aminal/vendor/github.com/go-gl/mathgl/mgl32/project.go

99 lines
3.5 KiB
Go

// Copyright 2014 The go-gl Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mgl32
import (
"errors"
"math"
)
func Ortho(left, right, bottom, top, near, far float32) Mat4 {
rml, tmb, fmn := (right - left), (top - bottom), (far - near)
return Mat4{float32(2. / rml), 0, 0, 0, 0, float32(2. / tmb), 0, 0, 0, 0, float32(-2. / fmn), 0, float32(-(right + left) / rml), float32(-(top + bottom) / tmb), float32(-(far + near) / fmn), 1}
}
// Equivalent to Ortho with the near and far planes being -1 and 1, respectively
func Ortho2D(left, right, bottom, top float32) Mat4 {
return Ortho(left, right, bottom, top, -1, 1)
}
func Perspective(fovy, aspect, near, far float32) Mat4 {
// fovy = (fovy * math.Pi) / 180.0 // convert from degrees to radians
nmf, f := near-far, float32(1./math.Tan(float64(fovy)/2.0))
return Mat4{float32(f / aspect), 0, 0, 0, 0, float32(f), 0, 0, 0, 0, float32((near + far) / nmf), -1, 0, 0, float32((2. * far * near) / nmf), 0}
}
func Frustum(left, right, bottom, top, near, far float32) Mat4 {
rml, tmb, fmn := (right - left), (top - bottom), (far - near)
A, B, C, D := (right+left)/rml, (top+bottom)/tmb, -(far+near)/fmn, -(2*far*near)/fmn
return Mat4{float32((2. * near) / rml), 0, 0, 0, 0, float32((2. * near) / tmb), 0, 0, float32(A), float32(B), float32(C), -1, 0, 0, float32(D), 0}
}
func LookAt(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ float32) Mat4 {
return LookAtV(Vec3{eyeX, eyeY, eyeZ}, Vec3{centerX, centerY, centerZ}, Vec3{upX, upY, upZ})
}
// LookAtV generates a transform matrix from world space into the specific eye space
func LookAtV(eye, center, up Vec3) Mat4 {
f := center.Sub(eye).Normalize()
s := f.Cross(up.Normalize()).Normalize()
u := s.Cross(f)
M := Mat4{
s[0], u[0], -f[0], 0,
s[1], u[1], -f[1], 0,
s[2], u[2], -f[2], 0,
0, 0, 0, 1,
}
return M.Mul4(Translate3D(float32(-eye[0]), float32(-eye[1]), float32(-eye[2])))
}
// Transform a set of coordinates from object space (in obj) to window coordinates (with depth)
//
// Window coordinates are continuous, not discrete (well, as continuous as an IEEE Floating Point can be), so you won't get exact pixel locations
// without rounding or similar
func Project(obj Vec3, modelview, projection Mat4, initialX, initialY, width, height int) (win Vec3) {
obj4 := obj.Vec4(1)
vpp := projection.Mul4(modelview).Mul4x1(obj4)
vpp = vpp.Mul(1 / vpp.W())
win[0] = float32(initialX) + (float32(width)*(vpp[0]+1))/2
win[1] = float32(initialY) + (float32(height)*(vpp[1]+1))/2
win[2] = (vpp[2] + 1) / 2
return win
}
// Transform a set of window coordinates to object space. If your MVP (projection.Mul(modelview) matrix is not invertible, this will return an error
//
// Note that the projection may not be perfect if you use strict pixel locations rather than the exact values given by Projectf.
// (It's still unlikely to be perfect due to precision errors, but it will be closer)
func UnProject(win Vec3, modelview, projection Mat4, initialX, initialY, width, height int) (obj Vec3, err error) {
inv := projection.Mul4(modelview).Inv()
var blank Mat4
if inv == blank {
return Vec3{}, errors.New("Could not find matrix inverse (projection times modelview is probably non-singular)")
}
obj4 := inv.Mul4x1(Vec4{
(2 * (win[0] - float32(initialX)) / float32(width)) - 1,
(2 * (win[1] - float32(initialY)) / float32(height)) - 1,
2*win[2] - 1,
1.0,
})
obj = obj4.Vec3()
//if obj4[3] > MinValue {}
obj[0] /= obj4[3]
obj[1] /= obj4[3]
obj[2] /= obj4[3]
return obj, nil
}