go-ethereum/core/state_processor.go

273 lines
9.9 KiB
Go
Raw Normal View History

2016-04-14 11:18:24 -05:00
// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package core
import (
"fmt"
"math/big"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/consensus/misc"
"github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/core/vm"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/params"
)
// StateProcessor is a basic Processor, which takes care of transitioning
// state from one point to another.
//
// StateProcessor implements Processor.
type StateProcessor struct {
config *params.ChainConfig // Chain configuration options
chain *HeaderChain // Canonical header chain
}
// NewStateProcessor initialises a new StateProcessor.
func NewStateProcessor(config *params.ChainConfig, chain *HeaderChain) *StateProcessor {
return &StateProcessor{
config: config,
chain: chain,
}
}
// Process processes the state changes according to the Ethereum rules by running
// the transaction messages using the statedb and applying any rewards to both
// the processor (coinbase) and any included uncles.
//
// Process returns the receipts and logs accumulated during the process and
// returns the amount of gas that was used in the process. If any of the
// transactions failed to execute due to insufficient gas it will return an error.
func (p *StateProcessor) Process(block *types.Block, statedb *state.StateDB, cfg vm.Config) (*ProcessResult, error) {
var (
receipts types.Receipts
usedGas = new(uint64)
header = block.Header()
blockHash = block.Hash()
blockNumber = block.Number()
allLogs []*types.Log
gp = new(GasPool).AddGas(block.GasLimit())
)
// Mutate the block and state according to any hard-fork specs
if p.config.DAOForkSupport && p.config.DAOForkBlock != nil && p.config.DAOForkBlock.Cmp(block.Number()) == 0 {
misc.ApplyDAOHardFork(statedb)
}
var (
context vm.BlockContext
signer = types.MakeSigner(p.config, header.Number, header.Time)
err error
)
context = NewEVMBlockContext(header, p.chain, nil)
vmenv := vm.NewEVM(context, vm.TxContext{}, statedb, p.config, cfg)
if beaconRoot := block.BeaconRoot(); beaconRoot != nil {
ProcessBeaconBlockRoot(*beaconRoot, vmenv, statedb)
}
if p.config.IsPrague(block.Number(), block.Time()) {
ProcessParentBlockHash(block.ParentHash(), vmenv, statedb)
}
// Iterate over and process the individual transactions
for i, tx := range block.Transactions() {
msg, err := TransactionToMessage(tx, signer, header.BaseFee)
if err != nil {
return nil, fmt.Errorf("could not apply tx %d [%v]: %w", i, tx.Hash().Hex(), err)
}
statedb.SetTxContext(tx.Hash(), i)
receipt, err := ApplyTransactionWithEVM(msg, p.config, gp, statedb, blockNumber, blockHash, tx, usedGas, vmenv)
if err != nil {
return nil, fmt.Errorf("could not apply tx %d [%v]: %w", i, tx.Hash().Hex(), err)
}
receipts = append(receipts, receipt)
allLogs = append(allLogs, receipt.Logs...)
}
// Read requests if Prague is enabled.
var requests types.Requests
if p.config.IsPrague(block.Number(), block.Time()) {
requests, err = ParseDepositLogs(allLogs, p.config)
if err != nil {
return nil, err
}
}
// Finalize the block, applying any consensus engine specific extras (e.g. block rewards)
p.chain.engine.Finalize(p.chain, header, statedb, block.Body())
return &ProcessResult{
Receipts: receipts,
Requests: requests,
Logs: allLogs,
GasUsed: *usedGas,
}, nil
}
// ApplyTransactionWithEVM attempts to apply a transaction to the given state database
// and uses the input parameters for its environment similar to ApplyTransaction. However,
// this method takes an already created EVM instance as input.
func ApplyTransactionWithEVM(msg *Message, config *params.ChainConfig, gp *GasPool, statedb *state.StateDB, blockNumber *big.Int, blockHash common.Hash, tx *types.Transaction, usedGas *uint64, evm *vm.EVM) (receipt *types.Receipt, err error) {
if evm.Config.Tracer != nil && evm.Config.Tracer.OnTxStart != nil {
evm.Config.Tracer.OnTxStart(evm.GetVMContext(), tx, msg.From)
if evm.Config.Tracer.OnTxEnd != nil {
defer func() {
evm.Config.Tracer.OnTxEnd(receipt, err)
}()
}
}
// Create a new context to be used in the EVM environment.
txContext := NewEVMTxContext(msg)
evm.Reset(txContext, statedb)
// Apply the transaction to the current state (included in the env).
result, err := ApplyMessage(evm, msg, gp)
if err != nil {
return nil, err
}
// Update the state with pending changes.
var root []byte
if config.IsByzantium(blockNumber) {
statedb.Finalise(true)
} else {
root = statedb.IntermediateRoot(config.IsEIP158(blockNumber)).Bytes()
}
*usedGas += result.UsedGas
// Create a new receipt for the transaction, storing the intermediate root and gas used
// by the tx.
receipt = &types.Receipt{Type: tx.Type(), PostState: root, CumulativeGasUsed: *usedGas}
if result.Failed() {
receipt.Status = types.ReceiptStatusFailed
} else {
receipt.Status = types.ReceiptStatusSuccessful
}
receipt.TxHash = tx.Hash()
receipt.GasUsed = result.UsedGas
if tx.Type() == types.BlobTxType {
receipt.BlobGasUsed = uint64(len(tx.BlobHashes()) * params.BlobTxBlobGasPerBlob)
receipt.BlobGasPrice = evm.Context.BlobBaseFee
}
// If the transaction created a contract, store the creation address in the receipt.
if msg.To == nil {
receipt.ContractAddress = crypto.CreateAddress(evm.TxContext.Origin, tx.Nonce())
}
// Merge the tx-local access event into the "block-local" one, in order to collect
// all values, so that the witness can be built.
if statedb.GetTrie().IsVerkle() {
statedb.AccessEvents().Merge(evm.AccessEvents)
}
// Set the receipt logs and create the bloom filter.
receipt.Logs = statedb.GetLogs(tx.Hash(), blockNumber.Uint64(), blockHash)
receipt.Bloom = types.CreateBloom(types.Receipts{receipt})
receipt.BlockHash = blockHash
receipt.BlockNumber = blockNumber
receipt.TransactionIndex = uint(statedb.TxIndex())
return receipt, err
}
// ApplyTransaction attempts to apply a transaction to the given state database
// and uses the input parameters for its environment. It returns the receipt
// for the transaction, gas used and an error if the transaction failed,
// indicating the block was invalid.
func ApplyTransaction(config *params.ChainConfig, bc ChainContext, author *common.Address, gp *GasPool, statedb *state.StateDB, header *types.Header, tx *types.Transaction, usedGas *uint64, cfg vm.Config) (*types.Receipt, error) {
msg, err := TransactionToMessage(tx, types.MakeSigner(config, header.Number, header.Time), header.BaseFee)
if err != nil {
return nil, err
}
// Create a new context to be used in the EVM environment
blockContext := NewEVMBlockContext(header, bc, author)
txContext := NewEVMTxContext(msg)
vmenv := vm.NewEVM(blockContext, txContext, statedb, config, cfg)
return ApplyTransactionWithEVM(msg, config, gp, statedb, header.Number, header.Hash(), tx, usedGas, vmenv)
}
// ProcessBeaconBlockRoot applies the EIP-4788 system call to the beacon block root
// contract. This method is exported to be used in tests.
func ProcessBeaconBlockRoot(beaconRoot common.Hash, vmenv *vm.EVM, statedb *state.StateDB) {
if tracer := vmenv.Config.Tracer; tracer != nil {
if tracer.OnSystemCallStart != nil {
tracer.OnSystemCallStart()
}
if tracer.OnSystemCallEnd != nil {
defer tracer.OnSystemCallEnd()
}
}
// If EIP-4788 is enabled, we need to invoke the beaconroot storage contract with
// the new root
msg := &Message{
From: params.SystemAddress,
GasLimit: 30_000_000,
GasPrice: common.Big0,
GasFeeCap: common.Big0,
GasTipCap: common.Big0,
To: &params.BeaconRootsAddress,
Data: beaconRoot[:],
}
vmenv.Reset(NewEVMTxContext(msg), statedb)
statedb.AddAddressToAccessList(params.BeaconRootsAddress)
_, _, _ = vmenv.Call(vm.AccountRef(msg.From), *msg.To, msg.Data, 30_000_000, common.U2560)
statedb.Finalise(true)
}
// ProcessParentBlockHash stores the parent block hash in the history storage contract
// as per EIP-2935.
func ProcessParentBlockHash(prevHash common.Hash, vmenv *vm.EVM, statedb *state.StateDB) {
if tracer := vmenv.Config.Tracer; tracer != nil {
if tracer.OnSystemCallStart != nil {
tracer.OnSystemCallStart()
}
if tracer.OnSystemCallEnd != nil {
defer tracer.OnSystemCallEnd()
}
}
msg := &Message{
From: params.SystemAddress,
GasLimit: 30_000_000,
GasPrice: common.Big0,
GasFeeCap: common.Big0,
GasTipCap: common.Big0,
To: &params.HistoryStorageAddress,
Data: prevHash.Bytes(),
}
vmenv.Reset(NewEVMTxContext(msg), statedb)
statedb.AddAddressToAccessList(params.HistoryStorageAddress)
_, _, _ = vmenv.Call(vm.AccountRef(msg.From), *msg.To, msg.Data, 30_000_000, common.U2560)
statedb.Finalise(true)
}
// ParseDepositLogs extracts the EIP-6110 deposit values from logs emitted by
// BeaconDepositContract.
func ParseDepositLogs(logs []*types.Log, config *params.ChainConfig) (types.Requests, error) {
deposits := make(types.Requests, 0)
for _, log := range logs {
if log.Address == config.DepositContractAddress {
d, err := types.UnpackIntoDeposit(log.Data)
if err != nil {
return nil, fmt.Errorf("unable to parse deposit data: %v", err)
}
deposits = append(deposits, types.NewRequest(d))
}
}
return deposits, nil
}