go-ethereum/trie/stacktrie.go

398 lines
12 KiB
Go
Raw Normal View History

// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
import (
"bytes"
"errors"
"sync"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/types"
)
var (
stPool = sync.Pool{New: func() any { return new(stNode) }}
_ = types.TrieHasher((*StackTrie)(nil))
)
// OnTrieNode is a callback method invoked when a trie node is committed
// by the stack trie. The node is only committed if it's considered complete.
//
// The caller should not modify the contents of the returned path and blob
// slice, and their contents may be changed after the call. It is up to the
// `onTrieNode` receiver function to deep-copy the data if it wants to retain
// it after the call ends.
type OnTrieNode func(path []byte, hash common.Hash, blob []byte)
// StackTrie is a trie implementation that expects keys to be inserted
// in order. Once it determines that a subtree will no longer be inserted
// into, it will hash it and free up the memory it uses.
type StackTrie struct {
root *stNode
h *hasher
last []byte
onTrieNode OnTrieNode
}
// NewStackTrie allocates and initializes an empty trie. The committed nodes
// will be discarded immediately if no callback is configured.
func NewStackTrie(onTrieNode OnTrieNode) *StackTrie {
return &StackTrie{
root: stPool.Get().(*stNode),
h: newHasher(false),
onTrieNode: onTrieNode,
}
}
// Update inserts a (key, value) pair into the stack trie.
func (t *StackTrie) Update(key, value []byte) error {
if len(value) == 0 {
return errors.New("trying to insert empty (deletion)")
}
eth/protocols/snap: cleanup dangling account trie nodes due to incomplete storage (#30258) This pull request fixes #30229. During snap sync, large storage will be split into several pieces and synchronized concurrently. Unfortunately, the tradeoff is that the respective merkle trie of each storage chunk will be incomplete due to the incomplete boundaries. The trie nodes on these boundaries will be discarded, and any dangling nodes on disk will also be removed if they fall on these paths, ensuring the state healer won't be blocked. However, the dangling account trie nodes on the path from the root to the associated account are left untouched. This means the dangling account trie nodes could potentially stop the state healing and break the assumption that the entire subtrie should exist if the subtrie root exists. We should consider the account trie node as the ancestor of the corresponding storage trie node. In the scenarios described in the above ticket, the state corruption could occur if there is a dangling account trie node while some storage trie nodes are removed due to synchronization redo. The fixing idea is pretty straightforward, the trie nodes on the path from root to account should all be explicitly removed if an incomplete storage trie occurs. Therefore, a `delete` operation has been added into `gentrie` to explicitly clear the account along with all nodes on this path. The special thing is that it's a cross-trie clearing. In theory, there may be a dangling node at any position on this account key and we have to clear all of them.
2024-08-12 03:43:54 -05:00
k := t.TrieKey(key)
if bytes.Compare(t.last, k) >= 0 {
return errors.New("non-ascending key order")
}
if t.last == nil {
t.last = append([]byte{}, k...) // allocate key slice
} else {
t.last = append(t.last[:0], k...) // reuse key slice
}
t.insert(t.root, k, value, nil)
return nil
}
// Reset resets the stack trie object to empty state.
func (t *StackTrie) Reset() {
t.root = stPool.Get().(*stNode)
t.last = nil
}
eth/protocols/snap: cleanup dangling account trie nodes due to incomplete storage (#30258) This pull request fixes #30229. During snap sync, large storage will be split into several pieces and synchronized concurrently. Unfortunately, the tradeoff is that the respective merkle trie of each storage chunk will be incomplete due to the incomplete boundaries. The trie nodes on these boundaries will be discarded, and any dangling nodes on disk will also be removed if they fall on these paths, ensuring the state healer won't be blocked. However, the dangling account trie nodes on the path from the root to the associated account are left untouched. This means the dangling account trie nodes could potentially stop the state healing and break the assumption that the entire subtrie should exist if the subtrie root exists. We should consider the account trie node as the ancestor of the corresponding storage trie node. In the scenarios described in the above ticket, the state corruption could occur if there is a dangling account trie node while some storage trie nodes are removed due to synchronization redo. The fixing idea is pretty straightforward, the trie nodes on the path from root to account should all be explicitly removed if an incomplete storage trie occurs. Therefore, a `delete` operation has been added into `gentrie` to explicitly clear the account along with all nodes on this path. The special thing is that it's a cross-trie clearing. In theory, there may be a dangling node at any position on this account key and we have to clear all of them.
2024-08-12 03:43:54 -05:00
// TrieKey returns the internal key representation for the given user key.
func (t *StackTrie) TrieKey(key []byte) []byte {
k := keybytesToHex(key)
k = k[:len(k)-1] // chop the termination flag
return k
}
// stNode represents a node within a StackTrie
type stNode struct {
typ uint8 // node type (as in branch, ext, leaf)
key []byte // key chunk covered by this (leaf|ext) node
val []byte // value contained by this node if it's a leaf
children [16]*stNode // list of children (for branch and exts)
}
// newLeaf constructs a leaf node with provided node key and value. The key
// will be deep-copied in the function and safe to modify afterwards, but
// value is not.
func newLeaf(key, val []byte) *stNode {
st := stPool.Get().(*stNode)
st.typ = leafNode
st.key = append(st.key, key...)
st.val = val
return st
}
// newExt constructs an extension node with provided node key and child. The
// key will be deep-copied in the function and safe to modify afterwards.
func newExt(key []byte, child *stNode) *stNode {
st := stPool.Get().(*stNode)
st.typ = extNode
st.key = append(st.key, key...)
st.children[0] = child
return st
}
// List all values that stNode#nodeType can hold
const (
emptyNode = iota
branchNode
extNode
leafNode
hashedNode
)
func (n *stNode) reset() *stNode {
n.key = n.key[:0]
n.val = nil
for i := range n.children {
n.children[i] = nil
}
n.typ = emptyNode
return n
}
// Helper function that, given a full key, determines the index
// at which the chunk pointed by st.keyOffset is different from
// the same chunk in the full key.
func (n *stNode) getDiffIndex(key []byte) int {
for idx, nibble := range n.key {
if nibble != key[idx] {
return idx
}
}
return len(n.key)
}
// Helper function to that inserts a (key, value) pair into
// the trie.
func (t *StackTrie) insert(st *stNode, key, value []byte, path []byte) {
switch st.typ {
case branchNode: /* Branch */
idx := int(key[0])
// Unresolve elder siblings
for i := idx - 1; i >= 0; i-- {
if st.children[i] != nil {
if st.children[i].typ != hashedNode {
t.hash(st.children[i], append(path, byte(i)))
}
break
}
}
// Add new child
if st.children[idx] == nil {
st.children[idx] = newLeaf(key[1:], value)
} else {
t.insert(st.children[idx], key[1:], value, append(path, key[0]))
}
case extNode: /* Ext */
// Compare both key chunks and see where they differ
diffidx := st.getDiffIndex(key)
// Check if chunks are identical. If so, recurse into
// the child node. Otherwise, the key has to be split
// into 1) an optional common prefix, 2) the fullnode
// representing the two differing path, and 3) a leaf
// for each of the differentiated subtrees.
if diffidx == len(st.key) {
// Ext key and key segment are identical, recurse into
// the child node.
t.insert(st.children[0], key[diffidx:], value, append(path, key[:diffidx]...))
return
}
// Save the original part. Depending if the break is
// at the extension's last byte or not, create an
// intermediate extension or use the extension's child
// node directly.
var n *stNode
if diffidx < len(st.key)-1 {
// Break on the non-last byte, insert an intermediate
// extension. The path prefix of the newly-inserted
// extension should also contain the different byte.
n = newExt(st.key[diffidx+1:], st.children[0])
t.hash(n, append(path, st.key[:diffidx+1]...))
} else {
// Break on the last byte, no need to insert
// an extension node: reuse the current node.
// The path prefix of the original part should
// still be same.
n = st.children[0]
t.hash(n, append(path, st.key...))
}
var p *stNode
if diffidx == 0 {
// the break is on the first byte, so
// the current node is converted into
// a branch node.
st.children[0] = nil
p = st
st.typ = branchNode
} else {
// the common prefix is at least one byte
// long, insert a new intermediate branch
// node.
st.children[0] = stPool.Get().(*stNode)
st.children[0].typ = branchNode
p = st.children[0]
}
// Create a leaf for the inserted part
o := newLeaf(key[diffidx+1:], value)
// Insert both child leaves where they belong:
origIdx := st.key[diffidx]
newIdx := key[diffidx]
p.children[origIdx] = n
p.children[newIdx] = o
st.key = st.key[:diffidx]
case leafNode: /* Leaf */
// Compare both key chunks and see where they differ
diffidx := st.getDiffIndex(key)
// Overwriting a key isn't supported, which means that
// the current leaf is expected to be split into 1) an
// optional extension for the common prefix of these 2
// keys, 2) a fullnode selecting the path on which the
// keys differ, and 3) one leaf for the differentiated
// component of each key.
if diffidx >= len(st.key) {
panic("Trying to insert into existing key")
}
// Check if the split occurs at the first nibble of the
// chunk. In that case, no prefix extnode is necessary.
// Otherwise, create that
var p *stNode
if diffidx == 0 {
// Convert current leaf into a branch
st.typ = branchNode
p = st
st.children[0] = nil
} else {
// Convert current node into an ext,
// and insert a child branch node.
st.typ = extNode
st.children[0] = stPool.Get().(*stNode)
st.children[0].typ = branchNode
p = st.children[0]
}
// Create the two child leaves: one containing the original
// value and another containing the new value. The child leaf
// is hashed directly in order to free up some memory.
origIdx := st.key[diffidx]
p.children[origIdx] = newLeaf(st.key[diffidx+1:], st.val)
t.hash(p.children[origIdx], append(path, st.key[:diffidx+1]...))
newIdx := key[diffidx]
p.children[newIdx] = newLeaf(key[diffidx+1:], value)
// Finally, cut off the key part that has been passed
// over to the children.
st.key = st.key[:diffidx]
st.val = nil
case emptyNode: /* Empty */
st.typ = leafNode
st.key = key
st.val = value
case hashedNode:
panic("trying to insert into hash")
default:
panic("invalid type")
}
}
// hash converts st into a 'hashedNode', if possible. Possible outcomes:
//
// 1. The rlp-encoded value was >= 32 bytes:
// - Then the 32-byte `hash` will be accessible in `st.val`.
// - And the 'st.type' will be 'hashedNode'
//
// 2. The rlp-encoded value was < 32 bytes
// - Then the <32 byte rlp-encoded value will be accessible in 'st.val'.
// - And the 'st.type' will be 'hashedNode' AGAIN
//
// This method also sets 'st.type' to hashedNode, and clears 'st.key'.
func (t *StackTrie) hash(st *stNode, path []byte) {
var blob []byte // RLP-encoded node blob
switch st.typ {
case hashedNode:
return
case emptyNode:
st.val = types.EmptyRootHash.Bytes()
st.key = st.key[:0]
st.typ = hashedNode
return
case branchNode:
var nodes fullNode
for i, child := range st.children {
if child == nil {
nodes.Children[i] = nilValueNode
continue
}
t.hash(child, append(path, byte(i)))
if len(child.val) < 32 {
nodes.Children[i] = rawNode(child.val)
} else {
nodes.Children[i] = hashNode(child.val)
}
st.children[i] = nil
stPool.Put(child.reset()) // Release child back to pool.
}
nodes.encode(t.h.encbuf)
blob = t.h.encodedBytes()
case extNode:
// recursively hash and commit child as the first step
t.hash(st.children[0], append(path, st.key...))
// encode the extension node
n := shortNode{Key: hexToCompactInPlace(st.key)}
if len(st.children[0].val) < 32 {
n.Val = rawNode(st.children[0].val)
} else {
n.Val = hashNode(st.children[0].val)
}
n.encode(t.h.encbuf)
blob = t.h.encodedBytes()
stPool.Put(st.children[0].reset()) // Release child back to pool.
st.children[0] = nil
case leafNode:
st.key = append(st.key, byte(16))
n := shortNode{Key: hexToCompactInPlace(st.key), Val: valueNode(st.val)}
n.encode(t.h.encbuf)
blob = t.h.encodedBytes()
default:
panic("invalid node type")
}
// Convert the node type to hashNode and reset the key slice.
st.typ = hashedNode
st.key = st.key[:0]
// Skip committing the non-root node if the size is smaller than 32 bytes
// as tiny nodes are always embedded in their parent except root node.
if len(blob) < 32 && len(path) > 0 {
st.val = common.CopyBytes(blob)
return
}
// Write the hash to the 'val'. We allocate a new val here to not mutate
// input values.
st.val = t.h.hashData(blob)
// Invoke the callback it's provided. Notably, the path and blob slices are
// volatile, please deep-copy the slices in callback if the contents need
// to be retained.
if t.onTrieNode != nil {
t.onTrieNode(path, common.BytesToHash(st.val), blob)
}
}
// Hash will firstly hash the entire trie if it's still not hashed and then commit
// all leftover nodes to the associated database. Actually most of the trie nodes
// have been committed already. The main purpose here is to commit the nodes on
// right boundary.
func (t *StackTrie) Hash() common.Hash {
n := t.root
t.hash(n, nil)
return common.BytesToHash(n.val)
}