package main import ( "bytes" "crypto/ecdsa" "crypto/elliptic" "crypto/rand" "crypto/sha256" "math/big" "strings" "encoding/gob" "encoding/hex" "fmt" "log" ) const subsidy = 10 // Transaction represents a Bitcoin transaction type Transaction struct { ID []byte Vin []TXInput Vout []TXOutput } // IsCoinbase checks whether the transaction is coinbase func (tx Transaction) IsCoinbase() bool { return len(tx.Vin) == 1 && len(tx.Vin[0].Txid) == 0 && tx.Vin[0].Vout == -1 } // Serialize returns a serialized Transaction func (tx Transaction) Serialize() []byte { var encoded bytes.Buffer enc := gob.NewEncoder(&encoded) err := enc.Encode(tx) if err != nil { log.Panic(err) } return encoded.Bytes() } // Hash returns the hash of the Transaction func (tx *Transaction) Hash() []byte { var hash [32]byte txCopy := *tx txCopy.ID = []byte{} hash = sha256.Sum256(txCopy.Serialize()) return hash[:] } // Sign signs each input of a Transaction func (tx *Transaction) Sign(privKey ecdsa.PrivateKey, prevTXs map[string]Transaction) { if tx.IsCoinbase() { return } for _, vin := range tx.Vin { if prevTXs[hex.EncodeToString(vin.Txid)].ID == nil { log.Panic("ERROR: Previous transaction is not correct") } } txCopy := tx.TrimmedCopy() for inID, vin := range txCopy.Vin { prevTx := prevTXs[hex.EncodeToString(vin.Txid)] txCopy.Vin[inID].Signature = nil txCopy.Vin[inID].PubKey = prevTx.Vout[vin.Vout].PubKeyHash dataToSign := fmt.Sprintf("%x\n", txCopy) r, s, err := ecdsa.Sign(rand.Reader, &privKey, []byte(dataToSign)) if err != nil { log.Panic(err) } signature := append(r.Bytes(), s.Bytes()...) tx.Vin[inID].Signature = signature txCopy.Vin[inID].PubKey = nil } } // String returns a human-readable representation of a transaction func (tx Transaction) String() string { var lines []string lines = append(lines, fmt.Sprintf("--- Transaction %x:", tx.ID)) for i, input := range tx.Vin { lines = append(lines, fmt.Sprintf(" Input %d:", i)) lines = append(lines, fmt.Sprintf(" TXID: %x", input.Txid)) lines = append(lines, fmt.Sprintf(" Out: %d", input.Vout)) lines = append(lines, fmt.Sprintf(" Signature: %x", input.Signature)) lines = append(lines, fmt.Sprintf(" PubKey: %x", input.PubKey)) } for i, output := range tx.Vout { lines = append(lines, fmt.Sprintf(" Output %d:", i)) lines = append(lines, fmt.Sprintf(" Value: %d", output.Value)) lines = append(lines, fmt.Sprintf(" Script: %x", output.PubKeyHash)) } return strings.Join(lines, "\n") } // TrimmedCopy creates a trimmed copy of Transaction to be used in signing func (tx *Transaction) TrimmedCopy() Transaction { var inputs []TXInput var outputs []TXOutput for _, vin := range tx.Vin { inputs = append(inputs, TXInput{vin.Txid, vin.Vout, nil, nil}) } for _, vout := range tx.Vout { outputs = append(outputs, TXOutput{vout.Value, vout.PubKeyHash}) } txCopy := Transaction{tx.ID, inputs, outputs} return txCopy } // Verify verifies signatures of Transaction inputs func (tx *Transaction) Verify(prevTXs map[string]Transaction) bool { if tx.IsCoinbase() { return true } for _, vin := range tx.Vin { if prevTXs[hex.EncodeToString(vin.Txid)].ID == nil { log.Panic("ERROR: Previous transaction is not correct") } } txCopy := tx.TrimmedCopy() curve := elliptic.P256() for inID, vin := range tx.Vin { prevTx := prevTXs[hex.EncodeToString(vin.Txid)] txCopy.Vin[inID].Signature = nil txCopy.Vin[inID].PubKey = prevTx.Vout[vin.Vout].PubKeyHash r := big.Int{} s := big.Int{} sigLen := len(vin.Signature) r.SetBytes(vin.Signature[:(sigLen / 2)]) s.SetBytes(vin.Signature[(sigLen / 2):]) x := big.Int{} y := big.Int{} keyLen := len(vin.PubKey) x.SetBytes(vin.PubKey[:(keyLen / 2)]) y.SetBytes(vin.PubKey[(keyLen / 2):]) dataToVerify := fmt.Sprintf("%x\n", txCopy) rawPubKey := ecdsa.PublicKey{Curve: curve, X: &x, Y: &y} if ecdsa.Verify(&rawPubKey, []byte(dataToVerify), &r, &s) == false { return false } txCopy.Vin[inID].PubKey = nil } return true } // NewCoinbaseTX creates a new coinbase transaction func NewCoinbaseTX(to, data string) *Transaction { if data == "" { randData := make([]byte, 20) _, err := rand.Read(randData) if err != nil { log.Panic(err) } data = fmt.Sprintf("%x", randData) } txin := TXInput{[]byte{}, -1, nil, []byte(data)} txout := NewTXOutput(subsidy, to) tx := Transaction{nil, []TXInput{txin}, []TXOutput{*txout}} tx.ID = tx.Hash() return &tx } // NewUTXOTransaction creates a new transaction func NewUTXOTransaction(wallet *Wallet, to string, amount int, UTXOSet *UTXOSet) *Transaction { var inputs []TXInput var outputs []TXOutput pubKeyHash := HashPubKey(wallet.PublicKey) acc, validOutputs := UTXOSet.FindSpendableOutputs(pubKeyHash, amount) if acc < amount { log.Panic("ERROR: Not enough funds") } // Build a list of inputs for txid, outs := range validOutputs { txID, err := hex.DecodeString(txid) if err != nil { log.Panic(err) } for _, out := range outs { input := TXInput{txID, out, nil, wallet.PublicKey} inputs = append(inputs, input) } } // Build a list of outputs from := fmt.Sprintf("%s", wallet.GetAddress()) outputs = append(outputs, *NewTXOutput(amount, to)) if acc > amount { outputs = append(outputs, *NewTXOutput(acc-amount, from)) // a change } tx := Transaction{nil, inputs, outputs} tx.ID = tx.Hash() UTXOSet.Blockchain.SignTransaction(&tx, wallet.PrivateKey) return &tx } // DeserializeTransaction deserializes a transaction func DeserializeTransaction(data []byte) Transaction { var transaction Transaction decoder := gob.NewDecoder(bytes.NewReader(data)) err := decoder.Decode(&transaction) if err != nil { log.Panic(err) } return transaction }