2016-11-08 19:01:56 -06:00
|
|
|
// Copyright 2016 The go-ethereum Authors
|
2016-10-19 06:04:55 -05:00
|
|
|
// This file is part of the go-ethereum library.
|
|
|
|
//
|
|
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
|
|
// (at your option) any later version.
|
|
|
|
//
|
|
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
// GNU Lesser General Public License for more details.
|
|
|
|
//
|
|
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
|
|
|
|
// Package discv5 implements the RLPx v5 Topic Discovery Protocol.
|
|
|
|
//
|
|
|
|
// The Topic Discovery protocol provides a way to find RLPx nodes that
|
|
|
|
// can be connected to. It uses a Kademlia-like protocol to maintain a
|
|
|
|
// distributed database of the IDs and endpoints of all listening
|
|
|
|
// nodes.
|
|
|
|
package discv5
|
|
|
|
|
|
|
|
import (
|
|
|
|
"crypto/rand"
|
|
|
|
"encoding/binary"
|
2016-11-12 14:02:02 -06:00
|
|
|
"fmt"
|
2016-10-19 06:04:55 -05:00
|
|
|
"net"
|
|
|
|
"sort"
|
|
|
|
|
|
|
|
"github.com/ethereum/go-ethereum/common"
|
|
|
|
)
|
|
|
|
|
|
|
|
const (
|
|
|
|
alpha = 3 // Kademlia concurrency factor
|
|
|
|
bucketSize = 16 // Kademlia bucket size
|
|
|
|
hashBits = len(common.Hash{}) * 8
|
|
|
|
nBuckets = hashBits + 1 // Number of buckets
|
|
|
|
|
|
|
|
maxBondingPingPongs = 16
|
|
|
|
maxFindnodeFailures = 5
|
|
|
|
)
|
|
|
|
|
|
|
|
type Table struct {
|
|
|
|
count int // number of nodes
|
|
|
|
buckets [nBuckets]*bucket // index of known nodes by distance
|
|
|
|
nodeAddedHook func(*Node) // for testing
|
|
|
|
self *Node // metadata of the local node
|
|
|
|
}
|
|
|
|
|
|
|
|
// bucket contains nodes, ordered by their last activity. the entry
|
|
|
|
// that was most recently active is the first element in entries.
|
|
|
|
type bucket struct {
|
|
|
|
entries []*Node
|
|
|
|
replacements []*Node
|
|
|
|
}
|
|
|
|
|
|
|
|
func newTable(ourID NodeID, ourAddr *net.UDPAddr) *Table {
|
|
|
|
self := NewNode(ourID, ourAddr.IP, uint16(ourAddr.Port), uint16(ourAddr.Port))
|
|
|
|
tab := &Table{self: self}
|
|
|
|
for i := range tab.buckets {
|
|
|
|
tab.buckets[i] = new(bucket)
|
|
|
|
}
|
|
|
|
return tab
|
|
|
|
}
|
|
|
|
|
2016-11-12 14:02:02 -06:00
|
|
|
const printTable = false
|
|
|
|
|
|
|
|
// chooseBucketRefreshTarget selects random refresh targets to keep all Kademlia
|
|
|
|
// buckets filled with live connections and keep the network topology healthy.
|
|
|
|
// This requires selecting addresses closer to our own with a higher probability
|
|
|
|
// in order to refresh closer buckets too.
|
|
|
|
//
|
|
|
|
// This algorithm approximates the distance distribution of existing nodes in the
|
|
|
|
// table by selecting a random node from the table and selecting a target address
|
|
|
|
// with a distance less than twice of that of the selected node.
|
|
|
|
// This algorithm will be improved later to specifically target the least recently
|
|
|
|
// used buckets.
|
|
|
|
func (tab *Table) chooseBucketRefreshTarget() common.Hash {
|
|
|
|
entries := 0
|
|
|
|
if printTable {
|
|
|
|
fmt.Println()
|
2016-10-19 06:04:55 -05:00
|
|
|
}
|
2016-11-12 14:02:02 -06:00
|
|
|
for i, b := range tab.buckets {
|
|
|
|
entries += len(b.entries)
|
|
|
|
if printTable {
|
|
|
|
for _, e := range b.entries {
|
|
|
|
fmt.Println(i, e.state, e.addr().String(), e.ID.String(), e.sha.Hex())
|
|
|
|
}
|
2016-10-19 06:04:55 -05:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-11-12 14:02:02 -06:00
|
|
|
prefix := binary.BigEndian.Uint64(tab.self.sha[0:8])
|
|
|
|
dist := ^uint64(0)
|
|
|
|
entry := int(randUint(uint32(entries + 1)))
|
|
|
|
for _, b := range tab.buckets {
|
|
|
|
if entry < len(b.entries) {
|
|
|
|
n := b.entries[entry]
|
|
|
|
dist = binary.BigEndian.Uint64(n.sha[0:8]) ^ prefix
|
|
|
|
break
|
|
|
|
}
|
|
|
|
entry -= len(b.entries)
|
2016-10-19 06:04:55 -05:00
|
|
|
}
|
2016-11-12 14:02:02 -06:00
|
|
|
|
|
|
|
ddist := ^uint64(0)
|
|
|
|
if dist+dist > dist {
|
|
|
|
ddist = dist
|
2016-10-19 06:04:55 -05:00
|
|
|
}
|
2016-11-12 14:02:02 -06:00
|
|
|
targetPrefix := prefix ^ randUint64n(ddist)
|
|
|
|
|
|
|
|
var target common.Hash
|
|
|
|
binary.BigEndian.PutUint64(target[0:8], targetPrefix)
|
2016-10-19 06:04:55 -05:00
|
|
|
rand.Read(target[8:])
|
2016-11-12 14:02:02 -06:00
|
|
|
return target
|
2016-10-19 06:04:55 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
// readRandomNodes fills the given slice with random nodes from the
|
|
|
|
// table. It will not write the same node more than once. The nodes in
|
|
|
|
// the slice are copies and can be modified by the caller.
|
|
|
|
func (tab *Table) readRandomNodes(buf []*Node) (n int) {
|
|
|
|
// TODO: tree-based buckets would help here
|
|
|
|
// Find all non-empty buckets and get a fresh slice of their entries.
|
|
|
|
var buckets [][]*Node
|
|
|
|
for _, b := range tab.buckets {
|
|
|
|
if len(b.entries) > 0 {
|
|
|
|
buckets = append(buckets, b.entries[:])
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if len(buckets) == 0 {
|
|
|
|
return 0
|
|
|
|
}
|
|
|
|
// Shuffle the buckets.
|
|
|
|
for i := uint32(len(buckets)) - 1; i > 0; i-- {
|
|
|
|
j := randUint(i)
|
|
|
|
buckets[i], buckets[j] = buckets[j], buckets[i]
|
|
|
|
}
|
|
|
|
// Move head of each bucket into buf, removing buckets that become empty.
|
|
|
|
var i, j int
|
|
|
|
for ; i < len(buf); i, j = i+1, (j+1)%len(buckets) {
|
|
|
|
b := buckets[j]
|
|
|
|
buf[i] = &(*b[0])
|
|
|
|
buckets[j] = b[1:]
|
|
|
|
if len(b) == 1 {
|
|
|
|
buckets = append(buckets[:j], buckets[j+1:]...)
|
|
|
|
}
|
|
|
|
if len(buckets) == 0 {
|
|
|
|
break
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return i + 1
|
|
|
|
}
|
|
|
|
|
|
|
|
func randUint(max uint32) uint32 {
|
|
|
|
if max < 2 {
|
|
|
|
return 0
|
|
|
|
}
|
|
|
|
var b [4]byte
|
|
|
|
rand.Read(b[:])
|
|
|
|
return binary.BigEndian.Uint32(b[:]) % max
|
|
|
|
}
|
|
|
|
|
|
|
|
func randUint64n(max uint64) uint64 {
|
|
|
|
if max < 2 {
|
|
|
|
return 0
|
|
|
|
}
|
|
|
|
var b [8]byte
|
|
|
|
rand.Read(b[:])
|
|
|
|
return binary.BigEndian.Uint64(b[:]) % max
|
|
|
|
}
|
|
|
|
|
|
|
|
// closest returns the n nodes in the table that are closest to the
|
|
|
|
// given id. The caller must hold tab.mutex.
|
|
|
|
func (tab *Table) closest(target common.Hash, nresults int) *nodesByDistance {
|
|
|
|
// This is a very wasteful way to find the closest nodes but
|
|
|
|
// obviously correct. I believe that tree-based buckets would make
|
|
|
|
// this easier to implement efficiently.
|
|
|
|
close := &nodesByDistance{target: target}
|
|
|
|
for _, b := range tab.buckets {
|
|
|
|
for _, n := range b.entries {
|
|
|
|
close.push(n, nresults)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return close
|
|
|
|
}
|
|
|
|
|
|
|
|
// add attempts to add the given node its corresponding bucket. If the
|
|
|
|
// bucket has space available, adding the node succeeds immediately.
|
|
|
|
// Otherwise, the node is added to the replacement cache for the bucket.
|
|
|
|
func (tab *Table) add(n *Node) (contested *Node) {
|
2016-11-12 14:02:02 -06:00
|
|
|
//fmt.Println("add", n.addr().String(), n.ID.String(), n.sha.Hex())
|
|
|
|
if n.ID == tab.self.ID {
|
|
|
|
return
|
|
|
|
}
|
2016-10-19 06:04:55 -05:00
|
|
|
b := tab.buckets[logdist(tab.self.sha, n.sha)]
|
|
|
|
switch {
|
|
|
|
case b.bump(n):
|
|
|
|
// n exists in b.
|
|
|
|
return nil
|
|
|
|
case len(b.entries) < bucketSize:
|
|
|
|
// b has space available.
|
|
|
|
b.addFront(n)
|
|
|
|
tab.count++
|
|
|
|
if tab.nodeAddedHook != nil {
|
|
|
|
tab.nodeAddedHook(n)
|
|
|
|
}
|
|
|
|
return nil
|
|
|
|
default:
|
|
|
|
// b has no space left, add to replacement cache
|
|
|
|
// and revalidate the last entry.
|
|
|
|
// TODO: drop previous node
|
|
|
|
b.replacements = append(b.replacements, n)
|
|
|
|
if len(b.replacements) > bucketSize {
|
|
|
|
copy(b.replacements, b.replacements[1:])
|
|
|
|
b.replacements = b.replacements[:len(b.replacements)-1]
|
|
|
|
}
|
|
|
|
return b.entries[len(b.entries)-1]
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// stuff adds nodes the table to the end of their corresponding bucket
|
|
|
|
// if the bucket is not full.
|
|
|
|
func (tab *Table) stuff(nodes []*Node) {
|
|
|
|
outer:
|
|
|
|
for _, n := range nodes {
|
|
|
|
if n.ID == tab.self.ID {
|
|
|
|
continue // don't add self
|
|
|
|
}
|
|
|
|
bucket := tab.buckets[logdist(tab.self.sha, n.sha)]
|
|
|
|
for i := range bucket.entries {
|
|
|
|
if bucket.entries[i].ID == n.ID {
|
|
|
|
continue outer // already in bucket
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if len(bucket.entries) < bucketSize {
|
|
|
|
bucket.entries = append(bucket.entries, n)
|
|
|
|
tab.count++
|
|
|
|
if tab.nodeAddedHook != nil {
|
|
|
|
tab.nodeAddedHook(n)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// delete removes an entry from the node table (used to evacuate
|
|
|
|
// failed/non-bonded discovery peers).
|
|
|
|
func (tab *Table) delete(node *Node) {
|
2016-11-12 14:02:02 -06:00
|
|
|
//fmt.Println("delete", node.addr().String(), node.ID.String(), node.sha.Hex())
|
2016-10-19 06:04:55 -05:00
|
|
|
bucket := tab.buckets[logdist(tab.self.sha, node.sha)]
|
|
|
|
for i := range bucket.entries {
|
|
|
|
if bucket.entries[i].ID == node.ID {
|
|
|
|
bucket.entries = append(bucket.entries[:i], bucket.entries[i+1:]...)
|
|
|
|
tab.count--
|
|
|
|
return
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
func (tab *Table) deleteReplace(node *Node) {
|
|
|
|
b := tab.buckets[logdist(tab.self.sha, node.sha)]
|
|
|
|
i := 0
|
|
|
|
for i < len(b.entries) {
|
|
|
|
if b.entries[i].ID == node.ID {
|
|
|
|
b.entries = append(b.entries[:i], b.entries[i+1:]...)
|
|
|
|
tab.count--
|
|
|
|
} else {
|
|
|
|
i++
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// refill from replacement cache
|
|
|
|
// TODO: maybe use random index
|
|
|
|
if len(b.entries) < bucketSize && len(b.replacements) > 0 {
|
|
|
|
ri := len(b.replacements) - 1
|
|
|
|
b.addFront(b.replacements[ri])
|
|
|
|
tab.count++
|
|
|
|
b.replacements[ri] = nil
|
|
|
|
b.replacements = b.replacements[:ri]
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
func (b *bucket) addFront(n *Node) {
|
|
|
|
b.entries = append(b.entries, nil)
|
|
|
|
copy(b.entries[1:], b.entries)
|
|
|
|
b.entries[0] = n
|
|
|
|
}
|
|
|
|
|
|
|
|
func (b *bucket) bump(n *Node) bool {
|
|
|
|
for i := range b.entries {
|
|
|
|
if b.entries[i].ID == n.ID {
|
|
|
|
// move it to the front
|
|
|
|
copy(b.entries[1:], b.entries[:i])
|
|
|
|
b.entries[0] = n
|
|
|
|
return true
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
|
|
|
|
// nodesByDistance is a list of nodes, ordered by
|
|
|
|
// distance to target.
|
|
|
|
type nodesByDistance struct {
|
|
|
|
entries []*Node
|
|
|
|
target common.Hash
|
|
|
|
}
|
|
|
|
|
|
|
|
// push adds the given node to the list, keeping the total size below maxElems.
|
|
|
|
func (h *nodesByDistance) push(n *Node, maxElems int) {
|
|
|
|
ix := sort.Search(len(h.entries), func(i int) bool {
|
|
|
|
return distcmp(h.target, h.entries[i].sha, n.sha) > 0
|
|
|
|
})
|
|
|
|
if len(h.entries) < maxElems {
|
|
|
|
h.entries = append(h.entries, n)
|
|
|
|
}
|
|
|
|
if ix == len(h.entries) {
|
|
|
|
// farther away than all nodes we already have.
|
|
|
|
// if there was room for it, the node is now the last element.
|
|
|
|
} else {
|
|
|
|
// slide existing entries down to make room
|
|
|
|
// this will overwrite the entry we just appended.
|
|
|
|
copy(h.entries[ix+1:], h.entries[ix:])
|
|
|
|
h.entries[ix] = n
|
|
|
|
}
|
|
|
|
}
|