package main import ( "bytes" "crypto/sha256" "fmt" "math" "math/big" ) var ( maxNonce = math.MaxInt64 ) const targetBits = 16 // ProofOfWork represents a proof-of-work type ProofOfWork struct { block *Block target *big.Int } // NewProofOfWork builds and returns a ProofOfWork func NewProofOfWork(b *Block) *ProofOfWork { target := big.NewInt(1) target.Lsh(target, uint(256-targetBits)) pow := &ProofOfWork{b, target} return pow } func (pow *ProofOfWork) prepareData(nonce int) []byte { data := bytes.Join( [][]byte{ pow.block.PrevBlockHash, pow.block.HashTransactions(), IntToHex(pow.block.Timestamp), IntToHex(int64(targetBits)), IntToHex(int64(nonce)), }, []byte{}, ) return data } // Run performs a proof-of-work func (pow *ProofOfWork) Run() (int, []byte) { var hashInt big.Int var hash [32]byte nonce := 0 fmt.Printf("Mining a new block") for nonce < maxNonce { data := pow.prepareData(nonce) hash = sha256.Sum256(data) fmt.Printf("\r%x", hash) hashInt.SetBytes(hash[:]) if hashInt.Cmp(pow.target) == -1 { break } else { nonce++ } } fmt.Print("\n\n") return nonce, hash[:] } // Validate validates block's PoW func (pow *ProofOfWork) Validate() bool { var hashInt big.Int data := pow.prepareData(pow.block.Nonce) hash := sha256.Sum256(data) hashInt.SetBytes(hash[:]) isValid := hashInt.Cmp(pow.target) == -1 return isValid }