ID {
t.Errorf("inbound conn id mismatch: got %v, want %v", conn1.ID, node0.ID)
}
if !reflect.DeepEqual(conn1.Caps, hs0.Caps) {
t.Errorf("inbound caps mismatch: got %v, want %v", conn1.Caps, hs0.Caps)
}
<-done
}

View File

@ -18,7 +18,7 @@ import (
const ( const (
baseProtocolVersion = 4 baseProtocolVersion = 4
baseProtocolLength = uint64(16) baseProtocolLength = uint64(16)
baseProtocolMaxMsgSize = 10 * 1024 * 1024 baseProtocolMaxMsgSize = 2 * 1024
pingInterval = 15 * time.Second pingInterval = 15 * time.Second
) )
@ -33,9 +33,17 @@ const (
peersMsg = 0x05 peersMsg = 0x05
) )
// protoHandshake is the RLP structure of the protocol handshake.
type protoHandshake struct {
Version uint64
Name string
Caps []Cap
ListenPort uint64
ID discover.NodeID
}
// Peer represents a connected remote node. // Peer represents a connected remote node.
type Peer struct { type Peer struct {
conn net.Conn
rw *conn rw *conn
running map[string]*protoRW running map[string]*protoRW
@ -48,37 +56,36 @@ type Peer struct {
// NewPeer returns a peer for testing purposes. // NewPeer returns a peer for testing purposes.
func NewPeer(id discover.NodeID, name string, caps []Cap) *Peer { func NewPeer(id discover.NodeID, name string, caps []Cap) *Peer {
pipe, _ := net.Pipe() pipe, _ := net.Pipe()
msgpipe, _ := MsgPipe() conn := &conn{fd: pipe, transport: nil, id: id, caps: caps, name: name}
conn := &conn{msgpipe, &protoHandshake{ID: id, Name: name, Caps: caps}} peer := newPeer(conn, nil)
peer := newPeer(pipe, conn, nil)
close(peer.closed) // ensures Disconnect doesn't block close(peer.closed) // ensures Disconnect doesn't block
return peer return peer
} }
// ID returns the node's public key. // ID returns the node's public key.
func (p *Peer) ID() discover.NodeID { func (p *Peer) ID() discover.NodeID {
return p.rw.ID return p.rw.id
} }
// Name returns the node name that the remote node advertised. // Name returns the node name that the remote node advertised.
func (p *Peer) Name() string { func (p *Peer) Name() string {
return p.rw.Name return p.rw.name
} }
// Caps returns the capabilities (supported subprotocols) of the remote peer. // Caps returns the capabilities (supported subprotocols) of the remote peer.
func (p *Peer) Caps() []Cap { func (p *Peer) Caps() []Cap {
// TODO: maybe return copy // TODO: maybe return copy
return p.rw.Caps return p.rw.caps
} }
// RemoteAddr returns the remote address of the network connection. // RemoteAddr returns the remote address of the network connection.
func (p *Peer) RemoteAddr() net.Addr { func (p *Peer) RemoteAddr() net.Addr {
return p.conn.RemoteAddr() return p.rw.fd.RemoteAddr()
} }
// LocalAddr returns the local address of the network connection. // LocalAddr returns the local address of the network connection.
func (p *Peer) LocalAddr() net.Addr { func (p *Peer) LocalAddr() net.Addr {
return p.conn.LocalAddr() return p.rw.fd.LocalAddr()
} }
// Disconnect terminates the peer connection with the given reason. // Disconnect terminates the peer connection with the given reason.
@ -92,13 +99,12 @@ func (p *Peer) Disconnect(reason DiscReason) {
// String implements fmt.Stringer. // String implements fmt.Stringer.
func (p *Peer) String() string { func (p *Peer) String() string {
return fmt.Sprintf("Peer %.8x %v", p.rw.ID[:], p.RemoteAddr()) return fmt.Sprintf("Peer %x %v", p.rw.id[:8], p.RemoteAddr())
} }
func newPeer(fd net.Conn, conn *conn, protocols []Protocol) *Peer { func newPeer(conn *conn, protocols []Protocol) *Peer {
protomap := matchProtocols(protocols, conn.Caps, conn) protomap := matchProtocols(protocols, conn.caps, conn)
p := &Peer{ p := &Peer{
conn: fd,
rw: conn, rw: conn,
running: protomap, running: protomap,
disc: make(chan DiscReason), disc: make(chan DiscReason),
@ -117,7 +123,10 @@ func (p *Peer) run() DiscReason {
p.startProtocols() p.startProtocols()
// Wait for an error or disconnect. // Wait for an error or disconnect.
var reason DiscReason var (
reason DiscReason
requested bool
)
select { select {
case err := <-readErr: case err := <-readErr:
if r, ok := err.(DiscReason); ok { if r, ok := err.(DiscReason); ok {
@ -131,23 +140,19 @@ func (p *Peer) run() DiscReason {
case err := <-p.protoErr: case err := <-p.protoErr:
reason = discReasonForError(err) reason = discReasonForError(err)
case reason = <-p.disc: case reason = <-p.disc:
p.politeDisconnect(reason) requested = true
}
close(p.closed)
p.rw.close(reason)
p.wg.Wait()
if requested {
reason = DiscRequested reason = DiscRequested
} }
close(p.closed)
p.wg.Wait()
glog.V(logger.Debug).Infof("%v: Disconnected: %v\n", p, reason) glog.V(logger.Debug).Infof("%v: Disconnected: %v\n", p, reason)
return reason return reason
} }
func (p *Peer) politeDisconnect(reason DiscReason) {
if reason != DiscNetworkError {
SendItems(p.rw, discMsg, uint(reason))
}
p.conn.Close()
}
func (p *Peer) pingLoop() { func (p *Peer) pingLoop() {
ping := time.NewTicker(pingInterval) ping := time.NewTicker(pingInterval)
defer p.wg.Done() defer p.wg.Done()
@ -254,7 +259,7 @@ func (p *Peer) startProtocols() {
glog.V(logger.Detail).Infof("%v: Protocol %s/%d returned\n", p, proto.Name, proto.Version) glog.V(logger.Detail).Infof("%v: Protocol %s/%d returned\n", p, proto.Name, proto.Version)
err = errors.New("protocol returned") err = errors.New("protocol returned")
} else if err != io.EOF { } else if err != io.EOF {
glog.V(logger.Detail).Infof("%v: Protocol %s/%d error: \n", p, proto.Name, proto.Version, err) glog.V(logger.Detail).Infof("%v: Protocol %s/%d error: %v\n", p, proto.Name, proto.Version, err)
} }
p.protoErr <- err p.protoErr <- err
p.wg.Done() p.wg.Done()
@ -273,20 +278,6 @@ func (p *Peer) getProto(code uint64) (*protoRW, error) {
return nil, newPeerError(errInvalidMsgCode, "%d", code) return nil, newPeerError(errInvalidMsgCode, "%d", code)
} }
// writeProtoMsg sends the given message on behalf of the given named protocol.
// this exists because of Server.Broadcast.
func (p *Peer) writeProtoMsg(protoName string, msg Msg) error {
proto, ok := p.running[protoName]
if !ok {
return fmt.Errorf("protocol %s not handled by peer", protoName)
}
if msg.Code >= proto.Length {
return newPeerError(errInvalidMsgCode, "code %x is out of range for protocol %q", msg.Code, protoName)
}
msg.Code += proto.offset
return p.rw.WriteMsg(msg)
}
type protoRW struct { type protoRW struct {
Protocol Protocol
in chan Msg in chan Msg

View File

@ -5,39 +5,17 @@ import (
) )
const ( const (
errMagicTokenMismatch = iota errInvalidMsgCode = iota
errRead
errWrite
errMisc
errInvalidMsgCode
errInvalidMsg errInvalidMsg
errP2PVersionMismatch
errPubkeyInvalid
errPubkeyForbidden
errProtocolBreach
errPingTimeout
errInvalidNetworkId
errInvalidProtocolVersion
) )
var errorToString = map[int]string{ var errorToString = map[int]string{
errMagicTokenMismatch: "magic token mismatch",
errRead: "read error",
errWrite: "write error",
errMisc: "misc error",
errInvalidMsgCode: "invalid message code", errInvalidMsgCode: "invalid message code",
errInvalidMsg: "invalid message", errInvalidMsg: "invalid message",
errP2PVersionMismatch: "P2P Version Mismatch",
errPubkeyInvalid: "public key invalid",
errPubkeyForbidden: "public key forbidden",
errProtocolBreach: "protocol Breach",
errPingTimeout: "ping timeout",
errInvalidNetworkId: "invalid network id",
errInvalidProtocolVersion: "invalid protocol version",
} }
type peerError struct { type peerError struct {
Code int code int
message string message string
} }
@ -107,23 +85,13 @@ func discReasonForError(err error) DiscReason {
return reason return reason
} }
peerError, ok := err.(*peerError) peerError, ok := err.(*peerError)
if !ok { if ok {
return DiscSubprotocolError switch peerError.code {
} case errInvalidMsgCode, errInvalidMsg:
switch peerError.Code {
case errP2PVersionMismatch:
return DiscIncompatibleVersion
case errPubkeyInvalid:
return DiscInvalidIdentity
case errPubkeyForbidden:
return DiscUselessPeer
case errInvalidMsgCode, errMagicTokenMismatch, errProtocolBreach:
return DiscProtocolError return DiscProtocolError
case errPingTimeout:
return DiscReadTimeout
case errRead, errWrite:
return DiscNetworkError
default: default:
return DiscSubprotocolError return DiscSubprotocolError
} }
}
return DiscSubprotocolError
} }

View File

@ -1,7 +1,6 @@
package p2p package p2p
import ( import (
"bytes"
"errors" "errors"
"fmt" "fmt"
"math/rand" "math/rand"
@ -29,24 +28,20 @@ var discard = Protocol{
} }
func testPeer(protos []Protocol) (func(), *conn, *Peer, <-chan DiscReason) { func testPeer(protos []Protocol) (func(), *conn, *Peer, <-chan DiscReason) {
fd1, _ := net.Pipe() fd1, fd2 := net.Pipe()
hs1 := &protoHandshake{ID: randomID(), Version: baseProtocolVersion} c1 := &conn{fd: fd1, transport: newTestTransport(randomID(), fd1)}
hs2 := &protoHandshake{ID: randomID(), Version: baseProtocolVersion} c2 := &conn{fd: fd2, transport: newTestTransport(randomID(), fd2)}
for _, p := range protos { for _, p := range protos {
hs1.Caps = append(hs1.Caps, p.cap()) c1.caps = append(c1.caps, p.cap())
hs2.Caps = append(hs2.Caps, p.cap()) c2.caps = append(c2.caps, p.cap())
} }
p1, p2 := MsgPipe() peer := newPeer(c1, protos)
peer := newPeer(fd1, &conn{p1, hs1}, protos)
errc := make(chan DiscReason, 1) errc := make(chan DiscReason, 1)
go func() { errc <- peer.run() }() go func() { errc <- peer.run() }()
closer := func() { closer := func() { c2.close(errors.New("close func called")) }
p1.Close() return closer, c2, peer, errc
fd1.Close()
}
return closer, &conn{p2, hs2}, peer, errc
} }
func TestPeerProtoReadMsg(t *testing.T) { func TestPeerProtoReadMsg(t *testing.T) {
@ -107,44 +102,6 @@ func TestPeerProtoEncodeMsg(t *testing.T) {
} }
} }
func TestPeerWriteForBroadcast(t *testing.T) {
closer, rw, peer, peerErr := testPeer([]Protocol{discard})
defer closer()
emptymsg := func(code uint64) Msg {
return Msg{Code: code, Size: 0, Payload: bytes.NewReader(nil)}
}
// test write errors
if err := peer.writeProtoMsg("b", emptymsg(3)); err == nil {
t.Errorf("expected error for unknown protocol, got nil")
}
if err := peer.writeProtoMsg("discard", emptymsg(8)); err == nil {
t.Errorf("expected error for out-of-range msg code, got nil")
} else if perr, ok := err.(*peerError); !ok || perr.Code != errInvalidMsgCode {
t.Errorf("wrong error for out-of-range msg code, got %#v", err)
}
// setup for reading the message on the other end
read := make(chan struct{})
go func() {
if err := ExpectMsg(rw, 16, nil); err != nil {
t.Error(err)
}
close(read)
}()
// test successful write
if err := peer.writeProtoMsg("discard", emptymsg(0)); err != nil {
t.Errorf("expect no error for known protocol: %v", err)
}
select {
case <-read:
case err := <-peerErr:
t.Fatalf("peer stopped: %v", err)
}
}
func TestPeerPing(t *testing.T) { func TestPeerPing(t *testing.T) {
closer, rw, _, _ := testPeer(nil) closer, rw, _, _ := testPeer(nil)
defer closer() defer closer()

View File

@ -4,23 +4,459 @@ import (
"bytes" "bytes"
"crypto/aes" "crypto/aes"
"crypto/cipher" "crypto/cipher"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/hmac" "crypto/hmac"
"crypto/rand"
"errors" "errors"
"fmt"
"hash" "hash"
"io" "io"
"net"
"sync"
"time"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/crypto/ecies"
"github.com/ethereum/go-ethereum/crypto/secp256k1"
"github.com/ethereum/go-ethereum/crypto/sha3"
"github.com/ethereum/go-ethereum/p2p/discover"
"github.com/ethereum/go-ethereum/rlp" "github.com/ethereum/go-ethereum/rlp"
) )
const (
maxUint24 = ^uint32(0) >> 8
sskLen = 16 // ecies.MaxSharedKeyLength(pubKey) / 2
sigLen = 65 // elliptic S256
pubLen = 64 // 512 bit pubkey in uncompressed representation without format byte
shaLen = 32 // hash length (for nonce etc)
authMsgLen = sigLen + shaLen + pubLen + shaLen + 1
authRespLen = pubLen + shaLen + 1
eciesBytes = 65 + 16 + 32
encAuthMsgLen = authMsgLen + eciesBytes // size of the final ECIES payload sent as initiator's handshake
encAuthRespLen = authRespLen + eciesBytes // size of the final ECIES payload sent as receiver's handshake
// total timeout for encryption handshake and protocol
// handshake in both directions.
handshakeTimeout = 5 * time.Second
// This is the timeout for sending the disconnect reason.
// This is shorter than the usual timeout because we don't want
// to wait if the connection is known to be bad anyway.
discWriteTimeout = 1 * time.Second
)
// rlpx is the transport protocol used by actual (non-test) connections.
// It wraps the frame encoder with locks and read/write deadlines.
type rlpx struct {
fd net.Conn
rmu, wmu sync.Mutex
rw *rlpxFrameRW
}
func newRLPX(fd net.Conn) transport {
fd.SetDeadline(time.Now().Add(handshakeTimeout))
return &rlpx{fd: fd}
}
func (t *rlpx) ReadMsg() (Msg, error) {
t.rmu.Lock()
defer t.rmu.Unlock()
t.fd.SetReadDeadline(time.Now().Add(frameReadTimeout))
return t.rw.ReadMsg()
}
func (t *rlpx) WriteMsg(msg Msg) error {
t.wmu.Lock()
defer t.wmu.Unlock()
t.fd.SetWriteDeadline(time.Now().Add(frameWriteTimeout))
return t.rw.WriteMsg(msg)
}
func (t *rlpx) close(err error) {
t.wmu.Lock()
defer t.wmu.Unlock()
// Tell the remote end why we're disconnecting if possible.
if t.rw != nil {
if r, ok := err.(DiscReason); ok && r != DiscNetworkError {
t.fd.SetWriteDeadline(time.Now().Add(discWriteTimeout))
SendItems(t.rw, discMsg, r)
}
}
t.fd.Close()
}
// doEncHandshake runs the protocol handshake using authenticated
// messages. the protocol handshake is the first authenticated message
// and also verifies whether the encryption handshake 'worked' and the
// remote side actually provided the right public key.
func (t *rlpx) doProtoHandshake(our *protoHandshake) (their *protoHandshake, err error) {
// Writing our handshake happens concurrently, we prefer
// returning the handshake read error. If the remote side
// disconnects us early with a valid reason, we should return it
// as the error so it can be tracked elsewhere.
werr := make(chan error, 1)
go func() { werr <- Send(t.rw, handshakeMsg, our) }()
if their, err = readProtocolHandshake(t.rw, our); err != nil {
return nil, err
}
if err := <-werr; err != nil {
return nil, fmt.Errorf("write error: %v", err)
}
return their, nil
}
func readProtocolHandshake(rw MsgReader, our *protoHandshake) (*protoHandshake, error) {
msg, err := rw.ReadMsg()
if err != nil {
return nil, err
}
if msg.Size > baseProtocolMaxMsgSize {
return nil, fmt.Errorf("message too big")
}
if msg.Code == discMsg {
// Disconnect before protocol handshake is valid according to the
// spec and we send it ourself if the posthanshake checks fail.
// We can't return the reason directly, though, because it is echoed
// back otherwise. Wrap it in a string instead.
var reason [1]DiscReason
rlp.Decode(msg.Payload, &reason)
return nil, reason[0]
}
if msg.Code != handshakeMsg {
return nil, fmt.Errorf("expected handshake, got %x", msg.Code)
}
var hs protoHandshake
if err := msg.Decode(&hs); err != nil {
return nil, err
}
// validate handshake info
if hs.Version != our.Version {
return nil, DiscIncompatibleVersion
}
if (hs.ID == discover.NodeID{}) {
return nil, DiscInvalidIdentity
}
return &hs, nil
}
func (t *rlpx) doEncHandshake(prv *ecdsa.PrivateKey, dial *discover.Node) (discover.NodeID, error) {
var (
sec secrets
err error
)
if dial == nil {
sec, err = receiverEncHandshake(t.fd, prv, nil)
} else {
sec, err = initiatorEncHandshake(t.fd, prv, dial.ID, nil)
}
if err != nil {
return discover.NodeID{}, err
}
t.wmu.Lock()
t.rw = newRLPXFrameRW(t.fd, sec)
t.wmu.Unlock()
return sec.RemoteID, nil
}
// encHandshake contains the state of the encryption handshake.
type encHandshake struct {
initiator bool
remoteID discover.NodeID
remotePub *ecies.PublicKey // remote-pubk
initNonce, respNonce []byte // nonce
randomPrivKey *ecies.PrivateKey // ecdhe-random
remoteRandomPub *ecies.PublicKey // ecdhe-random-pubk
}
// secrets represents the connection secrets
// which are negotiated during the encryption handshake.
type secrets struct {
RemoteID discover.NodeID
AES, MAC []byte
EgressMAC, IngressMAC hash.Hash
Token []byte
}
// secrets is called after the handshake is completed.
// It extracts the connection secrets from the handshake values.
func (h *encHandshake) secrets(auth, authResp []byte) (secrets, error) {
ecdheSecret, err := h.randomPrivKey.GenerateShared(h.remoteRandomPub, sskLen, sskLen)
if err != nil {
return secrets{}, err
}
// derive base secrets from ephemeral key agreement
sharedSecret := crypto.Sha3(ecdheSecret, crypto.Sha3(h.respNonce, h.initNonce))
aesSecret := crypto.Sha3(ecdheSecret, sharedSecret)
s := secrets{
RemoteID: h.remoteID,
AES: aesSecret,
MAC: crypto.Sha3(ecdheSecret, aesSecret),
Token: crypto.Sha3(sharedSecret),
}
// setup sha3 instances for the MACs
mac1 := sha3.NewKeccak256()
mac1.Write(xor(s.MAC, h.respNonce))
mac1.Write(auth)
mac2 := sha3.NewKeccak256()
mac2.Write(xor(s.MAC, h.initNonce))
mac2.Write(authResp)
if h.initiator {
s.EgressMAC, s.IngressMAC = mac1, mac2
} else {
s.EgressMAC, s.IngressMAC = mac2, mac1
}
return s, nil
}
func (h *encHandshake) ecdhShared(prv *ecdsa.PrivateKey) ([]byte, error) {
return ecies.ImportECDSA(prv).GenerateShared(h.remotePub, sskLen, sskLen)
}
// initiatorEncHandshake negotiates a session token on conn.
// it should be called on the dialing side of the connection.
//
// prv is the local client's private key.
// token is the token from a previous session with this node.
func initiatorEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, remoteID discover.NodeID, token []byte) (s secrets, err error) {
h, err := newInitiatorHandshake(remoteID)
if err != nil {
return s, err
}
auth, err := h.authMsg(prv, token)
if err != nil {
return s, err
}
if _, err = conn.Write(auth); err != nil {
return s, err
}
response := make([]byte, encAuthRespLen)
if _, err = io.ReadFull(conn, response); err != nil {
return s, err
}
if err := h.decodeAuthResp(response, prv); err != nil {
return s, err
}
return h.secrets(auth, response)
}
func newInitiatorHandshake(remoteID discover.NodeID) (*encHandshake, error) {
// generate random initiator nonce
n := make([]byte, shaLen)
if _, err := rand.Read(n); err != nil {
return nil, err
}
// generate random keypair to use for signing
randpriv, err := ecies.GenerateKey(rand.Reader, crypto.S256(), nil)
if err != nil {
return nil, err
}
rpub, err := remoteID.Pubkey()
if err != nil {
return nil, fmt.Errorf("bad remoteID: %v", err)
}
h := &encHandshake{
initiator: true,
remoteID: remoteID,
remotePub: ecies.ImportECDSAPublic(rpub),
initNonce: n,
randomPrivKey: randpriv,
}
return h, nil
}
// authMsg creates an encrypted initiator handshake message.
func (h *encHandshake) authMsg(prv *ecdsa.PrivateKey, token []byte) ([]byte, error) {
var tokenFlag byte
if token == nil {
// no session token found means we need to generate shared secret.
// ecies shared secret is used as initial session token for new peers
// generate shared key from prv and remote pubkey
var err error
if token, err = h.ecdhShared(prv); err != nil {
return nil, err
}
} else {
// for known peers, we use stored token from the previous session
tokenFlag = 0x01
}
// sign known message:
// ecdh-shared-secret^nonce for new peers
// token^nonce for old peers
signed := xor(token, h.initNonce)
signature, err := crypto.Sign(signed, h.randomPrivKey.ExportECDSA())
if err != nil {
return nil, err
}
// encode auth message
// signature || sha3(ecdhe-random-pubk) || pubk || nonce || token-flag
msg := make([]byte, authMsgLen)
n := copy(msg, signature)
n += copy(msg[n:], crypto.Sha3(exportPubkey(&h.randomPrivKey.PublicKey)))
n += copy(msg[n:], crypto.FromECDSAPub(&prv.PublicKey)[1:])
n += copy(msg[n:], h.initNonce)
msg[n] = tokenFlag
// encrypt auth message using remote-pubk
return ecies.Encrypt(rand.Reader, h.remotePub, msg, nil, nil)
}
// decodeAuthResp decode an encrypted authentication response message.
func (h *encHandshake) decodeAuthResp(auth []byte, prv *ecdsa.PrivateKey) error {
msg, err := crypto.Decrypt(prv, auth)
if err != nil {
return fmt.Errorf("could not decrypt auth response (%v)", err)
}
h.respNonce = msg[pubLen : pubLen+shaLen]
h.remoteRandomPub, err = importPublicKey(msg[:pubLen])
if err != nil {
return err
}
// ignore token flag for now
return nil
}
// receiverEncHandshake negotiates a session token on conn.
// it should be called on the listening side of the connection.
//
// prv is the local client's private key.
// token is the token from a previous session with this node.
func receiverEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, token []byte) (s secrets, err error) {
// read remote auth sent by initiator.
auth := make([]byte, encAuthMsgLen)
if _, err := io.ReadFull(conn, auth); err != nil {
return s, err
}
h, err := decodeAuthMsg(prv, token, auth)
if err != nil {
return s, err
}
// send auth response
resp, err := h.authResp(prv, token)
if err != nil {
return s, err
}
if _, err = conn.Write(resp); err != nil {
return s, err
}
return h.secrets(auth, resp)
}
func decodeAuthMsg(prv *ecdsa.PrivateKey, token []byte, auth []byte) (*encHandshake, error) {
var err error
h := new(encHandshake)
// generate random keypair for session
h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil)
if err != nil {
return nil, err
}
// generate random nonce
h.respNonce = make([]byte, shaLen)
if _, err = rand.Read(h.respNonce); err != nil {
return nil, err
}
msg, err := crypto.Decrypt(prv, auth)
if err != nil {
return nil, fmt.Errorf("could not decrypt auth message (%v)", err)
}
// decode message parameters
// signature || sha3(ecdhe-random-pubk) || pubk || nonce || token-flag
h.initNonce = msg[authMsgLen-shaLen-1 : authMsgLen-1]
copy(h.remoteID[:], msg[sigLen+shaLen:sigLen+shaLen+pubLen])
rpub, err := h.remoteID.Pubkey()
if err != nil {
return nil, fmt.Errorf("bad remoteID: %#v", err)
}
h.remotePub = ecies.ImportECDSAPublic(rpub)
// recover remote random pubkey from signed message.
if token == nil {
// TODO: it is an error if the initiator has a token and we don't. check that.
// no session token means we need to generate shared secret.
// ecies shared secret is used as initial session token for new peers.
// generate shared key from prv and remote pubkey.
if token, err = h.ecdhShared(prv); err != nil {
return nil, err
}
}
signedMsg := xor(token, h.initNonce)
remoteRandomPub, err := secp256k1.RecoverPubkey(signedMsg, msg[:sigLen])
if err != nil {
return nil, err
}
h.remoteRandomPub, _ = importPublicKey(remoteRandomPub)
return h, nil
}
// authResp generates the encrypted authentication response message.
func (h *encHandshake) authResp(prv *ecdsa.PrivateKey, token []byte) ([]byte, error) {
// responder auth message
// E(remote-pubk, ecdhe-random-pubk || nonce || 0x0)
resp := make([]byte, authRespLen)
n := copy(resp, exportPubkey(&h.randomPrivKey.PublicKey))
n += copy(resp[n:], h.respNonce)
if token == nil {
resp[n] = 0
} else {
resp[n] = 1
}
// encrypt using remote-pubk
return ecies.Encrypt(rand.Reader, h.remotePub, resp, nil, nil)
}
// importPublicKey unmarshals 512 bit public keys.
func importPublicKey(pubKey []byte) (*ecies.PublicKey, error) {
var pubKey65 []byte
switch len(pubKey) {
case 64:
// add 'uncompressed key' flag
pubKey65 = append([]byte{0x04}, pubKey...)
case 65:
pubKey65 = pubKey
default:
return nil, fmt.Errorf("invalid public key length %v (expect 64/65)", len(pubKey))
}
// TODO: fewer pointless conversions
return ecies.ImportECDSAPublic(crypto.ToECDSAPub(pubKey65)), nil
}
func exportPubkey(pub *ecies.PublicKey) []byte {
if pub == nil {
panic("nil pubkey")
}
return elliptic.Marshal(pub.Curve, pub.X, pub.Y)[1:]
}
func xor(one, other []byte) (xor []byte) {
xor = make([]byte, len(one))
for i := 0; i < len(one); i++ {
xor[i] = one[i] ^ other[i]
}
return xor
}
var ( var (
// this is used in place of actual frame header data. // this is used in place of actual frame header data.
// TODO: replace this when Msg contains the protocol type code. // TODO: replace this when Msg contains the protocol type code.
zeroHeader = []byte{0xC2, 0x80, 0x80} zeroHeader = []byte{0xC2, 0x80, 0x80}
// sixteen zero bytes // sixteen zero bytes
zero16 = make([]byte, 16) zero16 = make([]byte, 16)
maxUint24 = ^uint32(0) >> 8
) )
// rlpxFrameRW implements a simplified version of RLPx framing. // rlpxFrameRW implements a simplified version of RLPx framing.
@ -38,7 +474,7 @@ type rlpxFrameRW struct {
ingressMAC hash.Hash ingressMAC hash.Hash
} }
func newRlpxFrameRW(conn io.ReadWriter, s secrets) *rlpxFrameRW { func newRLPXFrameRW(conn io.ReadWriter, s secrets) *rlpxFrameRW {
macc, err := aes.NewCipher(s.MAC) macc, err := aes.NewCipher(s.MAC)
if err != nil { if err != nil {
panic("invalid MAC secret: " + err.Error()) panic("invalid MAC secret: " + err.Error())

View File

@ -3,19 +3,253 @@ package p2p
import ( import (
"bytes" "bytes"
"crypto/rand" "crypto/rand"
"errors"
"fmt"
"io/ioutil" "io/ioutil"
"net"
"reflect"
"strings" "strings"
"sync"
"testing" "testing"
"time"
"github.com/davecgh/go-spew/spew"
"github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/crypto/ecies"
"github.com/ethereum/go-ethereum/crypto/sha3" "github.com/ethereum/go-ethereum/crypto/sha3"
"github.com/ethereum/go-ethereum/p2p/discover"
"github.com/ethereum/go-ethereum/rlp" "github.com/ethereum/go-ethereum/rlp"
) )
func TestRlpxFrameFake(t *testing.T) { func TestSharedSecret(t *testing.T) {
prv0, _ := crypto.GenerateKey() // = ecdsa.GenerateKey(crypto.S256(), rand.Reader)
pub0 := &prv0.PublicKey
prv1, _ := crypto.GenerateKey()
pub1 := &prv1.PublicKey
ss0, err := ecies.ImportECDSA(prv0).GenerateShared(ecies.ImportECDSAPublic(pub1), sskLen, sskLen)
if err != nil {
return
}
ss1, err := ecies.ImportECDSA(prv1).GenerateShared(ecies.ImportECDSAPublic(pub0), sskLen, sskLen)
if err != nil {
return
}
t.Logf("Secret:\n%v %x\n%v %x", len(ss0), ss0, len(ss0), ss1)
if !bytes.Equal(ss0, ss1) {
t.Errorf("dont match :(")
}
}
func TestEncHandshake(t *testing.T) {
for i := 0; i < 10; i++ {
start := time.Now()
if err := testEncHandshake(nil); err != nil {
t.Fatalf("i=%d %v", i, err)
}
t.Logf("(without token) %d %v\n", i+1, time.Since(start))
}
for i := 0; i < 10; i++ {
tok := make([]byte, shaLen)
rand.Reader.Read(tok)
start := time.Now()
if err := testEncHandshake(tok); err != nil {
t.Fatalf("i=%d %v", i, err)
}
t.Logf("(with token) %d %v\n", i+1, time.Since(start))
}
}
func testEncHandshake(token []byte) error {
type result struct {
side string
id discover.NodeID
err error
}
var (
prv0, _ = crypto.GenerateKey()
prv1, _ = crypto.GenerateKey()
fd0, fd1 = net.Pipe()
c0, c1 = newRLPX(fd0).(*rlpx), newRLPX(fd1).(*rlpx)
output = make(chan result)
)
go func() {
r := result{side: "initiator"}
defer func() { output <- r }()
dest := &discover.Node{ID: discover.PubkeyID(&prv1.PublicKey)}
r.id, r.err = c0.doEncHandshake(prv0, dest)
if r.err != nil {
return
}
id1 := discover.PubkeyID(&prv1.PublicKey)
if r.id != id1 {
r.err = fmt.Errorf("remote ID mismatch: got %v, want: %v", r.id, id1)
}
}()
go func() {
r := result{side: "receiver"}
defer func() { output <- r }()
r.id, r.err = c1.doEncHandshake(prv1, nil)
if r.err != nil {
return
}
id0 := discover.PubkeyID(&prv0.PublicKey)
if r.id != id0 {
r.err = fmt.Errorf("remote ID mismatch: got %v, want: %v", r.id, id0)
}
}()
// wait for results from both sides
r1, r2 := <-output, <-output
if r1.err != nil {
return fmt.Errorf("%s side error: %v", r1.side, r1.err)
}
if r2.err != nil {
return fmt.Errorf("%s side error: %v", r2.side, r2.err)
}
// compare derived secrets
if !reflect.DeepEqual(c0.rw.egressMAC, c1.rw.ingressMAC) {
return fmt.Errorf("egress mac mismatch:\n c0.rw: %#v\n c1.rw: %#v", c0.rw.egressMAC, c1.rw.ingressMAC)
}
if !reflect.DeepEqual(c0.rw.ingressMAC, c1.rw.egressMAC) {
return fmt.Errorf("ingress mac mismatch:\n c0.rw: %#v\n c1.rw: %#v", c0.rw.ingressMAC, c1.rw.egressMAC)
}
if !reflect.DeepEqual(c0.rw.enc, c1.rw.enc) {
return fmt.Errorf("enc cipher mismatch:\n c0.rw: %#v\n c1.rw: %#v", c0.rw.enc, c1.rw.enc)
}
if !reflect.DeepEqual(c0.rw.dec, c1.rw.dec) {
return fmt.Errorf("dec cipher mismatch:\n c0.rw: %#v\n c1.rw: %#v", c0.rw.dec, c1.rw.dec)
}
return nil
}
func TestProtocolHandshake(t *testing.T) {
var (
prv0, _ = crypto.GenerateKey()
node0 = &discover.Node{ID: discover.PubkeyID(&prv0.PublicKey), IP: net.IP{1, 2, 3, 4}, TCP: 33}
hs0 = &protoHandshake{Version: 3, ID: node0.ID, Caps: []Cap{{"a", 0}, {"b", 2}}}
prv1, _ = crypto.GenerateKey()
node1 = &discover.Node{ID: discover.PubkeyID(&prv1.PublicKey), IP: net.IP{5, 6, 7, 8}, TCP: 44}
hs1 = &protoHandshake{Version: 3, ID: node1.ID, Caps: []Cap{{"c", 1}, {"d", 3}}}
fd0, fd1 = net.Pipe()
wg sync.WaitGroup
)
wg.Add(2)
go func() {
defer wg.Done()
rlpx := newRLPX(fd0)
remid, err := rlpx.doEncHandshake(prv0, node1)
if err != nil {
t.Errorf("dial side enc handshake failed: %v", err)
return
}
if remid != node1.ID {
t.Errorf("dial side remote id mismatch: got %v, want %v", remid, node1.ID)
return
}
phs, err := rlpx.doProtoHandshake(hs0)
if err != nil {
t.Errorf("dial side proto handshake error: %v", err)
return
}
if !reflect.DeepEqual(phs, hs1) {
t.Errorf("dial side proto handshake mismatch:\ngot: %s\nwant: %s\n", spew.Sdump(phs), spew.Sdump(hs1))
return
}
rlpx.close(DiscQuitting)
}()
go func() {
defer wg.Done()
rlpx := newRLPX(fd1)
remid, err := rlpx.doEncHandshake(prv1, nil)
if err != nil {
t.Errorf("listen side enc handshake failed: %v", err)
return
}
if remid != node0.ID {
t.Errorf("listen side remote id mismatch: got %v, want %v", remid, node0.ID)
return
}
phs, err := rlpx.doProtoHandshake(hs1)
if err != nil {
t.Errorf("listen side proto handshake error: %v", err)
return
}
if !reflect.DeepEqual(phs, hs0) {
t.Errorf("listen side proto handshake mismatch:\ngot: %s\nwant: %s\n", spew.Sdump(phs), spew.Sdump(hs0))
return
}
if err := ExpectMsg(rlpx, discMsg, []DiscReason{DiscQuitting}); err != nil {
t.Errorf("error receiving disconnect: %v", err)
}
}()
wg.Wait()
}
func TestProtocolHandshakeErrors(t *testing.T) {
our := &protoHandshake{Version: 3, Caps: []Cap{{"foo", 2}, {"bar", 3}}, Name: "quux"}
id := randomID()
tests := []struct {
code uint64
msg interface{}
err error
}{
{
code: discMsg,
msg: []DiscReason{DiscQuitting},
err: DiscQuitting,
},
{
code: 0x989898,
msg: []byte{1},
err: errors.New("expected handshake, got 989898"),
},
{
code: handshakeMsg,
msg: make([]byte, baseProtocolMaxMsgSize+2),
err: errors.New("message too big"),
},
{
code: handshakeMsg,
msg: []byte{1, 2, 3},
err: newPeerError(errInvalidMsg, "(code 0) (size 4) rlp: expected input list for p2p.protoHandshake"),
},
{
code: handshakeMsg,
msg: &protoHandshake{Version: 9944, ID: id},
err: DiscIncompatibleVersion,
},
{
code: handshakeMsg,
msg: &protoHandshake{Version: 3},
err: DiscInvalidIdentity,
},
}
for i, test := range tests {
p1, p2 := MsgPipe()
go Send(p1, test.code, test.msg)
_, err := readProtocolHandshake(p2, our)
if !reflect.DeepEqual(err, test.err) {
t.Errorf("test %d: error mismatch: got %q, want %q", i, err, test.err)
}
}
}
func TestRLPXFrameFake(t *testing.T) {
buf := new(bytes.Buffer) buf := new(bytes.Buffer)
hash := fakeHash([]byte{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}) hash := fakeHash([]byte{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1})
rw := newRlpxFrameRW(buf, secrets{ rw := newRLPXFrameRW(buf, secrets{
AES: crypto.Sha3(), AES: crypto.Sha3(),
MAC: crypto.Sha3(), MAC: crypto.Sha3(),
IngressMAC: hash, IngressMAC: hash,
@ -66,7 +300,7 @@ func (fakeHash) BlockSize() int { return 0 }
func (h fakeHash) Size() int { return len(h) } func (h fakeHash) Size() int { return len(h) }
func (h fakeHash) Sum(b []byte) []byte { return append(b, h...) } func (h fakeHash) Sum(b []byte) []byte { return append(b, h...) }
func TestRlpxFrameRW(t *testing.T) { func TestRLPXFrameRW(t *testing.T) {
var ( var (
aesSecret = make([]byte, 16) aesSecret = make([]byte, 16)
macSecret = make([]byte, 16) macSecret = make([]byte, 16)
@ -86,7 +320,7 @@ func TestRlpxFrameRW(t *testing.T) {
} }
s1.EgressMAC.Write(egressMACinit) s1.EgressMAC.Write(egressMACinit)
s1.IngressMAC.Write(ingressMACinit) s1.IngressMAC.Write(ingressMACinit)
rw1 := newRlpxFrameRW(conn, s1) rw1 := newRLPXFrameRW(conn, s1)
s2 := secrets{ s2 := secrets{
AES: aesSecret, AES: aesSecret,
@ -96,7 +330,7 @@ func TestRlpxFrameRW(t *testing.T) {
} }
s2.EgressMAC.Write(ingressMACinit) s2.EgressMAC.Write(ingressMACinit)
s2.IngressMAC.Write(egressMACinit) s2.IngressMAC.Write(egressMACinit)
rw2 := newRlpxFrameRW(conn, s2) rw2 := newRLPXFrameRW(conn, s2)
// send some messages // send some messages
for i := 0; i < 10; i++ { for i := 0; i < 10; i++ {

View File

@ -1,9 +1,7 @@
package p2p package p2p
import ( import (
"bytes"
"crypto/ecdsa" "crypto/ecdsa"
"crypto/rand"
"errors" "errors"
"fmt" "fmt"
"net" "net"
@ -14,7 +12,6 @@ import (
"github.com/ethereum/go-ethereum/logger/glog" "github.com/ethereum/go-ethereum/logger/glog"
"github.com/ethereum/go-ethereum/p2p/discover" "github.com/ethereum/go-ethereum/p2p/discover"
"github.com/ethereum/go-ethereum/p2p/nat" "github.com/ethereum/go-ethereum/p2p/nat"
"github.com/ethereum/go-ethereum/rlp"
) )
const ( const (
@ -26,18 +23,18 @@ const (
maxAcceptConns = 50 maxAcceptConns = 50
// Maximum number of concurrently dialing outbound connections. // Maximum number of concurrently dialing outbound connections.
maxDialingConns = 10 maxActiveDialTasks = 16
// total timeout for encryption handshake and protocol // Maximum time allowed for reading a complete message.
// handshake in both directions. // This is effectively the amount of time a connection can be idle.
handshakeTimeout = 5 * time.Second frameReadTimeout = 30 * time.Second
// maximum time allowed for reading a complete message.
// this is effectively the amount of time a connection can be idle. // Maximum amount of time allowed for writing a complete message.
frameReadTimeout = 1 * time.Minute
// maximum amount of time allowed for writing a complete message.
frameWriteTimeout = 5 * time.Second frameWriteTimeout = 5 * time.Second
) )
var errServerStopped = errors.New("server stopped")
var srvjslog = logger.NewJsonLogger() var srvjslog = logger.NewJsonLogger()
// Server manages all peer connections. // Server manages all peer connections.
@ -105,107 +102,173 @@ type Server struct {
// Hooks for testing. These are useful because we can inhibit // Hooks for testing. These are useful because we can inhibit
// the whole protocol stack. // the whole protocol stack.
setupFunc newTransport func(net.Conn) transport
newPeerHook newPeerHook func(*Peer)
lock sync.Mutex // protects running
running bool
ntab discoverTable
listener net.Listener
ourHandshake *protoHandshake ourHandshake *protoHandshake
lock sync.RWMutex // protects running, peers and the trust fields // These are for Peers, PeerCount (and nothing else).
running bool peerOp chan peerOpFunc
peers map[discover.NodeID]*Peer peerOpDone chan struct{}
staticNodes map[discover.NodeID]*discover.Node // Map of currently maintained static remote nodes
staticDial chan *discover.Node // Dial request channel reserved for the static nodes
staticCycle time.Duration // Overrides staticPeerCheckInterval, used for testing
trustedNodes map[discover.NodeID]bool // Set of currently trusted remote nodes
ntab *discover.Table
listener net.Listener
quit chan struct{} quit chan struct{}
loopWG sync.WaitGroup // {dial,listen,nat}Loop addstatic chan *discover.Node
peerWG sync.WaitGroup // active peer goroutines posthandshake chan *conn
addpeer chan *conn
delpeer chan *Peer
loopWG sync.WaitGroup // loop, listenLoop
} }
type setupFunc func(net.Conn, *ecdsa.PrivateKey, *protoHandshake, *discover.Node, func(discover.NodeID) bool) (*conn, error) type peerOpFunc func(map[discover.NodeID]*Peer)
type newPeerHook func(*Peer)
type connFlag int
const (
dynDialedConn connFlag = 1 << iota
staticDialedConn
inboundConn
trustedConn
)
// conn wraps a network connection with information gathered
// during the two handshakes.
type conn struct {
fd net.Conn
transport
flags connFlag
cont chan error // The run loop uses cont to signal errors to setupConn.
id discover.NodeID // valid after the encryption handshake
caps []Cap // valid after the protocol handshake
name string // valid after the protocol handshake
}
type transport interface {
// The two handshakes.
doEncHandshake(prv *ecdsa.PrivateKey, dialDest *discover.Node) (discover.NodeID, error)
doProtoHandshake(our *protoHandshake) (*protoHandshake, error)
// The MsgReadWriter can only be used after the encryption
// handshake has completed. The code uses conn.id to track this
// by setting it to a non-nil value after the encryption handshake.
MsgReadWriter
// transports must provide Close because we use MsgPipe in some of
// the tests. Closing the actual network connection doesn't do
// anything in those tests because NsgPipe doesn't use it.
close(err error)
}
func (c *conn) String() string {
s := c.flags.String() + " conn"
if (c.id != discover.NodeID{}) {
s += fmt.Sprintf(" %x", c.id[:8])
}
s += " " + c.fd.RemoteAddr().String()
return s
}
func (f connFlag) String() string {
s := ""
if f&trustedConn != 0 {
s += " trusted"
}
if f&dynDialedConn != 0 {
s += " dyn dial"
}
if f&staticDialedConn != 0 {
s += " static dial"
}
if f&inboundConn != 0 {
s += " inbound"
}
if s != "" {
s = s[1:]
}
return s
}
func (c *conn) is(f connFlag) bool {
return c.flags&f != 0
}
// Peers returns all connected peers. // Peers returns all connected peers.
func (srv *Server) Peers() (peers []*Peer) { func (srv *Server) Peers() []*Peer {
srv.lock.RLock() var ps []*Peer
defer srv.lock.RUnlock() select {
for _, peer := range srv.peers { // Note: We'd love to put this function into a variable but
if peer != nil { // that seems to cause a weird compiler error in some
peers = append(peers, peer) // environments.
case srv.peerOp <- func(peers map[discover.NodeID]*Peer) {
for _, p := range peers {
ps = append(ps, p)
} }
}:
<-srv.peerOpDone
case <-srv.quit:
} }
return return ps
} }
// PeerCount returns the number of connected peers. // PeerCount returns the number of connected peers.
func (srv *Server) PeerCount() int { func (srv *Server) PeerCount() int {
srv.lock.RLock() var count int
n := len(srv.peers) select {
srv.lock.RUnlock() case srv.peerOp <- func(ps map[discover.NodeID]*Peer) { count = len(ps) }:
return n <-srv.peerOpDone
case <-srv.quit:
}
return count
} }
// AddPeer connects to the given node and maintains the connection until the // AddPeer connects to the given node and maintains the connection until the
// server is shut down. If the connection fails for any reason, the server will // server is shut down. If the connection fails for any reason, the server will
// attempt to reconnect the peer. // attempt to reconnect the peer.
func (srv *Server) AddPeer(node *discover.Node) { func (srv *Server) AddPeer(node *discover.Node) {
select {
case srv.addstatic <- node:
case <-srv.quit:
}
}
// Self returns the local node's endpoint information.
func (srv *Server) Self() *discover.Node {
srv.lock.Lock() srv.lock.Lock()
defer srv.lock.Unlock() defer srv.lock.Unlock()
if !srv.running {
srv.staticNodes[node.ID] = node return &discover.Node{IP: net.ParseIP("0.0.0.0")}
}
return srv.ntab.Self()
} }
// Broadcast sends an RLP-encoded message to all connected peers. // Stop terminates the server and all active peer connections.
// This method is deprecated and will be removed later. // It blocks until all active connections have been closed.
func (srv *Server) Broadcast(protocol string, code uint64, data interface{}) error { func (srv *Server) Stop() {
return srv.BroadcastLimited(protocol, code, func(i float64) float64 { return i }, data) srv.lock.Lock()
} defer srv.lock.Unlock()
if !srv.running {
// BroadcastsRange an RLP-encoded message to a random set of peers using the limit function to limit the amount return
// of peers.
func (srv *Server) BroadcastLimited(protocol string, code uint64, limit func(float64) float64, data interface{}) error {
var payload []byte
if data != nil {
var err error
payload, err = rlp.EncodeToBytes(data)
if err != nil {
return err
} }
srv.running = false
if srv.listener != nil {
// this unblocks listener Accept
srv.listener.Close()
} }
srv.lock.RLock() close(srv.quit)
defer srv.lock.RUnlock() srv.loopWG.Wait()
i, max := 0, int(limit(float64(len(srv.peers))))
for _, peer := range srv.peers {
if i >= max {
break
}
if peer != nil {
var msg = Msg{Code: code}
if data != nil {
msg.Payload = bytes.NewReader(payload)
msg.Size = uint32(len(payload))
}
peer.writeProtoMsg(protocol, msg)
i++
}
}
return nil
} }
// Start starts running the server. // Start starts running the server.
// Servers can be re-used and started again after stopping. // Servers can not be re-used after stopping.
func (srv *Server) Start() (err error) { func (srv *Server) Start() (err error) {
srv.lock.Lock() srv.lock.Lock()
defer srv.lock.Unlock() defer srv.lock.Unlock()
if srv.running { if srv.running {
return errors.New("server already running") return errors.New("server already running")
} }
srv.running = true
glog.V(logger.Info).Infoln("Starting Server") glog.V(logger.Info).Infoln("Starting Server")
// static fields // static fields
@ -215,23 +278,19 @@ func (srv *Server) Start() (err error) {
if srv.MaxPeers <= 0 { if srv.MaxPeers <= 0 {
return fmt.Errorf("Server.MaxPeers must be > 0") return fmt.Errorf("Server.MaxPeers must be > 0")
} }
if srv.newTransport == nil {
srv.newTransport = newRLPX
}
if srv.Dialer == nil {
srv.Dialer = &net.Dialer{Timeout: defaultDialTimeout}
}
srv.quit = make(chan struct{}) srv.quit = make(chan struct{})
srv.peers = make(map[discover.NodeID]*Peer) srv.addpeer = make(chan *conn)
srv.delpeer = make(chan *Peer)
// Create the current trust maps, and the associated dialing channel srv.posthandshake = make(chan *conn)
srv.trustedNodes = make(map[discover.NodeID]bool) srv.addstatic = make(chan *discover.Node)
for _, node := range srv.TrustedNodes { srv.peerOp = make(chan peerOpFunc)
srv.trustedNodes[node.ID] = true srv.peerOpDone = make(chan struct{})
}
srv.staticNodes = make(map[discover.NodeID]*discover.Node)
for _, node := range srv.StaticNodes {
srv.staticNodes[node.ID] = node
}
srv.staticDial = make(chan *discover.Node)
if srv.setupFunc == nil {
srv.setupFunc = setupConn
}
// node table // node table
ntab, err := discover.ListenUDP(srv.PrivateKey, srv.ListenAddr, srv.NAT, srv.NodeDatabase) ntab, err := discover.ListenUDP(srv.PrivateKey, srv.ListenAddr, srv.NAT, srv.NodeDatabase)
@ -239,37 +298,31 @@ func (srv *Server) Start() (err error) {
return err return err
} }
srv.ntab = ntab srv.ntab = ntab
dialer := newDialState(srv.StaticNodes, srv.ntab, srv.MaxPeers/2)
// handshake // handshake
srv.ourHandshake = &protoHandshake{Version: baseProtocolVersion, Name: srv.Name, ID: ntab.Self().ID} srv.ourHandshake = &protoHandshake{Version: baseProtocolVersion, Name: srv.Name, ID: ntab.Self().ID}
for _, p := range srv.Protocols { for _, p := range srv.Protocols {
srv.ourHandshake.Caps = append(srv.ourHandshake.Caps, p.cap()) srv.ourHandshake.Caps = append(srv.ourHandshake.Caps, p.cap())
} }
// listen/dial // listen/dial
if srv.ListenAddr != "" { if srv.ListenAddr != "" {
if err := srv.startListening(); err != nil { if err := srv.startListening(); err != nil {
return err return err
} }
} }
if srv.Dialer == nil {
srv.Dialer = &net.Dialer{Timeout: defaultDialTimeout}
}
if !srv.NoDial {
srv.loopWG.Add(1)
go srv.dialLoop()
}
if srv.NoDial && srv.ListenAddr == "" { if srv.NoDial && srv.ListenAddr == "" {
glog.V(logger.Warn).Infoln("I will be kind-of useless, neither dialing nor listening.") glog.V(logger.Warn).Infoln("I will be kind-of useless, neither dialing nor listening.")
} }
// maintain the static peers
go srv.staticNodesLoop()
srv.loopWG.Add(1)
go srv.run(dialer)
srv.running = true srv.running = true
return nil return nil
} }
func (srv *Server) startListening() error { func (srv *Server) startListening() error {
// Launch the TCP listener.
listener, err := net.Listen("tcp", srv.ListenAddr) listener, err := net.Listen("tcp", srv.ListenAddr)
if err != nil { if err != nil {
return err return err
@ -279,6 +332,7 @@ func (srv *Server) startListening() error {
srv.listener = listener srv.listener = listener
srv.loopWG.Add(1) srv.loopWG.Add(1)
go srv.listenLoop() go srv.listenLoop()
// Map the TCP listening port if NAT is configured.
if !laddr.IP.IsLoopback() && srv.NAT != nil { if !laddr.IP.IsLoopback() && srv.NAT != nil {
srv.loopWG.Add(1) srv.loopWG.Add(1)
go func() { go func() {
@ -289,50 +343,164 @@ func (srv *Server) startListening() error {
return nil return nil
} }
// Stop terminates the server and all active peer connections. type dialer interface {
// It blocks until all active connections have been closed. newTasks(running int, peers map[discover.NodeID]*Peer, now time.Time) []task
func (srv *Server) Stop() { taskDone(task, time.Time)
srv.lock.Lock() addStatic(*discover.Node)
if !srv.running { }
srv.lock.Unlock()
return
}
srv.running = false
srv.lock.Unlock()
glog.V(logger.Info).Infoln("Stopping Server") func (srv *Server) run(dialstate dialer) {
defer srv.loopWG.Done()
var (
peers = make(map[discover.NodeID]*Peer)
trusted = make(map[discover.NodeID]bool, len(srv.TrustedNodes))
tasks []task
pendingTasks []task
taskdone = make(chan task, maxActiveDialTasks)
)
// Put trusted nodes into a map to speed up checks.
// Trusted peers are loaded on startup and cannot be
// modified while the server is running.
for _, n := range srv.TrustedNodes {
trusted[n.ID] = true
}
// Some task list helpers.
delTask := func(t task) {
for i := range tasks {
if tasks[i] == t {
tasks = append(tasks[:i], tasks[i+1:]...)
break
}
}
}
scheduleTasks := func(new []task) {
pt := append(pendingTasks, new...)
start := maxActiveDialTasks - len(tasks)
if len(pt) < start {
start = len(pt)
}
if start > 0 {
tasks = append(tasks, pt[:start]...)
for _, t := range pt[:start] {
t := t
glog.V(logger.Detail).Infoln("new task:", t)
go func() { t.Do(srv); taskdone <- t }()
}
copy(pt, pt[start:])
pendingTasks = pt[:len(pt)-start]
}
}
running:
for {
// Query the dialer for new tasks and launch them.
now := time.Now()
nt := dialstate.newTasks(len(pendingTasks)+len(tasks), peers, now)
scheduleTasks(nt)
select {
case <-srv.quit:
// The server was stopped. Run the cleanup logic.
glog.V(logger.Detail).Infoln("<-quit: spinning down")
break running
case n := <-srv.addstatic:
// This channel is used by AddPeer to add to the
// ephemeral static peer list. Add it to the dialer,
// it will keep the node connected.
glog.V(logger.Detail).Infoln("<-addstatic:", n)
dialstate.addStatic(n)
case op := <-srv.peerOp:
// This channel is used by Peers and PeerCount.
op(peers)
srv.peerOpDone <- struct{}{}
case t := <-taskdone:
// A task got done. Tell dialstate about it so it
// can update its state and remove it from the active
// tasks list.
glog.V(logger.Detail).Infoln("<-taskdone:", t)
dialstate.taskDone(t, now)
delTask(t)
case c := <-srv.posthandshake:
// A connection has passed the encryption handshake so
// the remote identity is known (but hasn't been verified yet).
if trusted[c.id] {
// Ensure that the trusted flag is set before checking against MaxPeers.
c.flags |= trustedConn
}
glog.V(logger.Detail).Infoln("<-posthandshake:", c)
// TODO: track in-progress inbound node IDs (pre-Peer) to avoid dialing them.
c.cont <- srv.encHandshakeChecks(peers, c)
case c := <-srv.addpeer:
// At this point the connection is past the protocol handshake.
// Its capabilities are known and the remote identity is verified.
glog.V(logger.Detail).Infoln("<-addpeer:", c)
err := srv.protoHandshakeChecks(peers, c)
if err != nil {
glog.V(logger.Detail).Infof("Not adding %v as peer: %v", c, err)
} else {
// The handshakes are done and it passed all checks.
p := newPeer(c, srv.Protocols)
peers[c.id] = p
go srv.runPeer(p)
}
// The dialer logic relies on the assumption that
// dial tasks complete after the peer has been added or
// discarded. Unblock the task last.
c.cont <- err
case p := <-srv.delpeer:
// A peer disconnected.
glog.V(logger.Detail).Infoln("<-delpeer:", p)
delete(peers, p.ID())
}
}
// Terminate discovery. If there is a running lookup it will terminate soon.
srv.ntab.Close() srv.ntab.Close()
if srv.listener != nil { // Disconnect all peers.
// this unblocks listener Accept for _, p := range peers {
srv.listener.Close() p.Disconnect(DiscQuitting)
} }
close(srv.quit) // Wait for peers to shut down. Pending connections and tasks are
srv.loopWG.Wait() // not handled here and will terminate soon-ish because srv.quit
// is closed.
// No new peers can be added at this point because dialLoop and glog.V(logger.Detail).Infof("ignoring %d pending tasks at spindown", len(tasks))
// listenLoop are down. It is safe to call peerWG.Wait because for len(peers) > 0 {
// peerWG.Add is not called outside of those loops. p := <-srv.delpeer
srv.lock.Lock() glog.V(logger.Detail).Infoln("<-delpeer (spindown):", p)
for _, peer := range srv.peers { delete(peers, p.ID())
peer.Disconnect(DiscQuitting)
} }
srv.lock.Unlock()
srv.peerWG.Wait()
} }
// Self returns the local node's endpoint information. func (srv *Server) protoHandshakeChecks(peers map[discover.NodeID]*Peer, c *conn) error {
func (srv *Server) Self() *discover.Node { // Drop connections with no matching protocols.
srv.lock.RLock() if len(srv.Protocols) > 0 && countMatchingProtocols(srv.Protocols, c.caps) == 0 {
defer srv.lock.RUnlock() return DiscUselessPeer
if !srv.running {
return &discover.Node{IP: net.ParseIP("0.0.0.0")}
} }
return srv.ntab.Self() // Repeat the encryption handshake checks because the
// peer set might have changed between the handshakes.
return srv.encHandshakeChecks(peers, c)
} }
// main loop for adding connections via listening func (srv *Server) encHandshakeChecks(peers map[discover.NodeID]*Peer, c *conn) error {
switch {
case !c.is(trustedConn|staticDialedConn) && len(peers) >= srv.MaxPeers:
return DiscTooManyPeers
case peers[c.id] != nil:
return DiscAlreadyConnected
case c.id == srv.ntab.Self().ID:
return DiscSelf
default:
return nil
}
}
// listenLoop runs in its own goroutine and accepts
// inbound connections.
func (srv *Server) listenLoop() { func (srv *Server) listenLoop() {
defer srv.loopWG.Done() defer srv.loopWG.Done()
glog.V(logger.Info).Infoln("Listening on", srv.listener.Addr())
// This channel acts as a semaphore limiting // This channel acts as a semaphore limiting
// active inbound connections that are lingering pre-handshake. // active inbound connections that are lingering pre-handshake.
@ -346,204 +514,92 @@ func (srv *Server) listenLoop() {
slots <- struct{}{} slots <- struct{}{}
} }
glog.V(logger.Info).Infoln("Listening on", srv.listener.Addr())
for { for {
<-slots <-slots
conn, err := srv.listener.Accept() fd, err := srv.listener.Accept()
if err != nil { if err != nil {
return return
} }
glog.V(logger.Debug).Infof("Accepted conn %v\n", conn.RemoteAddr()) glog.V(logger.Debug).Infof("Accepted conn %v\n", fd.RemoteAddr())
srv.peerWG.Add(1)
go func() { go func() {
srv.startPeer(conn, nil) srv.setupConn(fd, inboundConn, nil)
slots <- struct{}{} slots <- struct{}{}
}() }()
} }
} }
// staticNodesLoop is responsible for periodically checking that static // setupConn runs the handshakes and attempts to add the connection
// connections are actually live, and requests dialing if not. // as a peer. It returns when the connection has been added as a peer
func (srv *Server) staticNodesLoop() { // or the handshakes have failed.
// Create a default maintenance ticker, but override it requested func (srv *Server) setupConn(fd net.Conn, flags connFlag, dialDest *discover.Node) {
cycle := staticPeerCheckInterval // Prevent leftover pending conns from entering the handshake.
if srv.staticCycle != 0 { srv.lock.Lock()
cycle = srv.staticCycle running := srv.running
} srv.lock.Unlock()
tick := time.NewTicker(cycle) c := &conn{fd: fd, transport: srv.newTransport(fd), flags: flags, cont: make(chan error)}
if !running {
for { c.close(errServerStopped)
select {
case <-srv.quit:
return
case <-tick.C:
// Collect all the non-connected static nodes
needed := []*discover.Node{}
srv.lock.RLock()
for id, node := range srv.staticNodes {
if _, ok := srv.peers[id]; !ok {
needed = append(needed, node)
}
}
srv.lock.RUnlock()
// Try to dial each of them (don't hang if server terminates)
for _, node := range needed {
glog.V(logger.Debug).Infof("Dialing static peer %v", node)
select {
case srv.staticDial <- node:
case <-srv.quit:
return return
} }
} // Run the encryption handshake.
} var err error
} if c.id, err = c.doEncHandshake(srv.PrivateKey, dialDest); err != nil {
} glog.V(logger.Debug).Infof("%v faild enc handshake: %v", c, err)
c.close(err)
func (srv *Server) dialLoop() {
var (
dialed = make(chan *discover.Node)
dialing = make(map[discover.NodeID]bool)
findresults = make(chan []*discover.Node)
refresh = time.NewTimer(0)
)
defer srv.loopWG.Done()
defer refresh.Stop()
// Limit the number of concurrent dials
tokens := maxDialingConns
if srv.MaxPendingPeers > 0 {
tokens = srv.MaxPendingPeers
}
slots := make(chan struct{}, tokens)
for i := 0; i < tokens; i++ {
slots <- struct{}{}
}
dial := func(dest *discover.Node) {
// Don't dial nodes that would fail the checks in addPeer.
// This is important because the connection handshake is a lot
// of work and we'd rather avoid doing that work for peers
// that can't be added.
srv.lock.RLock()
ok, _ := srv.checkPeer(dest.ID)
srv.lock.RUnlock()
if !ok || dialing[dest.ID] {
return return
} }
// Request a dial slot to prevent CPU exhaustion // For dialed connections, check that the remote public key matches.
<-slots if dialDest != nil && c.id != dialDest.ID {
c.close(DiscUnexpectedIdentity)
dialing[dest.ID] = true glog.V(logger.Debug).Infof("%v dialed identity mismatch, want %x", c, dialDest.ID[:8])
srv.peerWG.Add(1)
go func() {
srv.dialNode(dest)
slots <- struct{}{}
dialed <- dest
}()
}
srv.ntab.Bootstrap(srv.BootstrapNodes)
for {
select {
case <-refresh.C:
// Grab some nodes to connect to if we're not at capacity.
srv.lock.RLock()
needpeers := len(srv.peers) < srv.MaxPeers/2
srv.lock.RUnlock()
if needpeers {
go func() {
var target discover.NodeID
rand.Read(target[:])
findresults <- srv.ntab.Lookup(target)
}()
} else {
// Make sure we check again if the peer count falls
// below MaxPeers.
refresh.Reset(refreshPeersInterval)
}
case dest := <-srv.staticDial:
dial(dest)
case dests := <-findresults:
for _, dest := range dests {
dial(dest)
}
refresh.Reset(refreshPeersInterval)
case dest := <-dialed:
delete(dialing, dest.ID)
if len(dialing) == 0 {
// Check again immediately after dialing all current candidates.
refresh.Reset(0)
}
case <-srv.quit:
// TODO: maybe wait for active dials
return return
} }
if err := srv.checkpoint(c, srv.posthandshake); err != nil {
glog.V(logger.Debug).Infof("%v failed checkpoint posthandshake: %v", c, err)
c.close(err)
return
} }
} // Run the protocol handshake
phs, err := c.doProtoHandshake(srv.ourHandshake)
func (srv *Server) dialNode(dest *discover.Node) {
addr := &net.TCPAddr{IP: dest.IP, Port: int(dest.TCP)}
glog.V(logger.Debug).Infof("Dialing %v\n", dest)
conn, err := srv.Dialer.Dial("tcp", addr.String())
if err != nil { if err != nil {
// dialLoop adds to the wait group counter when launching glog.V(logger.Debug).Infof("%v failed proto handshake: %v", c, err)
// dialNode, so we need to count it down again. startPeer also c.close(err)
// does that when an error occurs.
srv.peerWG.Done()
glog.V(logger.Detail).Infof("dial error: %v", err)
return return
} }
srv.startPeer(conn, dest) if phs.ID != c.id {
} glog.V(logger.Debug).Infof("%v wrong proto handshake identity: %x", c, phs.ID[:8])
c.close(DiscUnexpectedIdentity)
func (srv *Server) startPeer(fd net.Conn, dest *discover.Node) {
// TODO: handle/store session token
// Run setupFunc, which should create an authenticated connection
// and run the capability exchange. Note that any early error
// returns during that exchange need to call peerWG.Done because
// the callers of startPeer added the peer to the wait group already.
fd.SetDeadline(time.Now().Add(handshakeTimeout))
conn, err := srv.setupFunc(fd, srv.PrivateKey, srv.ourHandshake, dest, srv.keepconn)
if err != nil {
fd.Close()
glog.V(logger.Debug).Infof("Handshake with %v failed: %v", fd.RemoteAddr(), err)
srv.peerWG.Done()
return return
} }
conn.MsgReadWriter = &netWrapper{ c.caps, c.name = phs.Caps, phs.Name
wrapped: conn.MsgReadWriter, if err := srv.checkpoint(c, srv.addpeer); err != nil {
conn: fd, rtimeout: frameReadTimeout, wtimeout: frameWriteTimeout, glog.V(logger.Debug).Infof("%v failed checkpoint addpeer: %v", c, err)
} c.close(err)
p := newPeer(fd, conn, srv.Protocols)
if ok, reason := srv.addPeer(conn, p); !ok {
glog.V(logger.Detail).Infof("Not adding %v (%v)\n", p, reason)
p.politeDisconnect(reason)
srv.peerWG.Done()
return return
} }
// The handshakes are done and it passed all checks. // If the checks completed successfully, runPeer has now been
// Spawn the Peer loops. // launched by run.
go srv.runPeer(p)
} }
// preflight checks whether a connection should be kept. it runs // checkpoint sends the conn to run, which performs the
// after the encryption handshake, as soon as the remote identity is // post-handshake checks for the stage (posthandshake, addpeer).
// known. func (srv *Server) checkpoint(c *conn, stage chan<- *conn) error {
func (srv *Server) keepconn(id discover.NodeID) bool { select {
srv.lock.RLock() case stage <- c:
defer srv.lock.RUnlock() case <-srv.quit:
if _, ok := srv.staticNodes[id]; ok { return errServerStopped
return true // static nodes are always allowed
} }
if _, ok := srv.trustedNodes[id]; ok { select {
return true // trusted nodes are always allowed case err := <-c.cont:
return err
case <-srv.quit:
return errServerStopped
} }
return len(srv.peers) < srv.MaxPeers
} }
// runPeer runs in its own goroutine for each peer.
// it waits until the Peer logic returns and removes
// the peer.
func (srv *Server) runPeer(p *Peer) { func (srv *Server) runPeer(p *Peer) {
glog.V(logger.Debug).Infof("Added %v\n", p) glog.V(logger.Debug).Infof("Added %v\n", p)
srvjslog.LogJson(&logger.P2PConnected{ srvjslog.LogJson(&logger.P2PConnected{
@ -552,58 +608,18 @@ func (srv *Server) runPeer(p *Peer) {
RemoteVersionString: p.Name(), RemoteVersionString: p.Name(),
NumConnections: srv.PeerCount(), NumConnections: srv.PeerCount(),
}) })
if srv.newPeerHook != nil { if srv.newPeerHook != nil {
srv.newPeerHook(p) srv.newPeerHook(p)
} }
discreason := p.run() discreason := p.run()
srv.removePeer(p) // Note: run waits for existing peers to be sent on srv.delpeer
// before returning, so this send should not select on srv.quit.
srv.delpeer <- p
glog.V(logger.Debug).Infof("Removed %v (%v)\n", p, discreason) glog.V(logger.Debug).Infof("Removed %v (%v)\n", p, discreason)
srvjslog.LogJson(&logger.P2PDisconnected{ srvjslog.LogJson(&logger.P2PDisconnected{
RemoteId: p.ID().String(), RemoteId: p.ID().String(),
NumConnections: srv.PeerCount(), NumConnections: srv.PeerCount(),
}) })
} }
func (srv *Server) addPeer(conn *conn, p *Peer) (bool, DiscReason) {
// drop connections with no matching protocols.
if len(srv.Protocols) > 0 && countMatchingProtocols(srv.Protocols, conn.protoHandshake.Caps) == 0 {
return false, DiscUselessPeer
}
// add the peer if it passes the other checks.
srv.lock.Lock()
defer srv.lock.Unlock()
if ok, reason := srv.checkPeer(conn.ID); !ok {
return false, reason
}
srv.peers[conn.ID] = p
return true, 0
}
// checkPeer verifies whether a peer looks promising and should be allowed/kept
// in the pool, or if it's of no use.
func (srv *Server) checkPeer(id discover.NodeID) (bool, DiscReason) {
// First up, figure out if the peer is static or trusted
_, static := srv.staticNodes[id]
trusted := srv.trustedNodes[id]
// Make sure the peer passes all required checks
switch {
case !srv.running:
return false, DiscQuitting
case !static && !trusted && len(srv.peers) >= srv.MaxPeers:
return false, DiscTooManyPeers
case srv.peers[id] != nil:
return false, DiscAlreadyConnected
case id == srv.ntab.Self().ID:
return false, DiscSelf
default:
return true, 0
}
}
func (srv *Server) removePeer(p *Peer) {
srv.lock.Lock()
delete(srv.peers, p.ID())
srv.lock.Unlock()
srv.peerWG.Done()
}

View File

@ -1,12 +1,11 @@
package p2p package p2p
import ( import (
"bytes"
"crypto/ecdsa" "crypto/ecdsa"
"io" "errors"
"math/rand" "math/rand"
"net" "net"
"sync" "reflect"
"testing" "testing"
"time" "time"
@ -15,29 +14,50 @@ import (
"github.com/ethereum/go-ethereum/p2p/discover" "github.com/ethereum/go-ethereum/p2p/discover"
) )
func startTestServer(t *testing.T, pf newPeerHook) *Server { func init() {
// glog.SetV(6)
// glog.SetToStderr(true)
}
type testTransport struct {
id discover.NodeID
*rlpx
closeErr error
}
func newTestTransport(id discover.NodeID, fd net.Conn) transport {
wrapped := newRLPX(fd).(*rlpx)
wrapped.rw = newRLPXFrameRW(fd, secrets{
MAC: zero16,
AES: zero16,
IngressMAC: sha3.NewKeccak256(),
EgressMAC: sha3.NewKeccak256(),
})
return &testTransport{id: id, rlpx: wrapped}
}
func (c *testTransport) doEncHandshake(prv *ecdsa.PrivateKey, dialDest *discover.Node) (discover.NodeID, error) {
return c.id, nil
}
func (c *testTransport) doProtoHandshake(our *protoHandshake) (*protoHandshake, error) {
return &protoHandshake{ID: c.id, Name: "test"}, nil
}
func (c *testTransport) close(err error) {
c.rlpx.fd.Close()
c.closeErr = err
}
func startTestServer(t *testing.T, id discover.NodeID, pf func(*Peer)) *Server {
server := &Server{ server := &Server{
Name: "test", Name: "test",
MaxPeers: 10, MaxPeers: 10,
ListenAddr: "127.0.0.1:0", ListenAddr: "127.0.0.1:0",
PrivateKey: newkey(), PrivateKey: newkey(),
newPeerHook: pf, newPeerHook: pf,
setupFunc: func(fd net.Conn, prv *ecdsa.PrivateKey, our *protoHandshake, dial *discover.Node, keepconn func(discover.NodeID) bool) (*conn, error) { newTransport: func(fd net.Conn) transport { return newTestTransport(id, fd) },
id := randomID()
if !keepconn(id) {
return nil, DiscAlreadyConnected
}
rw := newRlpxFrameRW(fd, secrets{
MAC: zero16,
AES: zero16,
IngressMAC: sha3.NewKeccak256(),
EgressMAC: sha3.NewKeccak256(),
})
return &conn{
MsgReadWriter: rw,
protoHandshake: &protoHandshake{ID: id, Version: baseProtocolVersion},
}, nil
},
} }
if err := server.Start(); err != nil { if err := server.Start(); err != nil {
t.Fatalf("Could not start server: %v", err) t.Fatalf("Could not start server: %v", err)
@ -48,7 +68,11 @@ func startTestServer(t *testing.T, pf newPeerHook) *Server {
func TestServerListen(t *testing.T) { func TestServerListen(t *testing.T) {
// start the test server // start the test server
connected := make(chan *Peer) connected := make(chan *Peer)
srv := startTestServer(t, func(p *Peer) { remid := randomID()
srv := startTestServer(t, remid, func(p *Peer) {
if p.ID() != remid {
t.Error("peer func called with wrong node id")
}
if p == nil { if p == nil {
t.Error("peer func called with nil conn") t.Error("peer func called with nil conn")
} }
@ -70,6 +94,10 @@ func TestServerListen(t *testing.T) {
t.Errorf("peer started with wrong conn: got %v, want %v", t.Errorf("peer started with wrong conn: got %v, want %v",
peer.LocalAddr(), conn.RemoteAddr()) peer.LocalAddr(), conn.RemoteAddr())
} }
peers := srv.Peers()
if !reflect.DeepEqual(peers, []*Peer{peer}) {
t.Errorf("Peers mismatch: got %v, want %v", peers, []*Peer{peer})
}
case <-time.After(1 * time.Second): case <-time.After(1 * time.Second):
t.Error("server did not accept within one second") t.Error("server did not accept within one second")
} }
@ -95,23 +123,33 @@ func TestServerDial(t *testing.T) {
// start the server // start the server
connected := make(chan *Peer) connected := make(chan *Peer)
srv := startTestServer(t, func(p *Peer) { connected <- p }) remid := randomID()
srv := startTestServer(t, remid, func(p *Peer) { connected <- p })
defer close(connected) defer close(connected)
defer srv.Stop() defer srv.Stop()
// tell the server to connect // tell the server to connect
tcpAddr := listener.Addr().(*net.TCPAddr) tcpAddr := listener.Addr().(*net.TCPAddr)
srv.staticDial <- &discover.Node{IP: tcpAddr.IP, TCP: uint16(tcpAddr.Port)} srv.AddPeer(&discover.Node{ID: remid, IP: tcpAddr.IP, TCP: uint16(tcpAddr.Port)})
select { select {
case conn := <-accepted: case conn := <-accepted:
select { select {
case peer := <-connected: case peer := <-connected:
if peer.ID() != remid {
t.Errorf("peer has wrong id")
}
if peer.Name() != "test" {
t.Errorf("peer has wrong name")
}
if peer.RemoteAddr().String() != conn.LocalAddr().String() { if peer.RemoteAddr().String() != conn.LocalAddr().String() {
t.Errorf("peer started with wrong conn: got %v, want %v", t.Errorf("peer started with wrong conn: got %v, want %v",
peer.RemoteAddr(), conn.LocalAddr()) peer.RemoteAddr(), conn.LocalAddr())
} }
// TODO: validate more fields peers := srv.Peers()
if !reflect.DeepEqual(peers, []*Peer{peer}) {
t.Errorf("Peers mismatch: got %v, want %v", peers, []*Peer{peer})
}
case <-time.After(1 * time.Second): case <-time.After(1 * time.Second):
t.Error("server did not launch peer within one second") t.Error("server did not launch peer within one second")
} }
@ -121,370 +159,250 @@ func TestServerDial(t *testing.T) {
} }
} }
func TestServerBroadcast(t *testing.T) { // This test checks that tasks generated by dialstate are
var connected sync.WaitGroup // actually executed and taskdone is called for them.
srv := startTestServer(t, func(p *Peer) { func TestServerTaskScheduling(t *testing.T) {
p.running = matchProtocols([]Protocol{discard}, []Cap{discard.cap()}, p.rw) var (
connected.Done() done = make(chan *testTask)
}) quit, returned = make(chan struct{}), make(chan struct{})
defer srv.Stop() tc = 0
tg = taskgen{
newFunc: func(running int, peers map[discover.NodeID]*Peer) []task {
tc++
return []task{&testTask{index: tc - 1}}
},
doneFunc: func(t task) {
select {
case done <- t.(*testTask):
case <-quit:
}
},
}
)
// create a few peers // The Server in this test isn't actually running
var conns = make([]net.Conn, 8) // because we're only interested in what run does.
connected.Add(len(conns)) srv := &Server{
deadline := time.Now().Add(3 * time.Second) MaxPeers: 10,
dialer := &net.Dialer{Deadline: deadline} quit: make(chan struct{}),
for i := range conns { ntab: fakeTable{},
conn, err := dialer.Dial("tcp", srv.ListenAddr) running: true,
if err != nil {
t.Fatalf("conn %d: dial error: %v", i, err)
} }
defer conn.Close() srv.loopWG.Add(1)
conn.SetDeadline(deadline) go func() {
conns[i] = conn srv.run(tg)
} close(returned)
connected.Wait() }()
// broadcast one message var gotdone []*testTask
srv.Broadcast("discard", 0, []string{"foo"}) for i := 0; i < 100; i++ {
golden := unhex("66e94d166f0a2c3b884cfa59ca34") gotdone = append(gotdone, <-done)
}
for i, task := range gotdone {
if task.index != i {
t.Errorf("task %d has wrong index, got %d", i, task.index)
break
}
if !task.called {
t.Errorf("task %d was not called", i)
break
}
}
// check that the message has been written everywhere close(quit)
for i, conn := range conns { srv.Stop()
buf := make([]byte, len(golden)) select {
if _, err := io.ReadFull(conn, buf); err != nil { case <-returned:
t.Errorf("conn %d: read error: %v", i, err) case <-time.After(500 * time.Millisecond):
} else if !bytes.Equal(buf, golden) { t.Error("Server.run did not return within 500ms")
t.Errorf("conn %d: msg mismatch\ngot: %x\nwant: %x", i, buf, golden)
}
} }
} }
type taskgen struct {
newFunc func(running int, peers map[discover.NodeID]*Peer) []task
doneFunc func(task)
}
func (tg taskgen) newTasks(running int, peers map[discover.NodeID]*Peer, now time.Time) []task {
return tg.newFunc(running, peers)
}
func (tg taskgen) taskDone(t task, now time.Time) {
tg.doneFunc(t)
}
func (tg taskgen) addStatic(*discover.Node) {
}
type testTask struct {
index int
called bool
}
func (t *testTask) Do(srv *Server) {
t.called = true
}
// This test checks that connections are disconnected // This test checks that connections are disconnected
// just after the encryption handshake when the server is // just after the encryption handshake when the server is
// at capacity. // at capacity. Trusted connections should still be accepted.
// func TestServerAtCap(t *testing.T) {
// It also serves as a light-weight integration test. trustedID := randomID()
func TestServerDisconnectAtCap(t *testing.T) {
started := make(chan *Peer)
srv := &Server{ srv := &Server{
ListenAddr: "127.0.0.1:0",
PrivateKey: newkey(), PrivateKey: newkey(),
MaxPeers: 10, MaxPeers: 10,
NoDial: true, NoDial: true,
// This hook signals that the peer was actually started. We TrustedNodes: []*discover.Node{{ID: trustedID}},
// need to wait for the peer to be started before dialing the
// next connection to get a deterministic peer count.
newPeerHook: func(p *Peer) { started <- p },
} }
if err := srv.Start(); err != nil { if err := srv.Start(); err != nil {
t.Fatal(err) t.Fatalf("could not start: %v", err)
} }
defer srv.Stop() defer srv.Stop()
nconns := srv.MaxPeers + 1 newconn := func(id discover.NodeID) *conn {
dialer := &net.Dialer{Deadline: time.Now().Add(3 * time.Second)} fd, _ := net.Pipe()
for i := 0; i < nconns; i++ { tx := newTestTransport(id, fd)
conn, err := dialer.Dial("tcp", srv.ListenAddr) return &conn{fd: fd, transport: tx, flags: inboundConn, id: id, cont: make(chan error)}
if err != nil {
t.Fatalf("conn %d: dial error: %v", i, err)
} }
// Close the connection when the test ends, before
// shutting down the server. // Inject a few connections to fill up the peer set.
defer conn.Close() for i := 0; i < 10; i++ {
// Run the handshakes just like a real peer would. c := newconn(randomID())
key := newkey() if err := srv.checkpoint(c, srv.addpeer); err != nil {
hs := &protoHandshake{Version: baseProtocolVersion, ID: discover.PubkeyID(&key.PublicKey)} t.Fatalf("could not add conn %d: %v", i, err)
_, err = setupConn(conn, key, hs, srv.Self(), keepalways)
if i == nconns-1 {
// When handling the last connection, the server should
// disconnect immediately instead of running the protocol
// handshake.
if err != DiscTooManyPeers {
t.Errorf("conn %d: got error %q, expected %q", i, err, DiscTooManyPeers)
}
} else {
// For all earlier connections, the handshake should go through.
if err != nil {
t.Fatalf("conn %d: unexpected error: %v", i, err)
}
// Wait for runPeer to be started.
<-started
} }
} }
// Try inserting a non-trusted connection.
c := newconn(randomID())
if err := srv.checkpoint(c, srv.posthandshake); err != DiscTooManyPeers {
t.Error("wrong error for insert:", err)
}
// Try inserting a trusted connection.
c = newconn(trustedID)
if err := srv.checkpoint(c, srv.posthandshake); err != nil {
t.Error("unexpected error for trusted conn @posthandshake:", err)
}
if !c.is(trustedConn) {
t.Error("Server did not set trusted flag")
}
} }
// Tests that static peers are (re)connected, and done so even above max peers. func TestServerSetupConn(t *testing.T) {
func TestServerStaticPeers(t *testing.T) { id := randomID()
// Create a test server with limited connection slots srvkey := newkey()
started := make(chan *Peer) srvid := discover.PubkeyID(&srvkey.PublicKey)
server := &Server{ tests := []struct {
ListenAddr: "127.0.0.1:0", dontstart bool
PrivateKey: newkey(), tt *setupTransport
MaxPeers: 3, flags connFlag
newPeerHook: func(p *Peer) { started <- p }, dialDest *discover.Node
staticCycle: time.Second,
}
if err := server.Start(); err != nil {
t.Fatal(err)
}
defer server.Stop()
// Fill up all the slots on the server wantCloseErr error
dialer := &net.Dialer{Deadline: time.Now().Add(3 * time.Second)} wantCalls string
for i := 0; i < server.MaxPeers; i++ { }{
// Establish a new connection {
conn, err := dialer.Dial("tcp", server.ListenAddr) dontstart: true,
if err != nil { tt: &setupTransport{id: id},
t.Fatalf("conn %d: dial error: %v", i, err) wantCalls: "close,",
} wantCloseErr: errServerStopped,
defer conn.Close() },
{
// Run the handshakes just like a real peer would, and wait for completion tt: &setupTransport{id: id, encHandshakeErr: errors.New("read error")},
key := newkey() flags: inboundConn,
shake := &protoHandshake{Version: baseProtocolVersion, ID: discover.PubkeyID(&key.PublicKey)} wantCalls: "doEncHandshake,close,",
if _, err = setupConn(conn, key, shake, server.Self(), keepalways); err != nil { wantCloseErr: errors.New("read error"),
t.Fatalf("conn %d: unexpected error: %v", i, err) },
} {
<-started tt: &setupTransport{id: id},
} dialDest: &discover.Node{ID: randomID()},
// Open a TCP listener to accept static connections flags: dynDialedConn,
listener, err := net.Listen("tcp", "127.0.0.1:0") wantCalls: "doEncHandshake,close,",
if err != nil { wantCloseErr: DiscUnexpectedIdentity,
t.Fatalf("failed to setup listener: %v", err) },
} {
defer listener.Close() tt: &setupTransport{id: id, phs: &protoHandshake{ID: randomID()}},
dialDest: &discover.Node{ID: id},
connected := make(chan net.Conn) flags: dynDialedConn,
go func() { wantCalls: "doEncHandshake,doProtoHandshake,close,",
for i := 0; i < 3; i++ { wantCloseErr: DiscUnexpectedIdentity,
conn, err := listener.Accept() },
if err == nil { {
connected <- conn tt: &setupTransport{id: id, protoHandshakeErr: errors.New("foo")},
} dialDest: &discover.Node{ID: id},
} flags: dynDialedConn,
}() wantCalls: "doEncHandshake,doProtoHandshake,close,",
// Inject a static node and wait for a remote dial, then redial, then nothing wantCloseErr: errors.New("foo"),
addr := listener.Addr().(*net.TCPAddr) },
static := &discover.Node{ {
ID: discover.PubkeyID(&newkey().PublicKey), tt: &setupTransport{id: srvid, phs: &protoHandshake{ID: srvid}},
IP: addr.IP, flags: inboundConn,
TCP: uint16(addr.Port), wantCalls: "doEncHandshake,close,",
} wantCloseErr: DiscSelf,
server.AddPeer(static) },
{
select { tt: &setupTransport{id: id, phs: &protoHandshake{ID: id}},
case conn := <-connected: flags: inboundConn,
// Close the first connection, expect redial wantCalls: "doEncHandshake,doProtoHandshake,close,",
conn.Close() wantCloseErr: DiscUselessPeer,
},
case <-time.After(2 * server.staticCycle):
t.Fatalf("remote dial timeout")
} }
select { for i, test := range tests {
case conn := <-connected: srv := &Server{
// Keep the second connection, don't expect redial PrivateKey: srvkey,
defer conn.Close()
case <-time.After(2 * server.staticCycle):
t.Fatalf("remote re-dial timeout")
}
select {
case <-time.After(2 * server.staticCycle):
// Timeout as no dial occurred
case <-connected:
t.Fatalf("connected node dialed")
}
}
// Tests that trusted peers and can connect above max peer caps.
func TestServerTrustedPeers(t *testing.T) {
// Create a trusted peer to accept connections from
key := newkey()
trusted := &discover.Node{
ID: discover.PubkeyID(&key.PublicKey),
}
// Create a test server with limited connection slots
started := make(chan *Peer)
server := &Server{
ListenAddr: "127.0.0.1:0",
PrivateKey: newkey(),
MaxPeers: 3,
NoDial: true,
TrustedNodes: []*discover.Node{trusted},
newPeerHook: func(p *Peer) { started <- p },
}
if err := server.Start(); err != nil {
t.Fatal(err)
}
defer server.Stop()
// Fill up all the slots on the server
dialer := &net.Dialer{Deadline: time.Now().Add(3 * time.Second)}
for i := 0; i < server.MaxPeers; i++ {
// Establish a new connection
conn, err := dialer.Dial("tcp", server.ListenAddr)
if err != nil {
t.Fatalf("conn %d: dial error: %v", i, err)
}
defer conn.Close()
// Run the handshakes just like a real peer would, and wait for completion
key := newkey()
shake := &protoHandshake{Version: baseProtocolVersion, ID: discover.PubkeyID(&key.PublicKey)}
if _, err = setupConn(conn, key, shake, server.Self(), keepalways); err != nil {
t.Fatalf("conn %d: unexpected error: %v", i, err)
}
<-started
}
// Dial from the trusted peer, ensure connection is accepted
conn, err := dialer.Dial("tcp", server.ListenAddr)
if err != nil {
t.Fatalf("trusted node: dial error: %v", err)
}
defer conn.Close()
shake := &protoHandshake{Version: baseProtocolVersion, ID: trusted.ID}
if _, err = setupConn(conn, key, shake, server.Self(), keepalways); err != nil {
t.Fatalf("trusted node: unexpected error: %v", err)
}
select {
case <-started:
// Ok, trusted peer accepted
case <-time.After(100 * time.Millisecond):
t.Fatalf("trusted node timeout")
}
}
// Tests that a failed dial will temporarily throttle a peer.
func TestServerMaxPendingDials(t *testing.T) {
// Start a simple test server
server := &Server{
ListenAddr: "127.0.0.1:0",
PrivateKey: newkey(),
MaxPeers: 10, MaxPeers: 10,
MaxPendingPeers: 1, NoDial: true,
Protocols: []Protocol{discard},
newTransport: func(fd net.Conn) transport { return test.tt },
} }
if err := server.Start(); err != nil { if !test.dontstart {
t.Fatal("failed to start test server: %v", err) if err := srv.Start(); err != nil {
t.Fatalf("couldn't start server: %v", err)
} }
defer server.Stop()
// Simulate two separate remote peers
peers := make(chan *discover.Node, 2)
conns := make(chan net.Conn, 2)
for i := 0; i < 2; i++ {
listener, err := net.Listen("tcp", "127.0.0.1:0")
if err != nil {
t.Fatalf("listener %d: failed to setup: %v", i, err)
} }
defer listener.Close() p1, _ := net.Pipe()
srv.setupConn(p1, test.flags, test.dialDest)
addr := listener.Addr().(*net.TCPAddr) if !reflect.DeepEqual(test.tt.closeErr, test.wantCloseErr) {
peers <- &discover.Node{ t.Errorf("test %d: close error mismatch: got %q, want %q", i, test.tt.closeErr, test.wantCloseErr)
ID: discover.PubkeyID(&newkey().PublicKey),
IP: addr.IP,
TCP: uint16(addr.Port),
} }
go func() { if test.tt.calls != test.wantCalls {
conn, err := listener.Accept() t.Errorf("test %d: calls mismatch: got %q, want %q", i, test.tt.calls, test.wantCalls)
if err == nil {
conns <- conn
} }
}()
}
// Request a dial for both peers
go func() {
for i := 0; i < 2; i++ {
server.staticDial <- <-peers // hack piggybacking the static implementation
}
}()
// Make sure only one outbound connection goes through
var conn net.Conn
select {
case conn = <-conns:
case <-time.After(100 * time.Millisecond):
t.Fatalf("first dial timeout")
}
select {
case conn = <-conns:
t.Fatalf("second dial completed prematurely")
case <-time.After(100 * time.Millisecond):
}
// Finish the first dial, check the second
conn.Close()
select {
case conn = <-conns:
conn.Close()
case <-time.After(100 * time.Millisecond):
t.Fatalf("second dial timeout")
} }
} }
func TestServerMaxPendingAccepts(t *testing.T) { type setupTransport struct {
// Start a test server and a peer sink for synchronization id discover.NodeID
started := make(chan *Peer) encHandshakeErr error
server := &Server{
ListenAddr: "127.0.0.1:0",
PrivateKey: newkey(),
MaxPeers: 10,
MaxPendingPeers: 1,
NoDial: true,
newPeerHook: func(p *Peer) { started <- p },
}
if err := server.Start(); err != nil {
t.Fatal("failed to start test server: %v", err)
}
defer server.Stop()
// Try and connect to the server on multiple threads concurrently phs *protoHandshake
conns := make([]net.Conn, 2) protoHandshakeErr error
for i := 0; i < 2; i++ {
dialer := &net.Dialer{Deadline: time.Now().Add(3 * time.Second)}
conn, err := dialer.Dial("tcp", server.ListenAddr) calls string
if err != nil { closeErr error
t.Fatalf("failed to dial server: %v", err) }
}
conns[i] = conn
}
// Check that a handshake on the second doesn't pass
go func() {
key := newkey()
shake := &protoHandshake{Version: baseProtocolVersion, ID: discover.PubkeyID(&key.PublicKey)}
if _, err := setupConn(conns[1], key, shake, server.Self(), keepalways); err != nil {
t.Fatalf("failed to run handshake: %v", err)
}
}()
select {
case <-started:
t.Fatalf("handshake on second connection accepted")
case <-time.After(time.Second): func (c *setupTransport) doEncHandshake(prv *ecdsa.PrivateKey, dialDest *discover.Node) (discover.NodeID, error) {
} c.calls += "doEncHandshake,"
// Shake on first, check that both go through return c.id, c.encHandshakeErr
go func() { }
key := newkey() func (c *setupTransport) doProtoHandshake(our *protoHandshake) (*protoHandshake, error) {
shake := &protoHandshake{Version: baseProtocolVersion, ID: discover.PubkeyID(&key.PublicKey)} c.calls += "doProtoHandshake,"
if _, err := setupConn(conns[0], key, shake, server.Self(), keepalways); err != nil { if c.protoHandshakeErr != nil {
t.Fatalf("failed to run handshake: %v", err) return nil, c.protoHandshakeErr
}
}()
for i := 0; i < 2; i++ {
select {
case <-started:
case <-time.After(time.Second):
t.Fatalf("peer %d: handshake timeout", i)
}
} }
return c.phs, nil
}
func (c *setupTransport) close(err error) {
c.calls += "close,"
c.closeErr = err
}
// setupConn shouldn't write to/read from the connection.
func (c *setupTransport) WriteMsg(Msg) error {
panic("WriteMsg called on setupTransport")
}
func (c *setupTransport) ReadMsg() (Msg, error) {
panic("ReadMsg called on setupTransport")
} }
func newkey() *ecdsa.PrivateKey { func newkey() *ecdsa.PrivateKey {
@ -501,7 +419,3 @@ func randomID() (id discover.NodeID) {
} }
return id return id
} }
func keepalways(id discover.NodeID) bool {
return true
}