go-ethereum/les/vflux/server/prioritypool.go

503 lines
17 KiB
Go
Raw Normal View History

// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package server
import (
"math"
"reflect"
"sync"
"time"
"github.com/ethereum/go-ethereum/common/mclock"
"github.com/ethereum/go-ethereum/common/prque"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/p2p/enode"
"github.com/ethereum/go-ethereum/p2p/nodestate"
)
const (
lazyQueueRefresh = time.Second * 10 // refresh period of the active queue
)
// PriorityPoolSetup contains node state flags and fields used by PriorityPool
// Note: ActiveFlag and InactiveFlag can be controlled both externally and by the pool,
// see PriorityPool description for details.
type PriorityPoolSetup struct {
// controlled by PriorityPool
ActiveFlag, InactiveFlag nodestate.Flags
CapacityField, ppNodeInfoField nodestate.Field
// external connections
updateFlag nodestate.Flags
priorityField nodestate.Field
}
// NewPriorityPoolSetup creates a new PriorityPoolSetup and initializes the fields
// and flags controlled by PriorityPool
func NewPriorityPoolSetup(setup *nodestate.Setup) PriorityPoolSetup {
return PriorityPoolSetup{
ActiveFlag: setup.NewFlag("active"),
InactiveFlag: setup.NewFlag("inactive"),
CapacityField: setup.NewField("capacity", reflect.TypeOf(uint64(0))),
ppNodeInfoField: setup.NewField("ppNodeInfo", reflect.TypeOf(&ppNodeInfo{})),
}
}
// Connect sets the fields and flags used by PriorityPool as an input
func (pps *PriorityPoolSetup) Connect(priorityField nodestate.Field, updateFlag nodestate.Flags) {
pps.priorityField = priorityField // should implement nodePriority
pps.updateFlag = updateFlag // triggers an immediate priority update
}
// PriorityPool handles a set of nodes where each node has a capacity (a scalar value)
// and a priority (which can change over time and can also depend on the capacity).
// A node is active if it has at least the necessary minimal amount of capacity while
// inactive nodes have 0 capacity (values between 0 and the minimum are not allowed).
// The pool ensures that the number and total capacity of all active nodes are limited
// and the highest priority nodes are active at all times (limits can be changed
// during operation with immediate effect).
//
// When activating clients a priority bias is applied in favor of the already active
// nodes in order to avoid nodes quickly alternating between active and inactive states
// when their priorities are close to each other. The bias is specified in terms of
// duration (time) because priorities are expected to usually get lower over time and
// therefore a future minimum prediction (see EstMinPriority) should monotonously
// decrease with the specified time parameter.
// This time bias can be interpreted as minimum expected active time at the given
// capacity (if the threshold priority stays the same).
//
// Nodes in the pool always have either InactiveFlag or ActiveFlag set. A new node is
// added to the pool by externally setting InactiveFlag. PriorityPool can switch a node
// between InactiveFlag and ActiveFlag at any time. Nodes can be removed from the pool
// by externally resetting both flags. ActiveFlag should not be set externally.
//
// The highest priority nodes in "inactive" state are moved to "active" state as soon as
// the minimum capacity can be granted for them. The capacity of lower priority active
// nodes is reduced or they are demoted to "inactive" state if their priority is
// insufficient even at minimal capacity.
type PriorityPool struct {
PriorityPoolSetup
ns *nodestate.NodeStateMachine
clock mclock.Clock
lock sync.Mutex
activeQueue *prque.LazyQueue
inactiveQueue *prque.Prque
changed []*ppNodeInfo
activeCount, activeCap uint64
maxCount, maxCap uint64
minCap uint64
activeBias time.Duration
capacityStepDiv uint64
}
// nodePriority interface provides current and estimated future priorities on demand
type nodePriority interface {
// Priority should return the current priority of the node (higher is better)
Priority(now mclock.AbsTime, cap uint64) int64
// EstMinPriority should return a lower estimate for the minimum of the node priority
// value starting from the current moment until the given time. If the priority goes
// under the returned estimate before the specified moment then it is the caller's
// responsibility to signal with updateFlag.
EstMinPriority(until mclock.AbsTime, cap uint64, update bool) int64
}
// ppNodeInfo is the internal node descriptor of PriorityPool
type ppNodeInfo struct {
nodePriority nodePriority
node *enode.Node
connected bool
capacity, origCap uint64
bias time.Duration
forced, changed bool
activeIndex, inactiveIndex int
}
// NewPriorityPool creates a new PriorityPool
func NewPriorityPool(ns *nodestate.NodeStateMachine, setup PriorityPoolSetup, clock mclock.Clock, minCap uint64, activeBias time.Duration, capacityStepDiv uint64) *PriorityPool {
pp := &PriorityPool{
ns: ns,
PriorityPoolSetup: setup,
clock: clock,
activeQueue: prque.NewLazyQueue(activeSetIndex, activePriority, activeMaxPriority, clock, lazyQueueRefresh),
inactiveQueue: prque.New(inactiveSetIndex),
minCap: minCap,
activeBias: activeBias,
capacityStepDiv: capacityStepDiv,
}
ns.SubscribeField(pp.priorityField, func(node *enode.Node, state nodestate.Flags, oldValue, newValue interface{}) {
if newValue != nil {
c := &ppNodeInfo{
node: node,
nodePriority: newValue.(nodePriority),
activeIndex: -1,
inactiveIndex: -1,
}
ns.SetFieldSub(node, pp.ppNodeInfoField, c)
} else {
ns.SetStateSub(node, nodestate.Flags{}, pp.ActiveFlag.Or(pp.InactiveFlag), 0)
if n, _ := pp.ns.GetField(node, pp.ppNodeInfoField).(*ppNodeInfo); n != nil {
pp.disconnectedNode(n)
}
ns.SetFieldSub(node, pp.CapacityField, nil)
ns.SetFieldSub(node, pp.ppNodeInfoField, nil)
}
})
ns.SubscribeState(pp.ActiveFlag.Or(pp.InactiveFlag), func(node *enode.Node, oldState, newState nodestate.Flags) {
if c, _ := pp.ns.GetField(node, pp.ppNodeInfoField).(*ppNodeInfo); c != nil {
if oldState.IsEmpty() {
pp.connectedNode(c)
}
if newState.IsEmpty() {
pp.disconnectedNode(c)
}
}
})
ns.SubscribeState(pp.updateFlag, func(node *enode.Node, oldState, newState nodestate.Flags) {
if !newState.IsEmpty() {
pp.updatePriority(node)
}
})
return pp
}
// RequestCapacity checks whether changing the capacity of a node to the given target
// is possible (bias is applied in favor of other active nodes if the target is higher
// than the current capacity).
// If setCap is true then it also performs the change if possible. The function returns
// the minimum priority needed to do the change and whether it is currently allowed.
// If setCap and allowed are both true then the caller can assume that the change was
// successful.
// Note: priorityField should always be set before calling RequestCapacity. If setCap
// is false then both InactiveFlag and ActiveFlag can be unset and they are not changed
// by this function call either.
// Note 2: this function should run inside a NodeStateMachine operation
func (pp *PriorityPool) RequestCapacity(node *enode.Node, targetCap uint64, bias time.Duration, setCap bool) (minPriority int64, allowed bool) {
pp.lock.Lock()
pp.activeQueue.Refresh()
var updates []capUpdate
defer func() {
pp.lock.Unlock()
pp.updateFlags(updates)
}()
if targetCap < pp.minCap {
targetCap = pp.minCap
}
c, _ := pp.ns.GetField(node, pp.ppNodeInfoField).(*ppNodeInfo)
if c == nil {
log.Error("RequestCapacity called for unknown node", "id", node.ID())
return math.MaxInt64, false
}
var priority int64
if targetCap > c.capacity {
priority = c.nodePriority.EstMinPriority(pp.clock.Now()+mclock.AbsTime(bias), targetCap, false)
} else {
priority = c.nodePriority.Priority(pp.clock.Now(), targetCap)
}
pp.markForChange(c)
pp.setCapacity(c, targetCap)
c.forced = true
pp.activeQueue.Remove(c.activeIndex)
pp.inactiveQueue.Remove(c.inactiveIndex)
pp.activeQueue.Push(c)
minPriority = pp.enforceLimits()
// if capacity update is possible now then minPriority == math.MinInt64
// if it is not possible at all then minPriority == math.MaxInt64
allowed = priority > minPriority
updates = pp.finalizeChanges(setCap && allowed)
return
}
// SetLimits sets the maximum number and total capacity of simultaneously active nodes
func (pp *PriorityPool) SetLimits(maxCount, maxCap uint64) {
pp.lock.Lock()
pp.activeQueue.Refresh()
var updates []capUpdate
defer func() {
pp.lock.Unlock()
pp.ns.Operation(func() { pp.updateFlags(updates) })
}()
inc := (maxCount > pp.maxCount) || (maxCap > pp.maxCap)
dec := (maxCount < pp.maxCount) || (maxCap < pp.maxCap)
pp.maxCount, pp.maxCap = maxCount, maxCap
if dec {
pp.enforceLimits()
updates = pp.finalizeChanges(true)
}
if inc {
updates = pp.tryActivate()
}
}
// SetActiveBias sets the bias applied when trying to activate inactive nodes
func (pp *PriorityPool) SetActiveBias(bias time.Duration) {
pp.lock.Lock()
defer pp.lock.Unlock()
pp.activeBias = bias
pp.tryActivate()
}
// Active returns the number and total capacity of currently active nodes
func (pp *PriorityPool) Active() (uint64, uint64) {
pp.lock.Lock()
defer pp.lock.Unlock()
return pp.activeCount, pp.activeCap
}
// inactiveSetIndex callback updates ppNodeInfo item index in inactiveQueue
func inactiveSetIndex(a interface{}, index int) {
a.(*ppNodeInfo).inactiveIndex = index
}
// activeSetIndex callback updates ppNodeInfo item index in activeQueue
func activeSetIndex(a interface{}, index int) {
a.(*ppNodeInfo).activeIndex = index
}
// invertPriority inverts a priority value. The active queue uses inverted priorities
// because the node on the top is the first to be deactivated.
func invertPriority(p int64) int64 {
if p == math.MinInt64 {
return math.MaxInt64
}
return -p
}
// activePriority callback returns actual priority of ppNodeInfo item in activeQueue
func activePriority(a interface{}, now mclock.AbsTime) int64 {
c := a.(*ppNodeInfo)
if c.forced {
return math.MinInt64
}
if c.bias == 0 {
return invertPriority(c.nodePriority.Priority(now, c.capacity))
}
return invertPriority(c.nodePriority.EstMinPriority(now+mclock.AbsTime(c.bias), c.capacity, true))
}
// activeMaxPriority callback returns estimated maximum priority of ppNodeInfo item in activeQueue
func activeMaxPriority(a interface{}, until mclock.AbsTime) int64 {
c := a.(*ppNodeInfo)
if c.forced {
return math.MinInt64
}
return invertPriority(c.nodePriority.EstMinPriority(until+mclock.AbsTime(c.bias), c.capacity, false))
}
// inactivePriority callback returns actual priority of ppNodeInfo item in inactiveQueue
func (pp *PriorityPool) inactivePriority(p *ppNodeInfo) int64 {
return p.nodePriority.Priority(pp.clock.Now(), pp.minCap)
}
// connectedNode is called when a new node has been added to the pool (InactiveFlag set)
// Note: this function should run inside a NodeStateMachine operation
func (pp *PriorityPool) connectedNode(c *ppNodeInfo) {
pp.lock.Lock()
pp.activeQueue.Refresh()
var updates []capUpdate
defer func() {
pp.lock.Unlock()
pp.updateFlags(updates)
}()
if c.connected {
return
}
c.connected = true
pp.inactiveQueue.Push(c, pp.inactivePriority(c))
updates = pp.tryActivate()
}
// disconnectedNode is called when a node has been removed from the pool (both InactiveFlag
// and ActiveFlag reset)
// Note: this function should run inside a NodeStateMachine operation
func (pp *PriorityPool) disconnectedNode(c *ppNodeInfo) {
pp.lock.Lock()
pp.activeQueue.Refresh()
var updates []capUpdate
defer func() {
pp.lock.Unlock()
pp.updateFlags(updates)
}()
if !c.connected {
return
}
c.connected = false
pp.activeQueue.Remove(c.activeIndex)
pp.inactiveQueue.Remove(c.inactiveIndex)
if c.capacity != 0 {
pp.setCapacity(c, 0)
updates = pp.tryActivate()
}
}
// markForChange internally puts a node in a temporary state that can either be reverted
// or confirmed later. This temporary state allows changing the capacity of a node and
// moving it between the active and inactive queue. ActiveFlag/InactiveFlag and
// CapacityField are not changed while the changes are still temporary.
func (pp *PriorityPool) markForChange(c *ppNodeInfo) {
if c.changed {
return
}
c.changed = true
c.origCap = c.capacity
pp.changed = append(pp.changed, c)
}
// setCapacity changes the capacity of a node and adjusts activeCap and activeCount
// accordingly. Note that this change is performed in the temporary state so it should
// be called after markForChange and before finalizeChanges.
func (pp *PriorityPool) setCapacity(n *ppNodeInfo, cap uint64) {
pp.activeCap += cap - n.capacity
if n.capacity == 0 {
pp.activeCount++
}
if cap == 0 {
pp.activeCount--
}
n.capacity = cap
}
// enforceLimits enforces active node count and total capacity limits. It returns the
// lowest active node priority. Note that this function is performed on the temporary
// internal state.
func (pp *PriorityPool) enforceLimits() int64 {
if pp.activeCap <= pp.maxCap && pp.activeCount <= pp.maxCount {
return math.MinInt64
}
var maxActivePriority int64
pp.activeQueue.MultiPop(func(data interface{}, priority int64) bool {
c := data.(*ppNodeInfo)
pp.markForChange(c)
maxActivePriority = priority
if c.capacity == pp.minCap {
pp.setCapacity(c, 0)
} else {
sub := c.capacity / pp.capacityStepDiv
if c.capacity-sub < pp.minCap {
sub = c.capacity - pp.minCap
}
pp.setCapacity(c, c.capacity-sub)
pp.activeQueue.Push(c)
}
return pp.activeCap > pp.maxCap || pp.activeCount > pp.maxCount
})
return invertPriority(maxActivePriority)
}
// finalizeChanges either commits or reverts temporary changes. The necessary capacity
// field and according flag updates are not performed here but returned in a list because
// they should be performed while the mutex is not held.
func (pp *PriorityPool) finalizeChanges(commit bool) (updates []capUpdate) {
for _, c := range pp.changed {
// always remove and push back in order to update biased/forced priority
pp.activeQueue.Remove(c.activeIndex)
pp.inactiveQueue.Remove(c.inactiveIndex)
c.bias = 0
c.forced = false
c.changed = false
if !commit {
pp.setCapacity(c, c.origCap)
}
if c.connected {
if c.capacity != 0 {
pp.activeQueue.Push(c)
} else {
pp.inactiveQueue.Push(c, pp.inactivePriority(c))
}
if c.capacity != c.origCap && commit {
updates = append(updates, capUpdate{c.node, c.origCap, c.capacity})
}
}
c.origCap = 0
}
pp.changed = nil
return
}
// capUpdate describes a CapacityField and ActiveFlag/InactiveFlag update
type capUpdate struct {
node *enode.Node
oldCap, newCap uint64
}
// updateFlags performs CapacityField and ActiveFlag/InactiveFlag updates while the
// pool mutex is not held
// Note: this function should run inside a NodeStateMachine operation
func (pp *PriorityPool) updateFlags(updates []capUpdate) {
for _, f := range updates {
if f.oldCap == 0 {
pp.ns.SetStateSub(f.node, pp.ActiveFlag, pp.InactiveFlag, 0)
}
if f.newCap == 0 {
pp.ns.SetStateSub(f.node, pp.InactiveFlag, pp.ActiveFlag, 0)
pp.ns.SetFieldSub(f.node, pp.CapacityField, nil)
} else {
pp.ns.SetFieldSub(f.node, pp.CapacityField, f.newCap)
}
}
}
// tryActivate tries to activate inactive nodes if possible
func (pp *PriorityPool) tryActivate() []capUpdate {
var commit bool
for pp.inactiveQueue.Size() > 0 {
c := pp.inactiveQueue.PopItem().(*ppNodeInfo)
pp.markForChange(c)
pp.setCapacity(c, pp.minCap)
c.bias = pp.activeBias
pp.activeQueue.Push(c)
pp.enforceLimits()
if c.capacity > 0 {
commit = true
} else {
break
}
}
return pp.finalizeChanges(commit)
}
// updatePriority gets the current priority value of the given node from the nodePriority
// interface and performs the necessary changes. It is triggered by updateFlag.
// Note: this function should run inside a NodeStateMachine operation
func (pp *PriorityPool) updatePriority(node *enode.Node) {
pp.lock.Lock()
pp.activeQueue.Refresh()
var updates []capUpdate
defer func() {
pp.lock.Unlock()
pp.updateFlags(updates)
}()
c, _ := pp.ns.GetField(node, pp.ppNodeInfoField).(*ppNodeInfo)
if c == nil || !c.connected {
return
}
pp.activeQueue.Remove(c.activeIndex)
pp.inactiveQueue.Remove(c.inactiveIndex)
if c.capacity != 0 {
pp.activeQueue.Push(c)
} else {
pp.inactiveQueue.Push(c, pp.inactivePriority(c))
}
updates = pp.tryActivate()
}