crypto/secp256k1: fix undefined behavior in BitCurve.Add (#22621)
This commit changes the behavior of BitCurve.Add to be more inline with btcd. It fixes two different bugs: 1) When adding a point at infinity to another point, the other point should be returned. While this is undefined behavior, it is better to be more inline with the go standard library. Thus (0,0) + (a, b) = (a,b) 2) Adding the same point to itself produced the point at infinity. This is incorrect, now doubleJacobian is used to correctly calculate it. Thus (a,b) + (a,b) == 2* (a,b) and not (0,0) anymore. The change also adds a differential fuzzer for Add, testing it against btcd. Co-authored-by: Felix Lange <fjl@twurst.com>
This commit is contained in:
parent
d836ad141e
commit
0703ef62d3
|
@ -35,15 +35,8 @@ package secp256k1
|
|||
import (
|
||||
"crypto/elliptic"
|
||||
"math/big"
|
||||
"unsafe"
|
||||
)
|
||||
|
||||
/*
|
||||
#include "libsecp256k1/include/secp256k1.h"
|
||||
extern int secp256k1_ext_scalar_mul(const secp256k1_context* ctx, const unsigned char *point, const unsigned char *scalar);
|
||||
*/
|
||||
import "C"
|
||||
|
||||
const (
|
||||
// number of bits in a big.Word
|
||||
wordBits = 32 << (uint64(^big.Word(0)) >> 63)
|
||||
|
@ -133,7 +126,18 @@ func (BitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.
|
|||
|
||||
// Add returns the sum of (x1,y1) and (x2,y2)
|
||||
func (BitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
|
||||
// If one point is at infinity, return the other point.
|
||||
// Adding the point at infinity to any point will preserve the other point.
|
||||
if x1.Sign() == 0 && y1.Sign() == 0 {
|
||||
return x2, y2
|
||||
}
|
||||
if x2.Sign() == 0 && y2.Sign() == 0 {
|
||||
return x1, y1
|
||||
}
|
||||
z := new(big.Int).SetInt64(1)
|
||||
if x1.Cmp(x2) == 0 && y1.Cmp(y2) == 0 {
|
||||
return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z))
|
||||
}
|
||||
return BitCurve.affineFromJacobian(BitCurve.addJacobian(x1, y1, z, x2, y2, z))
|
||||
}
|
||||
|
||||
|
@ -242,41 +246,6 @@ func (BitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int,
|
|||
return x3, y3, z3
|
||||
}
|
||||
|
||||
func (BitCurve *BitCurve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) {
|
||||
// Ensure scalar is exactly 32 bytes. We pad always, even if
|
||||
// scalar is 32 bytes long, to avoid a timing side channel.
|
||||
if len(scalar) > 32 {
|
||||
panic("can't handle scalars > 256 bits")
|
||||
}
|
||||
// NOTE: potential timing issue
|
||||
padded := make([]byte, 32)
|
||||
copy(padded[32-len(scalar):], scalar)
|
||||
scalar = padded
|
||||
|
||||
// Do the multiplication in C, updating point.
|
||||
point := make([]byte, 64)
|
||||
readBits(Bx, point[:32])
|
||||
readBits(By, point[32:])
|
||||
|
||||
pointPtr := (*C.uchar)(unsafe.Pointer(&point[0]))
|
||||
scalarPtr := (*C.uchar)(unsafe.Pointer(&scalar[0]))
|
||||
res := C.secp256k1_ext_scalar_mul(context, pointPtr, scalarPtr)
|
||||
|
||||
// Unpack the result and clear temporaries.
|
||||
x := new(big.Int).SetBytes(point[:32])
|
||||
y := new(big.Int).SetBytes(point[32:])
|
||||
for i := range point {
|
||||
point[i] = 0
|
||||
}
|
||||
for i := range padded {
|
||||
scalar[i] = 0
|
||||
}
|
||||
if res != 1 {
|
||||
return nil, nil
|
||||
}
|
||||
return x, y
|
||||
}
|
||||
|
||||
// ScalarBaseMult returns k*G, where G is the base point of the group and k is
|
||||
// an integer in big-endian form.
|
||||
func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
|
||||
|
|
|
@ -2,6 +2,8 @@
|
|||
// Use of this source code is governed by a BSD-style license that can be found in
|
||||
// the LICENSE file.
|
||||
|
||||
// +build !gofuzz cgo
|
||||
|
||||
package secp256k1
|
||||
|
||||
import "C"
|
||||
|
|
|
@ -0,0 +1,56 @@
|
|||
// Copyright 2015 Jeffrey Wilcke, Felix Lange, Gustav Simonsson. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be found in
|
||||
// the LICENSE file.
|
||||
|
||||
// +build !gofuzz cgo
|
||||
|
||||
package secp256k1
|
||||
|
||||
import (
|
||||
"math/big"
|
||||
"unsafe"
|
||||
)
|
||||
|
||||
/*
|
||||
|
||||
#include "libsecp256k1/include/secp256k1.h"
|
||||
|
||||
extern int secp256k1_ext_scalar_mul(const secp256k1_context* ctx, const unsigned char *point, const unsigned char *scalar);
|
||||
|
||||
*/
|
||||
import "C"
|
||||
|
||||
func (BitCurve *BitCurve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) {
|
||||
// Ensure scalar is exactly 32 bytes. We pad always, even if
|
||||
// scalar is 32 bytes long, to avoid a timing side channel.
|
||||
if len(scalar) > 32 {
|
||||
panic("can't handle scalars > 256 bits")
|
||||
}
|
||||
// NOTE: potential timing issue
|
||||
padded := make([]byte, 32)
|
||||
copy(padded[32-len(scalar):], scalar)
|
||||
scalar = padded
|
||||
|
||||
// Do the multiplication in C, updating point.
|
||||
point := make([]byte, 64)
|
||||
readBits(Bx, point[:32])
|
||||
readBits(By, point[32:])
|
||||
|
||||
pointPtr := (*C.uchar)(unsafe.Pointer(&point[0]))
|
||||
scalarPtr := (*C.uchar)(unsafe.Pointer(&scalar[0]))
|
||||
res := C.secp256k1_ext_scalar_mul(context, pointPtr, scalarPtr)
|
||||
|
||||
// Unpack the result and clear temporaries.
|
||||
x := new(big.Int).SetBytes(point[:32])
|
||||
y := new(big.Int).SetBytes(point[32:])
|
||||
for i := range point {
|
||||
point[i] = 0
|
||||
}
|
||||
for i := range padded {
|
||||
scalar[i] = 0
|
||||
}
|
||||
if res != 1 {
|
||||
return nil, nil
|
||||
}
|
||||
return x, y
|
||||
}
|
|
@ -0,0 +1,13 @@
|
|||
// Copyright 2015 Jeffrey Wilcke, Felix Lange, Gustav Simonsson. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be found in
|
||||
// the LICENSE file.
|
||||
|
||||
// +build gofuzz !cgo
|
||||
|
||||
package secp256k1
|
||||
|
||||
import "math/big"
|
||||
|
||||
func (BitCurve *BitCurve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) {
|
||||
panic("ScalarMult is not available when secp256k1 is built without cgo")
|
||||
}
|
|
@ -2,6 +2,8 @@
|
|||
// Use of this source code is governed by a BSD-style license that can be found in
|
||||
// the LICENSE file.
|
||||
|
||||
// +build !gofuzz cgo
|
||||
|
||||
// Package secp256k1 wraps the bitcoin secp256k1 C library.
|
||||
package secp256k1
|
||||
|
||||
|
|
|
@ -102,6 +102,7 @@ compile_fuzzer tests/fuzzers/stacktrie Fuzz fuzzStackTrie
|
|||
compile_fuzzer tests/fuzzers/difficulty Fuzz fuzzDifficulty
|
||||
compile_fuzzer tests/fuzzers/abi Fuzz fuzzAbi
|
||||
compile_fuzzer tests/fuzzers/les Fuzz fuzzLes
|
||||
compile_fuzzer tests/fuzzers/secp265k1 Fuzz fuzzSecp256k1
|
||||
compile_fuzzer tests/fuzzers/vflux FuzzClientPool fuzzClientPool
|
||||
|
||||
compile_fuzzer tests/fuzzers/bls12381 FuzzG1Add fuzz_g1_add
|
||||
|
|
|
@ -0,0 +1,50 @@
|
|||
// Copyright 2021 The go-ethereum Authors
|
||||
// This file is part of the go-ethereum library.
|
||||
//
|
||||
// The go-ethereum library is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU Lesser General Public License as published by
|
||||
// the Free Software Foundation, either version 3 of the License, or
|
||||
// (at your option) any later version.
|
||||
//
|
||||
// The go-ethereum library is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU Lesser General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public License
|
||||
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
// build +gofuzz
|
||||
|
||||
package secp256k1
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/btcsuite/btcd/btcec"
|
||||
"github.com/ethereum/go-ethereum/crypto/secp256k1"
|
||||
fuzz "github.com/google/gofuzz"
|
||||
)
|
||||
|
||||
func Fuzz(input []byte) int {
|
||||
var (
|
||||
fuzzer = fuzz.NewFromGoFuzz(input)
|
||||
curveA = secp256k1.S256()
|
||||
curveB = btcec.S256()
|
||||
dataP1 []byte
|
||||
dataP2 []byte
|
||||
)
|
||||
// first point
|
||||
fuzzer.Fuzz(&dataP1)
|
||||
x1, y1 := curveB.ScalarBaseMult(dataP1)
|
||||
// second point
|
||||
fuzzer.Fuzz(&dataP2)
|
||||
x2, y2 := curveB.ScalarBaseMult(dataP2)
|
||||
resAX, resAY := curveA.Add(x1, y1, x2, y2)
|
||||
resBX, resBY := curveB.Add(x1, y1, x2, y2)
|
||||
if resAX.Cmp(resBX) != 0 || resAY.Cmp(resBY) != 0 {
|
||||
fmt.Printf("%s %s %s %s\n", x1, y1, x2, y2)
|
||||
panic(fmt.Sprintf("Addition failed: geth: %s %s btcd: %s %s", resAX, resAY, resBX, resBY))
|
||||
}
|
||||
return 0
|
||||
}
|
|
@ -0,0 +1,8 @@
|
|||
package secp256k1
|
||||
|
||||
import "testing"
|
||||
|
||||
func TestFuzzer(t *testing.T) {
|
||||
test := "00000000N0000000/R00000000000000000U0000S0000000mkhP000000000000000U"
|
||||
Fuzz([]byte(test))
|
||||
}
|
Loading…
Reference in New Issue