// 25 february 2014 package ui import ( "fmt" "sync" ) // A Grid arranges Controls in a two-dimensional grid. // The height of each row and the width of each column is the maximum preferred height and width (respectively) of all the controls in that row or column (respectively). // Controls are aligned to the top left corner of each cell. // All Controls in a Grid maintain their preferred sizes by default; if a Control is marked as being "filling", it will be sized to fill its cell. // Even if a Control is marked as filling, its preferred size is used to calculate cell sizes. // One Control can be marked as "stretchy": when the Window containing the Grid is resized, the cell containing that Control resizes to take any remaining space; its row and column are adjusted accordingly (so other filling controls in the same row and column will fill to the new height and width, respectively). // A stretchy Control implicitly fills its cell. // All cooridnates in a Grid are given in (row,column) form with (0,0) being the top-left cell. // Unlike other UI toolkit Grids, this Grid does not (yet? TODO) allow Controls to span multiple rows or columns. // TODO differnet row/column control alignment; stretchy controls or other resizing options type Grid struct { lock sync.Mutex created bool controls [][]Control filling [][]bool stretchyrow, stretchycol int widths, heights [][]int // caches to avoid reallocating each time rowheights, colwidths []int } // NewGrid creates a new Grid with the given Controls. // NewGrid needs to know the number of Controls in a row (alternatively, the number of columns); it will determine the number in a column from the number of Controls given. // NewGrid panics if not given a full grid of Controls. // Example: // grid := NewGrid(3, // control00, control01, control02, // control10, control11, control12, // control20, control21, control22) func NewGrid(nPerRow int, controls ...Control) *Grid { if len(controls) % nPerRow != 0 { panic(fmt.Errorf("incomplete grid given to NewGrid() (not enough controls to evenly divide %d controls into rows of %d controls each)", len(controls), nPerRow)) } nRows := len(controls) / nPerRow cc := make([][]Control, nRows) cf := make([][]bool, nRows) cw := make([][]int, nRows) ch := make([][]int, nRows) i := 0 for row := 0; row < nRows; row++ { cc[row] = make([]Control, nPerRow) cf[row] = make([]bool, nPerRow) cw[row] = make([]int, nPerRow) ch[row] = make([]int, nPerRow) for x := 0; x < nPerRow; x++ { cc[row][x] = controls[i] i++ } } return &Grid{ controls: cc, filling: cf, stretchyrow: -1, stretchycol: -1, widths: cw, heights: ch, rowheights: make([]int, nRows), colwidths: make([]int, nPerRow), } } // SetFilling sets the given Control of the Grid as filling its cell instead of staying at its preferred size. // This function cannot be called after the Window that contains the Grid has been created. // (TODO action if coorindate invalid) func (g *Grid) SetFilling(row int, column int) { g.lock.Lock() defer g.lock.Unlock() if g.created { panic("Grid.SetFilling() called after window create") // TODO } g.filling[row][column] = true } // SetStretchy sets the given Control of the Grid as stretchy. // Stretchy implies filling. // This function cannot be called after the Window that contains the Grid has been created. // (TODO action if coorindate invalid) func (g *Grid) SetStretchy(row int, column int) { g.lock.Lock() defer g.lock.Unlock() if g.created { panic("Grid.SetFilling() called after window create") // TODO } g.stretchyrow = row g.stretchycol = column g.filling[row][column] = true } func (g *Grid) make(window *sysData) error { g.lock.Lock() defer g.lock.Unlock() for row, xcol := range g.controls { for col, c := range xcol { err := c.make(window) if err != nil { return fmt.Errorf("error adding control (%d,%d) to Grid: %v", row, col, err) } } } g.created = true return nil } func (g *Grid) setRect(x int, y int, width int, height int, winheight int) error { g.lock.Lock() defer g.lock.Unlock() max := func(a int, b int) int { if a > b { return a } return b } // 1) clear data structures for i := range g.rowheights { g.rowheights[i] = 0 } for i := range g.colwidths { g.colwidths[i] = 0 } // 2) get preferred sizes; compute row/column sizes for row, xcol := range g.controls { for col, c := range xcol { w, h, err := c.preferredSize() if err != nil { return fmt.Errorf("error getting preferred size of control (%d,%d) in Grid.setRect(): %v", row, col, err) } g.widths[row][col] = w g.heights[row][col] = h g.rowheights[row] = max(g.rowheights[row], h) g.colwidths[col] = max(g.colwidths[col], w) } } // 3) handle the stretchy control if g.stretchyrow != -1 && g.stretchycol != -1 { // TODO internal error if one is -1 but not both for i, w := range g.colwidths { if i != g.stretchycol { width -= w } } for i, h := range g.rowheights { if i != g.stretchyrow { height -= h } } g.colwidths[g.stretchycol] = width g.rowheights[g.stretchyrow] = height } // 4) draw startx := x for row, xcol := range g.controls { for col, c := range xcol { w := g.widths[row][col] h := g.heights[row][col] if g.filling[row][col] { w = g.colwidths[col] h = g.rowheights[row] } err := c.setRect(x, y, w, h, winheight) if err != nil { return fmt.Errorf("error setting size of control (%d,%d) in Grid.setRect(): %v", row, col, err) } x += g.colwidths[col] } x = startx y += g.rowheights[row] } return nil } // filling and stretchy are ignored for preferred size calculation func (g *Grid) preferredSize() (width int, height int, err error) { g.lock.Lock() defer g.lock.Unlock() max := func(a int, b int) int { if a > b { return a } return b } // 1) clear data structures for i := range g.rowheights { g.rowheights[i] = 0 } for i := range g.colwidths { g.colwidths[i] = 0 } // 2) get preferred sizes; compute row/column sizes for row, xcol := range g.controls { for col, c := range xcol { w, h, err := c.preferredSize() if err != nil { return 0, 0, fmt.Errorf("error getting preferred size of control (%d,%d) in Grid.setRect(): %v", row, col, err) } g.widths[row][col] = w g.heights[row][col] = h g.rowheights[row] = max(g.rowheights[row], h) g.colwidths[col] = max(g.colwidths[col], w) } } // 3) now compute for _, w := range g.colwidths { width += w } for _, h := range g.rowheights { height += h } return width, height, nil }