andlabs-ui/main.go

133 lines
3.5 KiB
Go

// 11 december 2015
package ui
import (
"errors"
"runtime"
"sync"
"unsafe"
)
// #include "pkgui.h"
import "C"
// make sure main() runs on the first thread created by the OS
// if main() calls Main(), things will just work on macOS, where the first thread created by the OS is the only thread allowed to be the main GUI thread
// we might as well lock the OS thread for the other platforms here too (though on those it doesn't matter *which* thread we lock to)
// TODO describe the source of this trick
func init() {
runtime.LockOSThread()
}
// Main initializes package ui, runs f to set up the program,
// and executes the GUI main loop. f should set up the program's
// initial state: open the main window, create controls, and set up
// events. It should then return, at which point Main will
// process events until Quit is called, at which point Main will return
// nil. If package ui fails to initialize, Main returns an appropriate
// error.
func Main(f func()) error {
opts := C.pkguiAllocInitOptions()
estr := C.uiInit(opts)
C.pkguiFreeInitOptions(opts)
if estr != nil {
err := errors.New(C.GoString(estr))
C.uiFreeInitError(estr)
return err
}
C.pkguiOnShouldQuit()
QueueMain(f)
C.uiMain()
return nil
}
// Uninit calls C.uiUninit to uninitialize all allocated objects
func Uninit() {
C.uiUninit()
}
// Quit queues a return from Main. It does not exit the program.
// It also does not immediately cause Main to return; Main will
// return when it next can. Quit must be called from the GUI thread.
func Quit() {
C.uiQuit()
}
// These prevent the passing of Go functions into C land.
// TODO make an actual sparse list instead of this monotonic map thingy
var (
qmmap = make(map[uintptr]func())
qmcurrent = uintptr(0)
qmlock sync.Mutex
)
// QueueMain queues f to be executed on the GUI thread when
// next possible. It returns immediately; that is, it does not wait
// for the function to actually be executed. QueueMain is the only
// function that can be called from other goroutines, and its
// primary purpose is to allow communication between other
// goroutines and the GUI thread. Calling QueueMain after Quit
// has been called results in undefined behavior.
//
// If you start a goroutine in f, it also cannot call package ui
// functions. So for instance, the following will result in
// undefined behavior:
//
// ui.QueueMain(func() {
// go ui.MsgBox(...)
// })
func QueueMain(f func()) {
qmlock.Lock()
defer qmlock.Unlock()
n := uintptr(0)
for {
n = qmcurrent
qmcurrent++
if qmmap[n] == nil {
break
}
}
qmmap[n] = f
C.pkguiQueueMain(C.uintptr_t(n))
}
//export pkguiDoQueueMain
func pkguiDoQueueMain(nn unsafe.Pointer) {
qmlock.Lock()
n := uintptr(nn)
f := qmmap[n]
delete(qmmap, n)
// allow uiQueueMain() to be called by a queued function
// TODO explicitly allow this in libui too
qmlock.Unlock()
f()
}
// no need to lock this; this API is only safe on the main thread
var shouldQuitFunc func() bool
// OnShouldQuit schedules f to be exeucted when the OS wants
// the program to quit or when a Quit menu item has been clicked.
// Only one function may be registered at a time. If the function
// returns true, Quit will be called. If the function returns false, or
// if OnShouldQuit is never called. Quit will not be called and the
// OS will be told that the program needs to continue running.
func OnShouldQuit(f func() bool) {
shouldQuitFunc = f
}
//export pkguiDoOnShouldQuit
func pkguiDoOnShouldQuit(unused unsafe.Pointer) C.int {
if shouldQuitFunc == nil {
return 0
}
return frombool(shouldQuitFunc())
}
// TODO Timer?