// Copyright 2014 The go-gl Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package mgl32 import ( "math" ) // A rotation order is the order in which // rotations will be transformed for the purposes of AnglesToQuat type RotationOrder int const ( XYX RotationOrder = iota XYZ XZX XZY YXY YXZ YZY YZX ZYZ ZYX ZXZ ZXY ) // A Quaternion is an extension of the imaginary numbers; there's all sorts of // interesting theory behind it. In 3D graphics we mostly use it as a cheap way of // representing rotation since quaternions are cheaper to multiply by, and easier to // interpolate than matrices. // // A Quaternion has two parts: W, the so-called scalar component, // and "V", the vector component. The vector component is considered to // be the part in 3D space, while W (loosely interpreted) is its 4D coordinate. type Quat struct { W float32 V Vec3 } // The quaternion identity: W=1; V=(0,0,0). // // As with all identities, multiplying any quaternion by this will yield the same // quaternion you started with. func QuatIdent() Quat { return Quat{1., Vec3{0, 0, 0}} } // Creates an angle from an axis and an angle relative to that axis. // // This is cheaper than HomogRotate3D. func QuatRotate(angle float32, axis Vec3) Quat { // angle = (float32(math.Pi) * angle) / 180.0 c, s := float32(math.Cos(float64(angle/2))), float32(math.Sin(float64(angle/2))) return Quat{c, axis.Mul(s)} } // A convenient alias for q.V[0] func (q Quat) X() float32 { return q.V[0] } // A convenient alias for q.V[1] func (q Quat) Y() float32 { return q.V[1] } // A convenient alias for q.V[2] func (q Quat) Z() float32 { return q.V[2] } // Adds two quaternions. It's no more complicated than // adding their W and V components. func (q1 Quat) Add(q2 Quat) Quat { return Quat{q1.W + q2.W, q1.V.Add(q2.V)} } // Subtracts two quaternions. It's no more complicated than // subtracting their W and V components. func (q1 Quat) Sub(q2 Quat) Quat { return Quat{q1.W - q2.W, q1.V.Sub(q2.V)} } // Multiplies two quaternions. This can be seen as a rotation. Note that // Multiplication is NOT commutative, meaning q1.Mul(q2) does not necessarily // equal q2.Mul(q1). func (q1 Quat) Mul(q2 Quat) Quat { return Quat{q1.W*q2.W - q1.V.Dot(q2.V), q1.V.Cross(q2.V).Add(q2.V.Mul(q1.W)).Add(q1.V.Mul(q2.W))} } // Scales every element of the quaternion by some constant factor. func (q1 Quat) Scale(c float32) Quat { return Quat{q1.W * c, Vec3{q1.V[0] * c, q1.V[1] * c, q1.V[2] * c}} } // Returns the conjugate of a quaternion. Equivalent to // Quat{q1.W, q1.V.Mul(-1)} func (q1 Quat) Conjugate() Quat { return Quat{q1.W, q1.V.Mul(-1)} } // Returns the Length of the quaternion, also known as its Norm. This is the same thing as // the Len of a Vec4 func (q1 Quat) Len() float32 { return float32(math.Sqrt(float64(q1.W*q1.W + q1.V[0]*q1.V[0] + q1.V[1]*q1.V[1] + q1.V[2]*q1.V[2]))) } // Norm() is an alias for Len() since both are very common terms. func (q1 Quat) Norm() float32 { return q1.Len() } // Normalizes the quaternion, returning its versor (unit quaternion). // // This is the same as normalizing it as a Vec4. func (q1 Quat) Normalize() Quat { length := q1.Len() if FloatEqual(1, length) { return q1 } if length == 0 { return QuatIdent() } if length == InfPos { length = MaxValue } return Quat{q1.W * 1 / length, q1.V.Mul(1 / length)} } // The inverse of a quaternion. The inverse is equivalent // to the conjugate divided by the square of the length. // // This method computes the square norm by directly adding the sum // of the squares of all terms instead of actually squaring q1.Len(), // both for performance and precision. func (q1 Quat) Inverse() Quat { return q1.Conjugate().Scale(1 / q1.Dot(q1)) } // Rotates a vector by the rotation this quaternion represents. // This will result in a 3D vector. Strictly speaking, this is // equivalent to q1.v.q* where the "."" is quaternion multiplication and v is interpreted // as a quaternion with W 0 and V v. In code: // q1.Mul(Quat{0,v}).Mul(q1.Conjugate()), and // then retrieving the imaginary (vector) part. // // In practice, we hand-compute this in the general case and simplify // to save a few operations. func (q1 Quat) Rotate(v Vec3) Vec3 { cross := q1.V.Cross(v) // v + 2q_w * (q_v x v) + 2q_v x (q_v x v) return v.Add(cross.Mul(2 * q1.W)).Add(q1.V.Mul(2).Cross(cross)) } // Returns the homogeneous 3D rotation matrix corresponding to the quaternion. func (q1 Quat) Mat4() Mat4 { w, x, y, z := q1.W, q1.V[0], q1.V[1], q1.V[2] return Mat4{ 1 - 2*y*y - 2*z*z, 2*x*y + 2*w*z, 2*x*z - 2*w*y, 0, 2*x*y - 2*w*z, 1 - 2*x*x - 2*z*z, 2*y*z + 2*w*x, 0, 2*x*z + 2*w*y, 2*y*z - 2*w*x, 1 - 2*x*x - 2*y*y, 0, 0, 0, 0, 1, } } // The dot product between two quaternions, equivalent to if this was a Vec4 func (q1 Quat) Dot(q2 Quat) float32 { return q1.W*q2.W + q1.V[0]*q2.V[0] + q1.V[1]*q2.V[1] + q1.V[2]*q2.V[2] } // Returns whether the quaternions are approximately equal, as if // FloatEqual was called on each matching element func (q1 Quat) ApproxEqual(q2 Quat) bool { return FloatEqual(q1.W, q2.W) && q1.V.ApproxEqual(q2.V) } // Returns whether the quaternions are approximately equal with a given tolerence, as if // FloatEqualThreshold was called on each matching element with the given epsilon func (q1 Quat) ApproxEqualThreshold(q2 Quat, epsilon float32) bool { return FloatEqualThreshold(q1.W, q2.W, epsilon) && q1.V.ApproxEqualThreshold(q2.V, epsilon) } // Returns whether the quaternions are approximately equal using the given comparison function, as if // the function had been called on each individual element func (q1 Quat) ApproxEqualFunc(q2 Quat, f func(float32, float32) bool) bool { return f(q1.W, q2.W) && q1.V.ApproxFuncEqual(q2.V, f) } // Returns whether the quaternions represents the same orientation // // Different values can represent the same orientation (q == -q) because quaternions avoid singularities // and discontinuities involved with rotation in 3 dimensions by adding extra dimensions func (q1 Quat) OrientationEqual(q2 Quat) bool { return q1.OrientationEqualThreshold(q2, Epsilon) } // Returns whether the quaternions represents the same orientation with a given tolerence func (q1 Quat) OrientationEqualThreshold(q2 Quat, epsilon float32) bool { return Abs(q1.Normalize().Dot(q2.Normalize())) > 1-epsilon } // Slerp is *S*pherical *L*inear Int*erp*olation, a method of interpolating // between two quaternions. This always takes the straightest path on the sphere between // the two quaternions, and maintains constant velocity. // // However, it's expensive and QuatSlerp(q1,q2) is not the same as QuatSlerp(q2,q1) func QuatSlerp(q1, q2 Quat, amount float32) Quat { q1, q2 = q1.Normalize(), q2.Normalize() dot := q1.Dot(q2) // If the inputs are too close for comfort, linearly interpolate and normalize the result. if dot > 0.9995 { return QuatNlerp(q1, q2, amount) } // This is here for precision errors, I'm perfectly aware that *technically* the dot is bound [-1,1], but since Acos will freak out if it's not (even if it's just a liiiiitle bit over due to normal error) we need to clamp it dot = Clamp(dot, -1, 1) theta := float32(math.Acos(float64(dot))) * amount c, s := float32(math.Cos(float64(theta))), float32(math.Sin(float64(theta))) rel := q2.Sub(q1.Scale(dot)).Normalize() return q1.Scale(c).Add(rel.Scale(s)) } // *L*inear Int*erp*olation between two Quaternions, cheap and simple. // // Not excessively useful, but uses can be found. func QuatLerp(q1, q2 Quat, amount float32) Quat { return q1.Add(q2.Sub(q1).Scale(amount)) } // *Normalized* *L*inear Int*erp*olation between two Quaternions. Cheaper than Slerp // and usually just as good. This is literally Lerp with Normalize() called on it. // // Unlike Slerp, constant velocity isn't maintained, but it's much faster and // Nlerp(q1,q2) and Nlerp(q2,q1) return the same path. You should probably // use this more often unless you're suffering from choppiness due to the // non-constant velocity problem. func QuatNlerp(q1, q2 Quat, amount float32) Quat { return QuatLerp(q1, q2, amount).Normalize() } // Performs a rotation in the specified order. If the order is not // a valid RotationOrder, this function will panic // // The rotation "order" is more of an axis descriptor. For instance XZX would // tell the function to interpret angle1 as a rotation about the X axis, angle2 about // the Z axis, and angle3 about the X axis again. // // Based off the code for the Matlab function "angle2quat", though this implementation // only supports 3 single angles as opposed to multiple angles. func AnglesToQuat(angle1, angle2, angle3 float32, order RotationOrder) Quat { var s [3]float64 var c [3]float64 s[0], c[0] = math.Sincos(float64(angle1 / 2)) s[1], c[1] = math.Sincos(float64(angle2 / 2)) s[2], c[2] = math.Sincos(float64(angle3 / 2)) ret := Quat{} switch order { case ZYX: ret.W = float32(c[0]*c[1]*c[2] + s[0]*s[1]*s[2]) ret.V = Vec3{float32(c[0]*c[1]*s[2] - s[0]*s[1]*c[2]), float32(c[0]*s[1]*c[2] + s[0]*c[1]*s[2]), float32(s[0]*c[1]*c[2] - c[0]*s[1]*s[2]), } case ZYZ: ret.W = float32(c[0]*c[1]*c[2] - s[0]*c[1]*s[2]) ret.V = Vec3{float32(c[0]*s[1]*s[2] - s[0]*s[1]*c[2]), float32(c[0]*s[1]*c[2] + s[0]*s[1]*s[2]), float32(s[0]*c[1]*c[2] + c[0]*c[1]*s[2]), } case ZXY: ret.W = float32(c[0]*c[1]*c[2] - s[0]*s[1]*s[2]) ret.V = Vec3{float32(c[0]*s[1]*c[2] - s[0]*c[1]*s[2]), float32(c[0]*c[1]*s[2] + s[0]*s[1]*c[2]), float32(c[0]*s[1]*s[2] + s[0]*c[1]*c[2]), } case ZXZ: ret.W = float32(c[0]*c[1]*c[2] - s[0]*c[1]*s[2]) ret.V = Vec3{float32(c[0]*s[1]*c[2] + s[0]*s[1]*s[2]), float32(s[0]*s[1]*c[2] - c[0]*s[1]*s[2]), float32(c[0]*c[1]*s[2] + s[0]*c[1]*c[2]), } case YXZ: ret.W = float32(c[0]*c[1]*c[2] + s[0]*s[1]*s[2]) ret.V = Vec3{float32(c[0]*s[1]*c[2] + s[0]*c[1]*s[2]), float32(s[0]*c[1]*c[2] - c[0]*s[1]*s[2]), float32(c[0]*c[1]*s[2] - s[0]*s[1]*c[2]), } case YXY: ret.W = float32(c[0]*c[1]*c[2] - s[0]*c[1]*s[2]) ret.V = Vec3{float32(c[0]*s[1]*c[2] + s[0]*s[1]*s[2]), float32(s[0]*c[1]*c[2] + c[0]*c[1]*s[2]), float32(c[0]*s[1]*s[2] - s[0]*s[1]*c[2]), } case YZX: ret.W = float32(c[0]*c[1]*c[2] - s[0]*s[1]*s[2]) ret.V = Vec3{float32(c[0]*c[1]*s[2] + s[0]*s[1]*c[2]), float32(c[0]*s[1]*s[2] + s[0]*c[1]*c[2]), float32(c[0]*s[1]*c[2] - s[0]*c[1]*s[2]), } case YZY: ret.W = float32(c[0]*c[1]*c[2] - s[0]*c[1]*s[2]) ret.V = Vec3{float32(s[0]*s[1]*c[2] - c[0]*s[1]*s[2]), float32(c[0]*c[1]*s[2] + s[0]*c[1]*c[2]), float32(c[0]*s[1]*c[2] + s[0]*s[1]*s[2]), } case XYZ: ret.W = float32(c[0]*c[1]*c[2] - s[0]*s[1]*s[2]) ret.V = Vec3{float32(c[0]*s[1]*s[2] + s[0]*c[1]*c[2]), float32(c[0]*s[1]*c[2] - s[0]*c[1]*s[2]), float32(c[0]*c[1]*s[2] + s[0]*s[1]*c[2]), } case XYX: ret.W = float32(c[0]*c[1]*c[2] - s[0]*c[1]*s[2]) ret.V = Vec3{float32(c[0]*c[1]*s[2] + s[0]*c[1]*c[2]), float32(c[0]*s[1]*c[2] + s[0]*s[1]*s[2]), float32(s[0]*s[1]*c[2] - c[0]*s[1]*s[2]), } case XZY: ret.W = float32(c[0]*c[1]*c[2] + s[0]*s[1]*s[2]) ret.V = Vec3{float32(s[0]*c[1]*c[2] - c[0]*s[1]*s[2]), float32(c[0]*c[1]*s[2] - s[0]*s[1]*c[2]), float32(c[0]*s[1]*c[2] + s[0]*c[1]*s[2]), } case XZX: ret.W = float32(c[0]*c[1]*c[2] - s[0]*c[1]*s[2]) ret.V = Vec3{float32(c[0]*c[1]*s[2] + s[0]*c[1]*c[2]), float32(c[0]*s[1]*s[2] - s[0]*s[1]*c[2]), float32(c[0]*s[1]*c[2] + s[0]*s[1]*s[2]), } default: panic("Unsupported rotation order") } return ret } // Mat4ToQuat converts a pure rotation matrix into a quaternion func Mat4ToQuat(m Mat4) Quat { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm if tr := m[0] + m[5] + m[10]; tr > 0 { s := float32(0.5 / math.Sqrt(float64(tr+1.0))) return Quat{ 0.25 / s, Vec3{ (m[6] - m[9]) * s, (m[8] - m[2]) * s, (m[1] - m[4]) * s, }, } } if (m[0] > m[5]) && (m[0] > m[10]) { s := float32(2.0 * math.Sqrt(float64(1.0+m[0]-m[5]-m[10]))) return Quat{ (m[6] - m[9]) / s, Vec3{ 0.25 * s, (m[4] + m[1]) / s, (m[8] + m[2]) / s, }, } } if m[5] > m[10] { s := float32(2.0 * math.Sqrt(float64(1.0+m[5]-m[0]-m[10]))) return Quat{ (m[8] - m[2]) / s, Vec3{ (m[4] + m[1]) / s, 0.25 * s, (m[9] + m[6]) / s, }, } } s := float32(2.0 * math.Sqrt(float64(1.0+m[10]-m[0]-m[5]))) return Quat{ (m[1] - m[4]) / s, Vec3{ (m[8] + m[2]) / s, (m[9] + m[6]) / s, 0.25 * s, }, } } // QuatLookAtV creates a rotation from an eye vector to a center vector // // It assumes the front of the rotated object at Z- and up at Y+ func QuatLookAtV(eye, center, up Vec3) Quat { // http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#I_need_an_equivalent_of_gluLookAt__How_do_I_orient_an_object_towards_a_point__ // https://bitbucket.org/sinbad/ogre/src/d2ef494c4a2f5d6e2f0f17d3bfb9fd936d5423bb/OgreMain/src/OgreCamera.cpp?at=default#cl-161 direction := center.Sub(eye).Normalize() // Find the rotation between the front of the object (that we assume towards Z-, // but this depends on your model) and the desired direction rotDir := QuatBetweenVectors(Vec3{0, 0, -1}, direction) // Recompute up so that it's perpendicular to the direction // You can skip that part if you really want to force up //right := direction.Cross(up) //up = right.Cross(direction) // Because of the 1rst rotation, the up is probably completely screwed up. // Find the rotation between the "up" of the rotated object, and the desired up upCur := rotDir.Rotate(Vec3{0, 1, 0}) rotUp := QuatBetweenVectors(upCur, up) rotTarget := rotUp.Mul(rotDir) // remember, in reverse order. return rotTarget.Inverse() // camera rotation should be inversed! } // QuatBetweenVectors calculates the rotation between two vectors func QuatBetweenVectors(start, dest Vec3) Quat { // http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#I_need_an_equivalent_of_gluLookAt__How_do_I_orient_an_object_towards_a_point__ // https://github.com/g-truc/glm/blob/0.9.5/glm/gtx/quaternion.inl#L225 // https://bitbucket.org/sinbad/ogre/src/d2ef494c4a2f5d6e2f0f17d3bfb9fd936d5423bb/OgreMain/include/OgreVector3.h?at=default#cl-654 start = start.Normalize() dest = dest.Normalize() epsilon := float32(0.001) cosTheta := start.Dot(dest) if cosTheta < -1.0+epsilon { // special case when vectors in opposite directions: // there is no "ideal" rotation axis // So guess one; any will do as long as it's perpendicular to start axis := Vec3{1, 0, 0}.Cross(start) if axis.Dot(axis) < epsilon { // bad luck, they were parallel, try again! axis = Vec3{0, 1, 0}.Cross(start) } return QuatRotate(math.Pi, axis.Normalize()) } axis := start.Cross(dest) s := float32(math.Sqrt(float64(1.0+cosTheta) * 2.0)) return Quat{ s * 0.5, axis.Mul(1.0 / s), } }