go-ethereum/core/state/snapshot/snapshot.go

433 lines
15 KiB
Go
Raw Normal View History

// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Package snapshot implements a journalled, dynamic state dump.
package snapshot
import (
"errors"
"fmt"
"os"
"sync"
"github.com/VictoriaMetrics/fastcache"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/metrics"
"github.com/ethereum/go-ethereum/rlp"
)
var (
snapshotCleanHitMeter = metrics.NewRegisteredMeter("state/snapshot/clean/hit", nil)
snapshotCleanMissMeter = metrics.NewRegisteredMeter("state/snapshot/clean/miss", nil)
snapshotCleanReadMeter = metrics.NewRegisteredMeter("state/snapshot/clean/read", nil)
snapshotCleanWriteMeter = metrics.NewRegisteredMeter("state/snapshot/clean/write", nil)
// ErrSnapshotStale is returned from data accessors if the underlying snapshot
// layer had been invalidated due to the chain progressing forward far enough
// to not maintain the layer's original state.
ErrSnapshotStale = errors.New("snapshot stale")
// errSnapshotCycle is returned if a snapshot is attempted to be inserted
// that forms a cycle in the snapshot tree.
errSnapshotCycle = errors.New("snapshot cycle")
)
// Snapshot represents the functionality supported by a snapshot storage layer.
type Snapshot interface {
// Root returns the root hash for which this snapshot was made.
Root() common.Hash
// Account directly retrieves the account associated with a particular hash in
// the snapshot slim data format.
Account(hash common.Hash) (*Account, error)
// AccountRLP directly retrieves the account RLP associated with a particular
// hash in the snapshot slim data format.
AccountRLP(hash common.Hash) ([]byte, error)
// Storage directly retrieves the storage data associated with a particular hash,
// within a particular account.
Storage(accountHash, storageHash common.Hash) ([]byte, error)
}
// snapshot is the internal version of the snapshot data layer that supports some
// additional methods compared to the public API.
type snapshot interface {
Snapshot
// Update creates a new layer on top of the existing snapshot diff tree with
// the specified data items. Note, the maps are retained by the method to avoid
// copying everything.
Update(blockRoot common.Hash, accounts map[common.Hash][]byte, storage map[common.Hash]map[common.Hash][]byte) *diffLayer
// Journal commits an entire diff hierarchy to disk into a single journal file.
// This is meant to be used during shutdown to persist the snapshot without
// flattening everything down (bad for reorgs).
Journal() error
// Stale return whether this layer has become stale (was flattened across) or
// if it's still live.
Stale() bool
}
// SnapshotTree is an Ethereum state snapshot tree. It consists of one persistent
// base layer backed by a key-value store, on top of which arbitrarily many in-
// memory diff layers are topped. The memory diffs can form a tree with branching,
// but the disk layer is singleton and common to all. If a reorg goes deeper than
// the disk layer, everything needs to be deleted.
//
// The goal of a state snapshot is twofold: to allow direct access to account and
// storage data to avoid expensive multi-level trie lookups; and to allow sorted,
// cheap iteration of the account/storage tries for sync aid.
type Tree struct {
layers map[common.Hash]snapshot // Collection of all known layers // TODO(karalabe): split Clique overlaps
lock sync.RWMutex
}
// New attempts to load an already existing snapshot from a persistent key-value
// store (with a number of memory layers from a journal), ensuring that the head
// of the snapshot matches the expected one.
//
// If the snapshot is missing or inconsistent, the entirety is deleted and will
// be reconstructed from scratch based on the tries in the key-value store.
func New(db ethdb.KeyValueStore, journal string, root common.Hash) (*Tree, error) {
// Attempt to load a previously persisted snapshot
head, err := loadSnapshot(db, journal, root)
if err != nil {
log.Warn("Failed to load snapshot, regenerating", "err", err)
if head, err = generateSnapshot(db, journal, root); err != nil {
return nil, err
}
}
// Existing snapshot loaded or one regenerated, seed all the layers
snap := &Tree{
layers: make(map[common.Hash]snapshot),
}
for head != nil {
snap.layers[head.Root()] = head
switch self := head.(type) {
case *diffLayer:
head = self.parent
case *diskLayer:
head = nil
default:
panic(fmt.Sprintf("unknown data layer: %T", self))
}
}
return snap, nil
}
// Snapshot retrieves a snapshot belonging to the given block root, or nil if no
// snapshot is maintained for that block.
func (t *Tree) Snapshot(blockRoot common.Hash) Snapshot {
t.lock.RLock()
defer t.lock.RUnlock()
return t.layers[blockRoot]
}
// Update adds a new snapshot into the tree, if that can be linked to an existing
// old parent. It is disallowed to insert a disk layer (the origin of all).
func (t *Tree) Update(blockRoot common.Hash, parentRoot common.Hash, accounts map[common.Hash][]byte, storage map[common.Hash]map[common.Hash][]byte) error {
// Reject noop updates to avoid self-loops in the snapshot tree. This is a
// special case that can only happen for Clique networks where empty blocks
// don't modify the state (0 block subsidy).
//
// Although we could silently ignore this internally, it should be the caller's
// responsibility to avoid even attempting to insert such a snapshot.
if blockRoot == parentRoot {
return errSnapshotCycle
}
// Generate a new snapshot on top of the parent
parent := t.Snapshot(parentRoot).(snapshot)
if parent == nil {
return fmt.Errorf("parent [%#x] snapshot missing", parentRoot)
}
snap := parent.Update(blockRoot, accounts, storage)
// Save the new snapshot for later
t.lock.Lock()
defer t.lock.Unlock()
t.layers[snap.root] = snap
return nil
}
// Cap traverses downwards the snapshot tree from a head block hash until the
// number of allowed layers are crossed. All layers beyond the permitted number
// are flattened downwards.
func (t *Tree) Cap(root common.Hash, layers int, memory uint64) error {
// Retrieve the head snapshot to cap from
snap := t.Snapshot(root)
if snap == nil {
return fmt.Errorf("snapshot [%#x] missing", root)
}
diff, ok := snap.(*diffLayer)
if !ok {
return fmt.Errorf("snapshot [%#x] is disk layer", root)
}
// Run the internal capping and discard all stale layers
t.lock.Lock()
defer t.lock.Unlock()
// Flattening the bottom-most diff layer requires special casing since there's
// no child to rewire to the grandparent. In that case we can fake a temporary
// child for the capping and then remove it.
switch layers {
case 0:
// If full commit was requested, flatten the diffs and merge onto disk
diff.lock.RLock()
base := diffToDisk(diff.flatten().(*diffLayer))
diff.lock.RUnlock()
// Replace the entire snapshot tree with the flat base
t.layers = map[common.Hash]snapshot{base.root: base}
return nil
case 1:
// If full flattening was requested, flatten the diffs but only merge if the
// memory limit was reached
var (
bottom *diffLayer
base *diskLayer
)
diff.lock.RLock()
bottom = diff.flatten().(*diffLayer)
if bottom.memory >= memory {
base = diffToDisk(bottom)
}
diff.lock.RUnlock()
// If all diff layers were removed, replace the entire snapshot tree
if base != nil {
t.layers = map[common.Hash]snapshot{base.root: base}
return nil
}
// Merge the new aggregated layer into the snapshot tree, clean stales below
t.layers[bottom.root] = bottom
default:
// Many layers requested to be retained, cap normally
t.cap(diff, layers, memory)
}
// Remove any layer that is stale or links into a stale layer
children := make(map[common.Hash][]common.Hash)
for root, snap := range t.layers {
if diff, ok := snap.(*diffLayer); ok {
parent := diff.parent.Root()
children[parent] = append(children[parent], root)
}
}
var remove func(root common.Hash)
remove = func(root common.Hash) {
delete(t.layers, root)
for _, child := range children[root] {
remove(child)
}
delete(children, root)
}
for root, snap := range t.layers {
if snap.Stale() {
remove(root)
}
}
return nil
}
// cap traverses downwards the diff tree until the number of allowed layers are
// crossed. All diffs beyond the permitted number are flattened downwards. If the
// layer limit is reached, memory cap is also enforced (but not before).
func (t *Tree) cap(diff *diffLayer, layers int, memory uint64) {
// Dive until we run out of layers or reach the persistent database
for ; layers > 2; layers-- {
// If we still have diff layers below, continue down
if parent, ok := diff.parent.(*diffLayer); ok {
diff = parent
} else {
// Diff stack too shallow, return without modifications
return
}
}
// We're out of layers, flatten anything below, stopping if it's the disk or if
// the memory limit is not yet exceeded.
switch parent := diff.parent.(type) {
case *diskLayer:
return
case *diffLayer:
// Flatten the parent into the grandparent. The flattening internally obtains a
// write lock on grandparent.
flattened := parent.flatten().(*diffLayer)
t.layers[flattened.root] = flattened
diff.lock.Lock()
defer diff.lock.Unlock()
diff.parent = flattened
if flattened.memory < memory {
return
}
default:
panic(fmt.Sprintf("unknown data layer: %T", parent))
}
// If the bottom-most layer is larger than our memory cap, persist to disk
bottom := diff.parent.(*diffLayer)
bottom.lock.RLock()
base := diffToDisk(bottom)
bottom.lock.RUnlock()
t.layers[base.root] = base
diff.parent = base
}
// diffToDisk merges a bottom-most diff into the persistent disk layer underneath
// it. The method will panic if called onto a non-bottom-most diff layer.
func diffToDisk(bottom *diffLayer) *diskLayer {
var (
base = bottom.parent.(*diskLayer)
batch = base.db.NewBatch()
)
// Start by temporarily deleting the current snapshot block marker. This
// ensures that in the case of a crash, the entire snapshot is invalidated.
rawdb.DeleteSnapshotRoot(batch)
// Mark the original base as stale as we're going to create a new wrapper
base.lock.Lock()
if base.stale {
panic("parent disk layer is stale") // we've committed into the same base from two children, boo
}
base.stale = true
base.lock.Unlock()
// Push all the accounts into the database
for hash, data := range bottom.accountData {
if len(data) > 0 {
// Account was updated, push to disk
rawdb.WriteAccountSnapshot(batch, hash, data)
base.cache.Set(hash[:], data)
if batch.ValueSize() > ethdb.IdealBatchSize {
if err := batch.Write(); err != nil {
log.Crit("Failed to write account snapshot", "err", err)
}
batch.Reset()
}
} else {
// Account was deleted, remove all storage slots too
rawdb.DeleteAccountSnapshot(batch, hash)
base.cache.Set(hash[:], nil)
it := rawdb.IterateStorageSnapshots(base.db, hash)
for it.Next() {
if key := it.Key(); len(key) == 65 { // TODO(karalabe): Yuck, we should move this into the iterator
batch.Delete(key)
base.cache.Del(key[1:])
}
}
it.Release()
}
}
// Push all the storage slots into the database
for accountHash, storage := range bottom.storageData {
for storageHash, data := range storage {
if len(data) > 0 {
rawdb.WriteStorageSnapshot(batch, accountHash, storageHash, data)
base.cache.Set(append(accountHash[:], storageHash[:]...), data)
} else {
rawdb.DeleteStorageSnapshot(batch, accountHash, storageHash)
base.cache.Set(append(accountHash[:], storageHash[:]...), nil)
}
}
if batch.ValueSize() > ethdb.IdealBatchSize {
if err := batch.Write(); err != nil {
log.Crit("Failed to write storage snapshot", "err", err)
}
batch.Reset()
}
}
// Update the snapshot block marker and write any remainder data
rawdb.WriteSnapshotRoot(batch, bottom.root)
if err := batch.Write(); err != nil {
log.Crit("Failed to write leftover snapshot", "err", err)
}
return &diskLayer{
root: bottom.root,
cache: base.cache,
db: base.db,
journal: base.journal,
}
}
// Journal commits an entire diff hierarchy to disk into a single journal file.
// This is meant to be used during shutdown to persist the snapshot without
// flattening everything down (bad for reorgs).
func (t *Tree) Journal(blockRoot common.Hash) error {
// Retrieve the head snapshot to journal from var snap snapshot
snap := t.Snapshot(blockRoot)
if snap == nil {
return fmt.Errorf("snapshot [%#x] missing", blockRoot)
}
// Run the journaling
t.lock.Lock()
defer t.lock.Unlock()
return snap.(snapshot).Journal()
}
// loadSnapshot loads a pre-existing state snapshot backed by a key-value store.
func loadSnapshot(db ethdb.KeyValueStore, journal string, root common.Hash) (snapshot, error) {
// Retrieve the block number and hash of the snapshot, failing if no snapshot
// is present in the database (or crashed mid-update).
baseRoot := rawdb.ReadSnapshotRoot(db)
if baseRoot == (common.Hash{}) {
return nil, errors.New("missing or corrupted snapshot")
}
base := &diskLayer{
journal: journal,
db: db,
cache: fastcache.New(512 * 1024 * 1024),
root: baseRoot,
}
// Load all the snapshot diffs from the journal, failing if their chain is broken
// or does not lead from the disk snapshot to the specified head.
if _, err := os.Stat(journal); os.IsNotExist(err) {
// Journal doesn't exist, don't worry if it's not supposed to
if baseRoot != root {
return nil, fmt.Errorf("snapshot journal missing, head doesn't match snapshot: have %#x, want %#x", baseRoot, root)
}
return base, nil
}
file, err := os.Open(journal)
if err != nil {
return nil, err
}
snapshot, err := loadDiffLayer(base, rlp.NewStream(file, 0))
if err != nil {
return nil, err
}
// Entire snapshot journal loaded, sanity check the head and return
// Journal doesn't exist, don't worry if it's not supposed to
if head := snapshot.Root(); head != root {
return nil, fmt.Errorf("head doesn't match snapshot: have %#x, want %#x", head, root)
}
return snapshot, nil
}