Merge pull request #52 from mdaffin/remove-vendor

Removes the vendor director in favour of go modules support
This commit is contained in:
Liam Galvin 2018-10-30 20:56:50 +00:00 committed by GitHub
commit 6a643a763e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
233 changed files with 31 additions and 50301 deletions

View File

@ -7,19 +7,7 @@ jobs:
docker:
# specify the version
- image: liamg/golang-opengl
# Specify service dependencies here if necessary
# CircleCI maintains a library of pre-built images
# documented at https://circleci.com/docs/2.0/circleci-images/
# - image: circleci/postgres:9.4
#### TEMPLATE_NOTE: go expects specific checkout path representing url
#### expecting it in the form of
#### /go/src/github.com/circleci/go-tool
#### /go/src/bitbucket.org/circleci/go-tool
working_directory: /go/src/github.com/liamg/aminal
working_directory: /aminal
steps:
- checkout
# specify any bash command here prefixed with `run: `
- run: go test -v ./...
- run: go test -v ./...

View File

@ -18,7 +18,6 @@ Ensure you have your latest graphics card drivers installed before use.
![Example sixel](sixel.png)
## Aims
- Unicode support
@ -50,27 +49,38 @@ Ensure you have your latest graphics card drivers installed before use.
| MacOSX | ⏳ |
| Windows | ⏳ |
## Build Dependencies
## Quick Start
### Dependencies
- [Go 1.11+](https://golang.org/dl/)
- On macOS, you need Xcode or Command Line Tools for Xcode (`xcode-select --install`) for required headers and libraries.
- On Ubuntu/Debian-like Linux distributions, you need `libgl1-mesa-dev xorg-dev`.
- On CentOS/Fedora-like Linux distributions, you need `libX11-devel libXcursor-devel libXrandr-devel libXinerama-devel mesa-libGL-devel libXi-devel`.
### Build
```
git clone https://github.com/liamg/aminal.git
cd aminal
go build
./aminal
```
## Keyboard Shortcuts
| Operation | Key(s) |
| --------------------- | -------------------- |
| Select text | click + drag |
| Select word | double click |
| Select line | triple click |
| Copy | ctrl + shift + c |
| Paste | ctrl + shift + v |
| Google selected text | ctrl + shift + g |
| Report bug in aminal | ctrl + shift + r |
| Explain text | ctrl + shift + click |
| Toggle slomo | ctrl + shift + ; |
| Operation | Key(s) |
| -------------------- | -------------------- |
| Select text | click + drag |
| Select word | double click |
| Select line | triple click |
| Copy | ctrl + shift + c |
| Paste | ctrl + shift + v |
| Google selected text | ctrl + shift + g |
| Report bug in aminal | ctrl + shift + r |
| Explain text | ctrl + shift + click |
| Toggle slomo | ctrl + shift + ; |
## Configuration
Aminal looks for a config file in `~/.aminal.toml`, and will write one there the first time it runs, if it doesn't already exist.
@ -79,8 +89,8 @@ You can ignore the config and use defaults by specifying `--ignore-config` as a
### Config Options/CLI Flags
| CLI Flag | Config Section | Config Name | Type | Default | Description |
| ---------------- | -------------- | -------------- | ------- | ------- | ----------------------------------------------------------------------------------------------------------------------------- |
| --debug | _root_ | debug | boolean | false | Enable debug mode, with debug logging and debug info terminal overlay. |
| --slomo | _root_ | slomo | boolean | false | Enable slomo mode, delay the handling of each incoming byte (or escape sequence) from the pty by 100ms. Useful for debugging. |
| --shell [shell] | _root_ | shell | string | User's shell | Use the specified shell program instead of the user's usual one. |
| CLI Flag | Config Section | Config Name | Type | Default | Description |
| --------------- | -------------- | ----------- | ------- | ------------ | ----------------------------------------------------------------------------------------------------------------------------- |
| --debug | _root_ | debug | boolean | false | Enable debug mode, with debug logging and debug info terminal overlay. |
| --slomo | _root_ | slomo | boolean | false | Enable slomo mode, delay the handling of each incoming byte (or escape sequence) from the pty by 100ms. Useful for debugging. |
| --shell [shell] | _root_ | shell | string | User's shell | Use the specified shell program instead of the user's usual one. |

View File

@ -1,5 +0,0 @@
TAGS
tags
.*.swp
tomlcheck/tomlcheck
toml.test

View File

@ -1,15 +0,0 @@
language: go
go:
- 1.1
- 1.2
- 1.3
- 1.4
- 1.5
- 1.6
- tip
install:
- go install ./...
- go get github.com/BurntSushi/toml-test
script:
- export PATH="$PATH:$HOME/gopath/bin"
- make test

View File

@ -1,3 +0,0 @@
Compatible with TOML version
[v0.4.0](https://github.com/toml-lang/toml/blob/v0.4.0/versions/en/toml-v0.4.0.md)

View File

@ -1,21 +0,0 @@
The MIT License (MIT)
Copyright (c) 2013 TOML authors
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

View File

@ -1,19 +0,0 @@
install:
go install ./...
test: install
go test -v
toml-test toml-test-decoder
toml-test -encoder toml-test-encoder
fmt:
gofmt -w *.go */*.go
colcheck *.go */*.go
tags:
find ./ -name '*.go' -print0 | xargs -0 gotags > TAGS
push:
git push origin master
git push github master

View File

@ -1,218 +0,0 @@
## TOML parser and encoder for Go with reflection
TOML stands for Tom's Obvious, Minimal Language. This Go package provides a
reflection interface similar to Go's standard library `json` and `xml`
packages. This package also supports the `encoding.TextUnmarshaler` and
`encoding.TextMarshaler` interfaces so that you can define custom data
representations. (There is an example of this below.)
Spec: https://github.com/toml-lang/toml
Compatible with TOML version
[v0.4.0](https://github.com/toml-lang/toml/blob/master/versions/en/toml-v0.4.0.md)
Documentation: https://godoc.org/github.com/BurntSushi/toml
Installation:
```bash
go get github.com/BurntSushi/toml
```
Try the toml validator:
```bash
go get github.com/BurntSushi/toml/cmd/tomlv
tomlv some-toml-file.toml
```
[![Build Status](https://travis-ci.org/BurntSushi/toml.svg?branch=master)](https://travis-ci.org/BurntSushi/toml) [![GoDoc](https://godoc.org/github.com/BurntSushi/toml?status.svg)](https://godoc.org/github.com/BurntSushi/toml)
### Testing
This package passes all tests in
[toml-test](https://github.com/BurntSushi/toml-test) for both the decoder
and the encoder.
### Examples
This package works similarly to how the Go standard library handles `XML`
and `JSON`. Namely, data is loaded into Go values via reflection.
For the simplest example, consider some TOML file as just a list of keys
and values:
```toml
Age = 25
Cats = [ "Cauchy", "Plato" ]
Pi = 3.14
Perfection = [ 6, 28, 496, 8128 ]
DOB = 1987-07-05T05:45:00Z
```
Which could be defined in Go as:
```go
type Config struct {
Age int
Cats []string
Pi float64
Perfection []int
DOB time.Time // requires `import time`
}
```
And then decoded with:
```go
var conf Config
if _, err := toml.Decode(tomlData, &conf); err != nil {
// handle error
}
```
You can also use struct tags if your struct field name doesn't map to a TOML
key value directly:
```toml
some_key_NAME = "wat"
```
```go
type TOML struct {
ObscureKey string `toml:"some_key_NAME"`
}
```
### Using the `encoding.TextUnmarshaler` interface
Here's an example that automatically parses duration strings into
`time.Duration` values:
```toml
[[song]]
name = "Thunder Road"
duration = "4m49s"
[[song]]
name = "Stairway to Heaven"
duration = "8m03s"
```
Which can be decoded with:
```go
type song struct {
Name string
Duration duration
}
type songs struct {
Song []song
}
var favorites songs
if _, err := toml.Decode(blob, &favorites); err != nil {
log.Fatal(err)
}
for _, s := range favorites.Song {
fmt.Printf("%s (%s)\n", s.Name, s.Duration)
}
```
And you'll also need a `duration` type that satisfies the
`encoding.TextUnmarshaler` interface:
```go
type duration struct {
time.Duration
}
func (d *duration) UnmarshalText(text []byte) error {
var err error
d.Duration, err = time.ParseDuration(string(text))
return err
}
```
### More complex usage
Here's an example of how to load the example from the official spec page:
```toml
# This is a TOML document. Boom.
title = "TOML Example"
[owner]
name = "Tom Preston-Werner"
organization = "GitHub"
bio = "GitHub Cofounder & CEO\nLikes tater tots and beer."
dob = 1979-05-27T07:32:00Z # First class dates? Why not?
[database]
server = "192.168.1.1"
ports = [ 8001, 8001, 8002 ]
connection_max = 5000
enabled = true
[servers]
# You can indent as you please. Tabs or spaces. TOML don't care.
[servers.alpha]
ip = "10.0.0.1"
dc = "eqdc10"
[servers.beta]
ip = "10.0.0.2"
dc = "eqdc10"
[clients]
data = [ ["gamma", "delta"], [1, 2] ] # just an update to make sure parsers support it
# Line breaks are OK when inside arrays
hosts = [
"alpha",
"omega"
]
```
And the corresponding Go types are:
```go
type tomlConfig struct {
Title string
Owner ownerInfo
DB database `toml:"database"`
Servers map[string]server
Clients clients
}
type ownerInfo struct {
Name string
Org string `toml:"organization"`
Bio string
DOB time.Time
}
type database struct {
Server string
Ports []int
ConnMax int `toml:"connection_max"`
Enabled bool
}
type server struct {
IP string
DC string
}
type clients struct {
Data [][]interface{}
Hosts []string
}
```
Note that a case insensitive match will be tried if an exact match can't be
found.
A working example of the above can be found in `_examples/example.{go,toml}`.

View File

@ -1,509 +0,0 @@
package toml
import (
"fmt"
"io"
"io/ioutil"
"math"
"reflect"
"strings"
"time"
)
func e(format string, args ...interface{}) error {
return fmt.Errorf("toml: "+format, args...)
}
// Unmarshaler is the interface implemented by objects that can unmarshal a
// TOML description of themselves.
type Unmarshaler interface {
UnmarshalTOML(interface{}) error
}
// Unmarshal decodes the contents of `p` in TOML format into a pointer `v`.
func Unmarshal(p []byte, v interface{}) error {
_, err := Decode(string(p), v)
return err
}
// Primitive is a TOML value that hasn't been decoded into a Go value.
// When using the various `Decode*` functions, the type `Primitive` may
// be given to any value, and its decoding will be delayed.
//
// A `Primitive` value can be decoded using the `PrimitiveDecode` function.
//
// The underlying representation of a `Primitive` value is subject to change.
// Do not rely on it.
//
// N.B. Primitive values are still parsed, so using them will only avoid
// the overhead of reflection. They can be useful when you don't know the
// exact type of TOML data until run time.
type Primitive struct {
undecoded interface{}
context Key
}
// DEPRECATED!
//
// Use MetaData.PrimitiveDecode instead.
func PrimitiveDecode(primValue Primitive, v interface{}) error {
md := MetaData{decoded: make(map[string]bool)}
return md.unify(primValue.undecoded, rvalue(v))
}
// PrimitiveDecode is just like the other `Decode*` functions, except it
// decodes a TOML value that has already been parsed. Valid primitive values
// can *only* be obtained from values filled by the decoder functions,
// including this method. (i.e., `v` may contain more `Primitive`
// values.)
//
// Meta data for primitive values is included in the meta data returned by
// the `Decode*` functions with one exception: keys returned by the Undecoded
// method will only reflect keys that were decoded. Namely, any keys hidden
// behind a Primitive will be considered undecoded. Executing this method will
// update the undecoded keys in the meta data. (See the example.)
func (md *MetaData) PrimitiveDecode(primValue Primitive, v interface{}) error {
md.context = primValue.context
defer func() { md.context = nil }()
return md.unify(primValue.undecoded, rvalue(v))
}
// Decode will decode the contents of `data` in TOML format into a pointer
// `v`.
//
// TOML hashes correspond to Go structs or maps. (Dealer's choice. They can be
// used interchangeably.)
//
// TOML arrays of tables correspond to either a slice of structs or a slice
// of maps.
//
// TOML datetimes correspond to Go `time.Time` values.
//
// All other TOML types (float, string, int, bool and array) correspond
// to the obvious Go types.
//
// An exception to the above rules is if a type implements the
// encoding.TextUnmarshaler interface. In this case, any primitive TOML value
// (floats, strings, integers, booleans and datetimes) will be converted to
// a byte string and given to the value's UnmarshalText method. See the
// Unmarshaler example for a demonstration with time duration strings.
//
// Key mapping
//
// TOML keys can map to either keys in a Go map or field names in a Go
// struct. The special `toml` struct tag may be used to map TOML keys to
// struct fields that don't match the key name exactly. (See the example.)
// A case insensitive match to struct names will be tried if an exact match
// can't be found.
//
// The mapping between TOML values and Go values is loose. That is, there
// may exist TOML values that cannot be placed into your representation, and
// there may be parts of your representation that do not correspond to
// TOML values. This loose mapping can be made stricter by using the IsDefined
// and/or Undecoded methods on the MetaData returned.
//
// This decoder will not handle cyclic types. If a cyclic type is passed,
// `Decode` will not terminate.
func Decode(data string, v interface{}) (MetaData, error) {
rv := reflect.ValueOf(v)
if rv.Kind() != reflect.Ptr {
return MetaData{}, e("Decode of non-pointer %s", reflect.TypeOf(v))
}
if rv.IsNil() {
return MetaData{}, e("Decode of nil %s", reflect.TypeOf(v))
}
p, err := parse(data)
if err != nil {
return MetaData{}, err
}
md := MetaData{
p.mapping, p.types, p.ordered,
make(map[string]bool, len(p.ordered)), nil,
}
return md, md.unify(p.mapping, indirect(rv))
}
// DecodeFile is just like Decode, except it will automatically read the
// contents of the file at `fpath` and decode it for you.
func DecodeFile(fpath string, v interface{}) (MetaData, error) {
bs, err := ioutil.ReadFile(fpath)
if err != nil {
return MetaData{}, err
}
return Decode(string(bs), v)
}
// DecodeReader is just like Decode, except it will consume all bytes
// from the reader and decode it for you.
func DecodeReader(r io.Reader, v interface{}) (MetaData, error) {
bs, err := ioutil.ReadAll(r)
if err != nil {
return MetaData{}, err
}
return Decode(string(bs), v)
}
// unify performs a sort of type unification based on the structure of `rv`,
// which is the client representation.
//
// Any type mismatch produces an error. Finding a type that we don't know
// how to handle produces an unsupported type error.
func (md *MetaData) unify(data interface{}, rv reflect.Value) error {
// Special case. Look for a `Primitive` value.
if rv.Type() == reflect.TypeOf((*Primitive)(nil)).Elem() {
// Save the undecoded data and the key context into the primitive
// value.
context := make(Key, len(md.context))
copy(context, md.context)
rv.Set(reflect.ValueOf(Primitive{
undecoded: data,
context: context,
}))
return nil
}
// Special case. Unmarshaler Interface support.
if rv.CanAddr() {
if v, ok := rv.Addr().Interface().(Unmarshaler); ok {
return v.UnmarshalTOML(data)
}
}
// Special case. Handle time.Time values specifically.
// TODO: Remove this code when we decide to drop support for Go 1.1.
// This isn't necessary in Go 1.2 because time.Time satisfies the encoding
// interfaces.
if rv.Type().AssignableTo(rvalue(time.Time{}).Type()) {
return md.unifyDatetime(data, rv)
}
// Special case. Look for a value satisfying the TextUnmarshaler interface.
if v, ok := rv.Interface().(TextUnmarshaler); ok {
return md.unifyText(data, v)
}
// BUG(burntsushi)
// The behavior here is incorrect whenever a Go type satisfies the
// encoding.TextUnmarshaler interface but also corresponds to a TOML
// hash or array. In particular, the unmarshaler should only be applied
// to primitive TOML values. But at this point, it will be applied to
// all kinds of values and produce an incorrect error whenever those values
// are hashes or arrays (including arrays of tables).
k := rv.Kind()
// laziness
if k >= reflect.Int && k <= reflect.Uint64 {
return md.unifyInt(data, rv)
}
switch k {
case reflect.Ptr:
elem := reflect.New(rv.Type().Elem())
err := md.unify(data, reflect.Indirect(elem))
if err != nil {
return err
}
rv.Set(elem)
return nil
case reflect.Struct:
return md.unifyStruct(data, rv)
case reflect.Map:
return md.unifyMap(data, rv)
case reflect.Array:
return md.unifyArray(data, rv)
case reflect.Slice:
return md.unifySlice(data, rv)
case reflect.String:
return md.unifyString(data, rv)
case reflect.Bool:
return md.unifyBool(data, rv)
case reflect.Interface:
// we only support empty interfaces.
if rv.NumMethod() > 0 {
return e("unsupported type %s", rv.Type())
}
return md.unifyAnything(data, rv)
case reflect.Float32:
fallthrough
case reflect.Float64:
return md.unifyFloat64(data, rv)
}
return e("unsupported type %s", rv.Kind())
}
func (md *MetaData) unifyStruct(mapping interface{}, rv reflect.Value) error {
tmap, ok := mapping.(map[string]interface{})
if !ok {
if mapping == nil {
return nil
}
return e("type mismatch for %s: expected table but found %T",
rv.Type().String(), mapping)
}
for key, datum := range tmap {
var f *field
fields := cachedTypeFields(rv.Type())
for i := range fields {
ff := &fields[i]
if ff.name == key {
f = ff
break
}
if f == nil && strings.EqualFold(ff.name, key) {
f = ff
}
}
if f != nil {
subv := rv
for _, i := range f.index {
subv = indirect(subv.Field(i))
}
if isUnifiable(subv) {
md.decoded[md.context.add(key).String()] = true
md.context = append(md.context, key)
if err := md.unify(datum, subv); err != nil {
return err
}
md.context = md.context[0 : len(md.context)-1]
} else if f.name != "" {
// Bad user! No soup for you!
return e("cannot write unexported field %s.%s",
rv.Type().String(), f.name)
}
}
}
return nil
}
func (md *MetaData) unifyMap(mapping interface{}, rv reflect.Value) error {
tmap, ok := mapping.(map[string]interface{})
if !ok {
if tmap == nil {
return nil
}
return badtype("map", mapping)
}
if rv.IsNil() {
rv.Set(reflect.MakeMap(rv.Type()))
}
for k, v := range tmap {
md.decoded[md.context.add(k).String()] = true
md.context = append(md.context, k)
rvkey := indirect(reflect.New(rv.Type().Key()))
rvval := reflect.Indirect(reflect.New(rv.Type().Elem()))
if err := md.unify(v, rvval); err != nil {
return err
}
md.context = md.context[0 : len(md.context)-1]
rvkey.SetString(k)
rv.SetMapIndex(rvkey, rvval)
}
return nil
}
func (md *MetaData) unifyArray(data interface{}, rv reflect.Value) error {
datav := reflect.ValueOf(data)
if datav.Kind() != reflect.Slice {
if !datav.IsValid() {
return nil
}
return badtype("slice", data)
}
sliceLen := datav.Len()
if sliceLen != rv.Len() {
return e("expected array length %d; got TOML array of length %d",
rv.Len(), sliceLen)
}
return md.unifySliceArray(datav, rv)
}
func (md *MetaData) unifySlice(data interface{}, rv reflect.Value) error {
datav := reflect.ValueOf(data)
if datav.Kind() != reflect.Slice {
if !datav.IsValid() {
return nil
}
return badtype("slice", data)
}
n := datav.Len()
if rv.IsNil() || rv.Cap() < n {
rv.Set(reflect.MakeSlice(rv.Type(), n, n))
}
rv.SetLen(n)
return md.unifySliceArray(datav, rv)
}
func (md *MetaData) unifySliceArray(data, rv reflect.Value) error {
sliceLen := data.Len()
for i := 0; i < sliceLen; i++ {
v := data.Index(i).Interface()
sliceval := indirect(rv.Index(i))
if err := md.unify(v, sliceval); err != nil {
return err
}
}
return nil
}
func (md *MetaData) unifyDatetime(data interface{}, rv reflect.Value) error {
if _, ok := data.(time.Time); ok {
rv.Set(reflect.ValueOf(data))
return nil
}
return badtype("time.Time", data)
}
func (md *MetaData) unifyString(data interface{}, rv reflect.Value) error {
if s, ok := data.(string); ok {
rv.SetString(s)
return nil
}
return badtype("string", data)
}
func (md *MetaData) unifyFloat64(data interface{}, rv reflect.Value) error {
if num, ok := data.(float64); ok {
switch rv.Kind() {
case reflect.Float32:
fallthrough
case reflect.Float64:
rv.SetFloat(num)
default:
panic("bug")
}
return nil
}
return badtype("float", data)
}
func (md *MetaData) unifyInt(data interface{}, rv reflect.Value) error {
if num, ok := data.(int64); ok {
if rv.Kind() >= reflect.Int && rv.Kind() <= reflect.Int64 {
switch rv.Kind() {
case reflect.Int, reflect.Int64:
// No bounds checking necessary.
case reflect.Int8:
if num < math.MinInt8 || num > math.MaxInt8 {
return e("value %d is out of range for int8", num)
}
case reflect.Int16:
if num < math.MinInt16 || num > math.MaxInt16 {
return e("value %d is out of range for int16", num)
}
case reflect.Int32:
if num < math.MinInt32 || num > math.MaxInt32 {
return e("value %d is out of range for int32", num)
}
}
rv.SetInt(num)
} else if rv.Kind() >= reflect.Uint && rv.Kind() <= reflect.Uint64 {
unum := uint64(num)
switch rv.Kind() {
case reflect.Uint, reflect.Uint64:
// No bounds checking necessary.
case reflect.Uint8:
if num < 0 || unum > math.MaxUint8 {
return e("value %d is out of range for uint8", num)
}
case reflect.Uint16:
if num < 0 || unum > math.MaxUint16 {
return e("value %d is out of range for uint16", num)
}
case reflect.Uint32:
if num < 0 || unum > math.MaxUint32 {
return e("value %d is out of range for uint32", num)
}
}
rv.SetUint(unum)
} else {
panic("unreachable")
}
return nil
}
return badtype("integer", data)
}
func (md *MetaData) unifyBool(data interface{}, rv reflect.Value) error {
if b, ok := data.(bool); ok {
rv.SetBool(b)
return nil
}
return badtype("boolean", data)
}
func (md *MetaData) unifyAnything(data interface{}, rv reflect.Value) error {
rv.Set(reflect.ValueOf(data))
return nil
}
func (md *MetaData) unifyText(data interface{}, v TextUnmarshaler) error {
var s string
switch sdata := data.(type) {
case TextMarshaler:
text, err := sdata.MarshalText()
if err != nil {
return err
}
s = string(text)
case fmt.Stringer:
s = sdata.String()
case string:
s = sdata
case bool:
s = fmt.Sprintf("%v", sdata)
case int64:
s = fmt.Sprintf("%d", sdata)
case float64:
s = fmt.Sprintf("%f", sdata)
default:
return badtype("primitive (string-like)", data)
}
if err := v.UnmarshalText([]byte(s)); err != nil {
return err
}
return nil
}
// rvalue returns a reflect.Value of `v`. All pointers are resolved.
func rvalue(v interface{}) reflect.Value {
return indirect(reflect.ValueOf(v))
}
// indirect returns the value pointed to by a pointer.
// Pointers are followed until the value is not a pointer.
// New values are allocated for each nil pointer.
//
// An exception to this rule is if the value satisfies an interface of
// interest to us (like encoding.TextUnmarshaler).
func indirect(v reflect.Value) reflect.Value {
if v.Kind() != reflect.Ptr {
if v.CanSet() {
pv := v.Addr()
if _, ok := pv.Interface().(TextUnmarshaler); ok {
return pv
}
}
return v
}
if v.IsNil() {
v.Set(reflect.New(v.Type().Elem()))
}
return indirect(reflect.Indirect(v))
}
func isUnifiable(rv reflect.Value) bool {
if rv.CanSet() {
return true
}
if _, ok := rv.Interface().(TextUnmarshaler); ok {
return true
}
return false
}
func badtype(expected string, data interface{}) error {
return e("cannot load TOML value of type %T into a Go %s", data, expected)
}

View File

@ -1,121 +0,0 @@
package toml
import "strings"
// MetaData allows access to meta information about TOML data that may not
// be inferrable via reflection. In particular, whether a key has been defined
// and the TOML type of a key.
type MetaData struct {
mapping map[string]interface{}
types map[string]tomlType
keys []Key
decoded map[string]bool
context Key // Used only during decoding.
}
// IsDefined returns true if the key given exists in the TOML data. The key
// should be specified hierarchially. e.g.,
//
// // access the TOML key 'a.b.c'
// IsDefined("a", "b", "c")
//
// IsDefined will return false if an empty key given. Keys are case sensitive.
func (md *MetaData) IsDefined(key ...string) bool {
if len(key) == 0 {
return false
}
var hash map[string]interface{}
var ok bool
var hashOrVal interface{} = md.mapping
for _, k := range key {
if hash, ok = hashOrVal.(map[string]interface{}); !ok {
return false
}
if hashOrVal, ok = hash[k]; !ok {
return false
}
}
return true
}
// Type returns a string representation of the type of the key specified.
//
// Type will return the empty string if given an empty key or a key that
// does not exist. Keys are case sensitive.
func (md *MetaData) Type(key ...string) string {
fullkey := strings.Join(key, ".")
if typ, ok := md.types[fullkey]; ok {
return typ.typeString()
}
return ""
}
// Key is the type of any TOML key, including key groups. Use (MetaData).Keys
// to get values of this type.
type Key []string
func (k Key) String() string {
return strings.Join(k, ".")
}
func (k Key) maybeQuotedAll() string {
var ss []string
for i := range k {
ss = append(ss, k.maybeQuoted(i))
}
return strings.Join(ss, ".")
}
func (k Key) maybeQuoted(i int) string {
quote := false
for _, c := range k[i] {
if !isBareKeyChar(c) {
quote = true
break
}
}
if quote {
return "\"" + strings.Replace(k[i], "\"", "\\\"", -1) + "\""
}
return k[i]
}
func (k Key) add(piece string) Key {
newKey := make(Key, len(k)+1)
copy(newKey, k)
newKey[len(k)] = piece
return newKey
}
// Keys returns a slice of every key in the TOML data, including key groups.
// Each key is itself a slice, where the first element is the top of the
// hierarchy and the last is the most specific.
//
// The list will have the same order as the keys appeared in the TOML data.
//
// All keys returned are non-empty.
func (md *MetaData) Keys() []Key {
return md.keys
}
// Undecoded returns all keys that have not been decoded in the order in which
// they appear in the original TOML document.
//
// This includes keys that haven't been decoded because of a Primitive value.
// Once the Primitive value is decoded, the keys will be considered decoded.
//
// Also note that decoding into an empty interface will result in no decoding,
// and so no keys will be considered decoded.
//
// In this sense, the Undecoded keys correspond to keys in the TOML document
// that do not have a concrete type in your representation.
func (md *MetaData) Undecoded() []Key {
undecoded := make([]Key, 0, len(md.keys))
for _, key := range md.keys {
if !md.decoded[key.String()] {
undecoded = append(undecoded, key)
}
}
return undecoded
}

View File

@ -1,27 +0,0 @@
/*
Package toml provides facilities for decoding and encoding TOML configuration
files via reflection. There is also support for delaying decoding with
the Primitive type, and querying the set of keys in a TOML document with the
MetaData type.
The specification implemented: https://github.com/toml-lang/toml
The sub-command github.com/BurntSushi/toml/cmd/tomlv can be used to verify
whether a file is a valid TOML document. It can also be used to print the
type of each key in a TOML document.
Testing
There are two important types of tests used for this package. The first is
contained inside '*_test.go' files and uses the standard Go unit testing
framework. These tests are primarily devoted to holistically testing the
decoder and encoder.
The second type of testing is used to verify the implementation's adherence
to the TOML specification. These tests have been factored into their own
project: https://github.com/BurntSushi/toml-test
The reason the tests are in a separate project is so that they can be used by
any implementation of TOML. Namely, it is language agnostic.
*/
package toml

View File

@ -1,568 +0,0 @@
package toml
import (
"bufio"
"errors"
"fmt"
"io"
"reflect"
"sort"
"strconv"
"strings"
"time"
)
type tomlEncodeError struct{ error }
var (
errArrayMixedElementTypes = errors.New(
"toml: cannot encode array with mixed element types")
errArrayNilElement = errors.New(
"toml: cannot encode array with nil element")
errNonString = errors.New(
"toml: cannot encode a map with non-string key type")
errAnonNonStruct = errors.New(
"toml: cannot encode an anonymous field that is not a struct")
errArrayNoTable = errors.New(
"toml: TOML array element cannot contain a table")
errNoKey = errors.New(
"toml: top-level values must be Go maps or structs")
errAnything = errors.New("") // used in testing
)
var quotedReplacer = strings.NewReplacer(
"\t", "\\t",
"\n", "\\n",
"\r", "\\r",
"\"", "\\\"",
"\\", "\\\\",
)
// Encoder controls the encoding of Go values to a TOML document to some
// io.Writer.
//
// The indentation level can be controlled with the Indent field.
type Encoder struct {
// A single indentation level. By default it is two spaces.
Indent string
// hasWritten is whether we have written any output to w yet.
hasWritten bool
w *bufio.Writer
}
// NewEncoder returns a TOML encoder that encodes Go values to the io.Writer
// given. By default, a single indentation level is 2 spaces.
func NewEncoder(w io.Writer) *Encoder {
return &Encoder{
w: bufio.NewWriter(w),
Indent: " ",
}
}
// Encode writes a TOML representation of the Go value to the underlying
// io.Writer. If the value given cannot be encoded to a valid TOML document,
// then an error is returned.
//
// The mapping between Go values and TOML values should be precisely the same
// as for the Decode* functions. Similarly, the TextMarshaler interface is
// supported by encoding the resulting bytes as strings. (If you want to write
// arbitrary binary data then you will need to use something like base64 since
// TOML does not have any binary types.)
//
// When encoding TOML hashes (i.e., Go maps or structs), keys without any
// sub-hashes are encoded first.
//
// If a Go map is encoded, then its keys are sorted alphabetically for
// deterministic output. More control over this behavior may be provided if
// there is demand for it.
//
// Encoding Go values without a corresponding TOML representation---like map
// types with non-string keys---will cause an error to be returned. Similarly
// for mixed arrays/slices, arrays/slices with nil elements, embedded
// non-struct types and nested slices containing maps or structs.
// (e.g., [][]map[string]string is not allowed but []map[string]string is OK
// and so is []map[string][]string.)
func (enc *Encoder) Encode(v interface{}) error {
rv := eindirect(reflect.ValueOf(v))
if err := enc.safeEncode(Key([]string{}), rv); err != nil {
return err
}
return enc.w.Flush()
}
func (enc *Encoder) safeEncode(key Key, rv reflect.Value) (err error) {
defer func() {
if r := recover(); r != nil {
if terr, ok := r.(tomlEncodeError); ok {
err = terr.error
return
}
panic(r)
}
}()
enc.encode(key, rv)
return nil
}
func (enc *Encoder) encode(key Key, rv reflect.Value) {
// Special case. Time needs to be in ISO8601 format.
// Special case. If we can marshal the type to text, then we used that.
// Basically, this prevents the encoder for handling these types as
// generic structs (or whatever the underlying type of a TextMarshaler is).
switch rv.Interface().(type) {
case time.Time, TextMarshaler:
enc.keyEqElement(key, rv)
return
}
k := rv.Kind()
switch k {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32,
reflect.Int64,
reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32,
reflect.Uint64,
reflect.Float32, reflect.Float64, reflect.String, reflect.Bool:
enc.keyEqElement(key, rv)
case reflect.Array, reflect.Slice:
if typeEqual(tomlArrayHash, tomlTypeOfGo(rv)) {
enc.eArrayOfTables(key, rv)
} else {
enc.keyEqElement(key, rv)
}
case reflect.Interface:
if rv.IsNil() {
return
}
enc.encode(key, rv.Elem())
case reflect.Map:
if rv.IsNil() {
return
}
enc.eTable(key, rv)
case reflect.Ptr:
if rv.IsNil() {
return
}
enc.encode(key, rv.Elem())
case reflect.Struct:
enc.eTable(key, rv)
default:
panic(e("unsupported type for key '%s': %s", key, k))
}
}
// eElement encodes any value that can be an array element (primitives and
// arrays).
func (enc *Encoder) eElement(rv reflect.Value) {
switch v := rv.Interface().(type) {
case time.Time:
// Special case time.Time as a primitive. Has to come before
// TextMarshaler below because time.Time implements
// encoding.TextMarshaler, but we need to always use UTC.
enc.wf(v.UTC().Format("2006-01-02T15:04:05Z"))
return
case TextMarshaler:
// Special case. Use text marshaler if it's available for this value.
if s, err := v.MarshalText(); err != nil {
encPanic(err)
} else {
enc.writeQuoted(string(s))
}
return
}
switch rv.Kind() {
case reflect.Bool:
enc.wf(strconv.FormatBool(rv.Bool()))
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32,
reflect.Int64:
enc.wf(strconv.FormatInt(rv.Int(), 10))
case reflect.Uint, reflect.Uint8, reflect.Uint16,
reflect.Uint32, reflect.Uint64:
enc.wf(strconv.FormatUint(rv.Uint(), 10))
case reflect.Float32:
enc.wf(floatAddDecimal(strconv.FormatFloat(rv.Float(), 'f', -1, 32)))
case reflect.Float64:
enc.wf(floatAddDecimal(strconv.FormatFloat(rv.Float(), 'f', -1, 64)))
case reflect.Array, reflect.Slice:
enc.eArrayOrSliceElement(rv)
case reflect.Interface:
enc.eElement(rv.Elem())
case reflect.String:
enc.writeQuoted(rv.String())
default:
panic(e("unexpected primitive type: %s", rv.Kind()))
}
}
// By the TOML spec, all floats must have a decimal with at least one
// number on either side.
func floatAddDecimal(fstr string) string {
if !strings.Contains(fstr, ".") {
return fstr + ".0"
}
return fstr
}
func (enc *Encoder) writeQuoted(s string) {
enc.wf("\"%s\"", quotedReplacer.Replace(s))
}
func (enc *Encoder) eArrayOrSliceElement(rv reflect.Value) {
length := rv.Len()
enc.wf("[")
for i := 0; i < length; i++ {
elem := rv.Index(i)
enc.eElement(elem)
if i != length-1 {
enc.wf(", ")
}
}
enc.wf("]")
}
func (enc *Encoder) eArrayOfTables(key Key, rv reflect.Value) {
if len(key) == 0 {
encPanic(errNoKey)
}
for i := 0; i < rv.Len(); i++ {
trv := rv.Index(i)
if isNil(trv) {
continue
}
panicIfInvalidKey(key)
enc.newline()
enc.wf("%s[[%s]]", enc.indentStr(key), key.maybeQuotedAll())
enc.newline()
enc.eMapOrStruct(key, trv)
}
}
func (enc *Encoder) eTable(key Key, rv reflect.Value) {
panicIfInvalidKey(key)
if len(key) == 1 {
// Output an extra newline between top-level tables.
// (The newline isn't written if nothing else has been written though.)
enc.newline()
}
if len(key) > 0 {
enc.wf("%s[%s]", enc.indentStr(key), key.maybeQuotedAll())
enc.newline()
}
enc.eMapOrStruct(key, rv)
}
func (enc *Encoder) eMapOrStruct(key Key, rv reflect.Value) {
switch rv := eindirect(rv); rv.Kind() {
case reflect.Map:
enc.eMap(key, rv)
case reflect.Struct:
enc.eStruct(key, rv)
default:
panic("eTable: unhandled reflect.Value Kind: " + rv.Kind().String())
}
}
func (enc *Encoder) eMap(key Key, rv reflect.Value) {
rt := rv.Type()
if rt.Key().Kind() != reflect.String {
encPanic(errNonString)
}
// Sort keys so that we have deterministic output. And write keys directly
// underneath this key first, before writing sub-structs or sub-maps.
var mapKeysDirect, mapKeysSub []string
for _, mapKey := range rv.MapKeys() {
k := mapKey.String()
if typeIsHash(tomlTypeOfGo(rv.MapIndex(mapKey))) {
mapKeysSub = append(mapKeysSub, k)
} else {
mapKeysDirect = append(mapKeysDirect, k)
}
}
var writeMapKeys = func(mapKeys []string) {
sort.Strings(mapKeys)
for _, mapKey := range mapKeys {
mrv := rv.MapIndex(reflect.ValueOf(mapKey))
if isNil(mrv) {
// Don't write anything for nil fields.
continue
}
enc.encode(key.add(mapKey), mrv)
}
}
writeMapKeys(mapKeysDirect)
writeMapKeys(mapKeysSub)
}
func (enc *Encoder) eStruct(key Key, rv reflect.Value) {
// Write keys for fields directly under this key first, because if we write
// a field that creates a new table, then all keys under it will be in that
// table (not the one we're writing here).
rt := rv.Type()
var fieldsDirect, fieldsSub [][]int
var addFields func(rt reflect.Type, rv reflect.Value, start []int)
addFields = func(rt reflect.Type, rv reflect.Value, start []int) {
for i := 0; i < rt.NumField(); i++ {
f := rt.Field(i)
// skip unexported fields
if f.PkgPath != "" && !f.Anonymous {
continue
}
frv := rv.Field(i)
if f.Anonymous {
t := f.Type
switch t.Kind() {
case reflect.Struct:
// Treat anonymous struct fields with
// tag names as though they are not
// anonymous, like encoding/json does.
if getOptions(f.Tag).name == "" {
addFields(t, frv, f.Index)
continue
}
case reflect.Ptr:
if t.Elem().Kind() == reflect.Struct &&
getOptions(f.Tag).name == "" {
if !frv.IsNil() {
addFields(t.Elem(), frv.Elem(), f.Index)
}
continue
}
// Fall through to the normal field encoding logic below
// for non-struct anonymous fields.
}
}
if typeIsHash(tomlTypeOfGo(frv)) {
fieldsSub = append(fieldsSub, append(start, f.Index...))
} else {
fieldsDirect = append(fieldsDirect, append(start, f.Index...))
}
}
}
addFields(rt, rv, nil)
var writeFields = func(fields [][]int) {
for _, fieldIndex := range fields {
sft := rt.FieldByIndex(fieldIndex)
sf := rv.FieldByIndex(fieldIndex)
if isNil(sf) {
// Don't write anything for nil fields.
continue
}
opts := getOptions(sft.Tag)
if opts.skip {
continue
}
keyName := sft.Name
if opts.name != "" {
keyName = opts.name
}
if opts.omitempty && isEmpty(sf) {
continue
}
if opts.omitzero && isZero(sf) {
continue
}
enc.encode(key.add(keyName), sf)
}
}
writeFields(fieldsDirect)
writeFields(fieldsSub)
}
// tomlTypeName returns the TOML type name of the Go value's type. It is
// used to determine whether the types of array elements are mixed (which is
// forbidden). If the Go value is nil, then it is illegal for it to be an array
// element, and valueIsNil is returned as true.
// Returns the TOML type of a Go value. The type may be `nil`, which means
// no concrete TOML type could be found.
func tomlTypeOfGo(rv reflect.Value) tomlType {
if isNil(rv) || !rv.IsValid() {
return nil
}
switch rv.Kind() {
case reflect.Bool:
return tomlBool
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32,
reflect.Int64,
reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32,
reflect.Uint64:
return tomlInteger
case reflect.Float32, reflect.Float64:
return tomlFloat
case reflect.Array, reflect.Slice:
if typeEqual(tomlHash, tomlArrayType(rv)) {
return tomlArrayHash
}
return tomlArray
case reflect.Ptr, reflect.Interface:
return tomlTypeOfGo(rv.Elem())
case reflect.String:
return tomlString
case reflect.Map:
return tomlHash
case reflect.Struct:
switch rv.Interface().(type) {
case time.Time:
return tomlDatetime
case TextMarshaler:
return tomlString
default:
return tomlHash
}
default:
panic("unexpected reflect.Kind: " + rv.Kind().String())
}
}
// tomlArrayType returns the element type of a TOML array. The type returned
// may be nil if it cannot be determined (e.g., a nil slice or a zero length
// slize). This function may also panic if it finds a type that cannot be
// expressed in TOML (such as nil elements, heterogeneous arrays or directly
// nested arrays of tables).
func tomlArrayType(rv reflect.Value) tomlType {
if isNil(rv) || !rv.IsValid() || rv.Len() == 0 {
return nil
}
firstType := tomlTypeOfGo(rv.Index(0))
if firstType == nil {
encPanic(errArrayNilElement)
}
rvlen := rv.Len()
for i := 1; i < rvlen; i++ {
elem := rv.Index(i)
switch elemType := tomlTypeOfGo(elem); {
case elemType == nil:
encPanic(errArrayNilElement)
case !typeEqual(firstType, elemType):
encPanic(errArrayMixedElementTypes)
}
}
// If we have a nested array, then we must make sure that the nested
// array contains ONLY primitives.
// This checks arbitrarily nested arrays.
if typeEqual(firstType, tomlArray) || typeEqual(firstType, tomlArrayHash) {
nest := tomlArrayType(eindirect(rv.Index(0)))
if typeEqual(nest, tomlHash) || typeEqual(nest, tomlArrayHash) {
encPanic(errArrayNoTable)
}
}
return firstType
}
type tagOptions struct {
skip bool // "-"
name string
omitempty bool
omitzero bool
}
func getOptions(tag reflect.StructTag) tagOptions {
t := tag.Get("toml")
if t == "-" {
return tagOptions{skip: true}
}
var opts tagOptions
parts := strings.Split(t, ",")
opts.name = parts[0]
for _, s := range parts[1:] {
switch s {
case "omitempty":
opts.omitempty = true
case "omitzero":
opts.omitzero = true
}
}
return opts
}
func isZero(rv reflect.Value) bool {
switch rv.Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return rv.Int() == 0
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
return rv.Uint() == 0
case reflect.Float32, reflect.Float64:
return rv.Float() == 0.0
}
return false
}
func isEmpty(rv reflect.Value) bool {
switch rv.Kind() {
case reflect.Array, reflect.Slice, reflect.Map, reflect.String:
return rv.Len() == 0
case reflect.Bool:
return !rv.Bool()
}
return false
}
func (enc *Encoder) newline() {
if enc.hasWritten {
enc.wf("\n")
}
}
func (enc *Encoder) keyEqElement(key Key, val reflect.Value) {
if len(key) == 0 {
encPanic(errNoKey)
}
panicIfInvalidKey(key)
enc.wf("%s%s = ", enc.indentStr(key), key.maybeQuoted(len(key)-1))
enc.eElement(val)
enc.newline()
}
func (enc *Encoder) wf(format string, v ...interface{}) {
if _, err := fmt.Fprintf(enc.w, format, v...); err != nil {
encPanic(err)
}
enc.hasWritten = true
}
func (enc *Encoder) indentStr(key Key) string {
return strings.Repeat(enc.Indent, len(key)-1)
}
func encPanic(err error) {
panic(tomlEncodeError{err})
}
func eindirect(v reflect.Value) reflect.Value {
switch v.Kind() {
case reflect.Ptr, reflect.Interface:
return eindirect(v.Elem())
default:
return v
}
}
func isNil(rv reflect.Value) bool {
switch rv.Kind() {
case reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice:
return rv.IsNil()
default:
return false
}
}
func panicIfInvalidKey(key Key) {
for _, k := range key {
if len(k) == 0 {
encPanic(e("Key '%s' is not a valid table name. Key names "+
"cannot be empty.", key.maybeQuotedAll()))
}
}
}
func isValidKeyName(s string) bool {
return len(s) != 0
}

View File

@ -1,19 +0,0 @@
// +build go1.2
package toml
// In order to support Go 1.1, we define our own TextMarshaler and
// TextUnmarshaler types. For Go 1.2+, we just alias them with the
// standard library interfaces.
import (
"encoding"
)
// TextMarshaler is a synonym for encoding.TextMarshaler. It is defined here
// so that Go 1.1 can be supported.
type TextMarshaler encoding.TextMarshaler
// TextUnmarshaler is a synonym for encoding.TextUnmarshaler. It is defined
// here so that Go 1.1 can be supported.
type TextUnmarshaler encoding.TextUnmarshaler

View File

@ -1,18 +0,0 @@
// +build !go1.2
package toml
// These interfaces were introduced in Go 1.2, so we add them manually when
// compiling for Go 1.1.
// TextMarshaler is a synonym for encoding.TextMarshaler. It is defined here
// so that Go 1.1 can be supported.
type TextMarshaler interface {
MarshalText() (text []byte, err error)
}
// TextUnmarshaler is a synonym for encoding.TextUnmarshaler. It is defined
// here so that Go 1.1 can be supported.
type TextUnmarshaler interface {
UnmarshalText(text []byte) error
}

View File

@ -1,953 +0,0 @@
package toml
import (
"fmt"
"strings"
"unicode"
"unicode/utf8"
)
type itemType int
const (
itemError itemType = iota
itemNIL // used in the parser to indicate no type
itemEOF
itemText
itemString
itemRawString
itemMultilineString
itemRawMultilineString
itemBool
itemInteger
itemFloat
itemDatetime
itemArray // the start of an array
itemArrayEnd
itemTableStart
itemTableEnd
itemArrayTableStart
itemArrayTableEnd
itemKeyStart
itemCommentStart
itemInlineTableStart
itemInlineTableEnd
)
const (
eof = 0
comma = ','
tableStart = '['
tableEnd = ']'
arrayTableStart = '['
arrayTableEnd = ']'
tableSep = '.'
keySep = '='
arrayStart = '['
arrayEnd = ']'
commentStart = '#'
stringStart = '"'
stringEnd = '"'
rawStringStart = '\''
rawStringEnd = '\''
inlineTableStart = '{'
inlineTableEnd = '}'
)
type stateFn func(lx *lexer) stateFn
type lexer struct {
input string
start int
pos int
line int
state stateFn
items chan item
// Allow for backing up up to three runes.
// This is necessary because TOML contains 3-rune tokens (""" and ''').
prevWidths [3]int
nprev int // how many of prevWidths are in use
// If we emit an eof, we can still back up, but it is not OK to call
// next again.
atEOF bool
// A stack of state functions used to maintain context.
// The idea is to reuse parts of the state machine in various places.
// For example, values can appear at the top level or within arbitrarily
// nested arrays. The last state on the stack is used after a value has
// been lexed. Similarly for comments.
stack []stateFn
}
type item struct {
typ itemType
val string
line int
}
func (lx *lexer) nextItem() item {
for {
select {
case item := <-lx.items:
return item
default:
lx.state = lx.state(lx)
}
}
}
func lex(input string) *lexer {
lx := &lexer{
input: input,
state: lexTop,
line: 1,
items: make(chan item, 10),
stack: make([]stateFn, 0, 10),
}
return lx
}
func (lx *lexer) push(state stateFn) {
lx.stack = append(lx.stack, state)
}
func (lx *lexer) pop() stateFn {
if len(lx.stack) == 0 {
return lx.errorf("BUG in lexer: no states to pop")
}
last := lx.stack[len(lx.stack)-1]
lx.stack = lx.stack[0 : len(lx.stack)-1]
return last
}
func (lx *lexer) current() string {
return lx.input[lx.start:lx.pos]
}
func (lx *lexer) emit(typ itemType) {
lx.items <- item{typ, lx.current(), lx.line}
lx.start = lx.pos
}
func (lx *lexer) emitTrim(typ itemType) {
lx.items <- item{typ, strings.TrimSpace(lx.current()), lx.line}
lx.start = lx.pos
}
func (lx *lexer) next() (r rune) {
if lx.atEOF {
panic("next called after EOF")
}
if lx.pos >= len(lx.input) {
lx.atEOF = true
return eof
}
if lx.input[lx.pos] == '\n' {
lx.line++
}
lx.prevWidths[2] = lx.prevWidths[1]
lx.prevWidths[1] = lx.prevWidths[0]
if lx.nprev < 3 {
lx.nprev++
}
r, w := utf8.DecodeRuneInString(lx.input[lx.pos:])
lx.prevWidths[0] = w
lx.pos += w
return r
}
// ignore skips over the pending input before this point.
func (lx *lexer) ignore() {
lx.start = lx.pos
}
// backup steps back one rune. Can be called only twice between calls to next.
func (lx *lexer) backup() {
if lx.atEOF {
lx.atEOF = false
return
}
if lx.nprev < 1 {
panic("backed up too far")
}
w := lx.prevWidths[0]
lx.prevWidths[0] = lx.prevWidths[1]
lx.prevWidths[1] = lx.prevWidths[2]
lx.nprev--
lx.pos -= w
if lx.pos < len(lx.input) && lx.input[lx.pos] == '\n' {
lx.line--
}
}
// accept consumes the next rune if it's equal to `valid`.
func (lx *lexer) accept(valid rune) bool {
if lx.next() == valid {
return true
}
lx.backup()
return false
}
// peek returns but does not consume the next rune in the input.
func (lx *lexer) peek() rune {
r := lx.next()
lx.backup()
return r
}
// skip ignores all input that matches the given predicate.
func (lx *lexer) skip(pred func(rune) bool) {
for {
r := lx.next()
if pred(r) {
continue
}
lx.backup()
lx.ignore()
return
}
}
// errorf stops all lexing by emitting an error and returning `nil`.
// Note that any value that is a character is escaped if it's a special
// character (newlines, tabs, etc.).
func (lx *lexer) errorf(format string, values ...interface{}) stateFn {
lx.items <- item{
itemError,
fmt.Sprintf(format, values...),
lx.line,
}
return nil
}
// lexTop consumes elements at the top level of TOML data.
func lexTop(lx *lexer) stateFn {
r := lx.next()
if isWhitespace(r) || isNL(r) {
return lexSkip(lx, lexTop)
}
switch r {
case commentStart:
lx.push(lexTop)
return lexCommentStart
case tableStart:
return lexTableStart
case eof:
if lx.pos > lx.start {
return lx.errorf("unexpected EOF")
}
lx.emit(itemEOF)
return nil
}
// At this point, the only valid item can be a key, so we back up
// and let the key lexer do the rest.
lx.backup()
lx.push(lexTopEnd)
return lexKeyStart
}
// lexTopEnd is entered whenever a top-level item has been consumed. (A value
// or a table.) It must see only whitespace, and will turn back to lexTop
// upon a newline. If it sees EOF, it will quit the lexer successfully.
func lexTopEnd(lx *lexer) stateFn {
r := lx.next()
switch {
case r == commentStart:
// a comment will read to a newline for us.
lx.push(lexTop)
return lexCommentStart
case isWhitespace(r):
return lexTopEnd
case isNL(r):
lx.ignore()
return lexTop
case r == eof:
lx.emit(itemEOF)
return nil
}
return lx.errorf("expected a top-level item to end with a newline, "+
"comment, or EOF, but got %q instead", r)
}
// lexTable lexes the beginning of a table. Namely, it makes sure that
// it starts with a character other than '.' and ']'.
// It assumes that '[' has already been consumed.
// It also handles the case that this is an item in an array of tables.
// e.g., '[[name]]'.
func lexTableStart(lx *lexer) stateFn {
if lx.peek() == arrayTableStart {
lx.next()
lx.emit(itemArrayTableStart)
lx.push(lexArrayTableEnd)
} else {
lx.emit(itemTableStart)
lx.push(lexTableEnd)
}
return lexTableNameStart
}
func lexTableEnd(lx *lexer) stateFn {
lx.emit(itemTableEnd)
return lexTopEnd
}
func lexArrayTableEnd(lx *lexer) stateFn {
if r := lx.next(); r != arrayTableEnd {
return lx.errorf("expected end of table array name delimiter %q, "+
"but got %q instead", arrayTableEnd, r)
}
lx.emit(itemArrayTableEnd)
return lexTopEnd
}
func lexTableNameStart(lx *lexer) stateFn {
lx.skip(isWhitespace)
switch r := lx.peek(); {
case r == tableEnd || r == eof:
return lx.errorf("unexpected end of table name " +
"(table names cannot be empty)")
case r == tableSep:
return lx.errorf("unexpected table separator " +
"(table names cannot be empty)")
case r == stringStart || r == rawStringStart:
lx.ignore()
lx.push(lexTableNameEnd)
return lexValue // reuse string lexing
default:
return lexBareTableName
}
}
// lexBareTableName lexes the name of a table. It assumes that at least one
// valid character for the table has already been read.
func lexBareTableName(lx *lexer) stateFn {
r := lx.next()
if isBareKeyChar(r) {
return lexBareTableName
}
lx.backup()
lx.emit(itemText)
return lexTableNameEnd
}
// lexTableNameEnd reads the end of a piece of a table name, optionally
// consuming whitespace.
func lexTableNameEnd(lx *lexer) stateFn {
lx.skip(isWhitespace)
switch r := lx.next(); {
case isWhitespace(r):
return lexTableNameEnd
case r == tableSep:
lx.ignore()
return lexTableNameStart
case r == tableEnd:
return lx.pop()
default:
return lx.errorf("expected '.' or ']' to end table name, "+
"but got %q instead", r)
}
}
// lexKeyStart consumes a key name up until the first non-whitespace character.
// lexKeyStart will ignore whitespace.
func lexKeyStart(lx *lexer) stateFn {
r := lx.peek()
switch {
case r == keySep:
return lx.errorf("unexpected key separator %q", keySep)
case isWhitespace(r) || isNL(r):
lx.next()
return lexSkip(lx, lexKeyStart)
case r == stringStart || r == rawStringStart:
lx.ignore()
lx.emit(itemKeyStart)
lx.push(lexKeyEnd)
return lexValue // reuse string lexing
default:
lx.ignore()
lx.emit(itemKeyStart)
return lexBareKey
}
}
// lexBareKey consumes the text of a bare key. Assumes that the first character
// (which is not whitespace) has not yet been consumed.
func lexBareKey(lx *lexer) stateFn {
switch r := lx.next(); {
case isBareKeyChar(r):
return lexBareKey
case isWhitespace(r):
lx.backup()
lx.emit(itemText)
return lexKeyEnd
case r == keySep:
lx.backup()
lx.emit(itemText)
return lexKeyEnd
default:
return lx.errorf("bare keys cannot contain %q", r)
}
}
// lexKeyEnd consumes the end of a key and trims whitespace (up to the key
// separator).
func lexKeyEnd(lx *lexer) stateFn {
switch r := lx.next(); {
case r == keySep:
return lexSkip(lx, lexValue)
case isWhitespace(r):
return lexSkip(lx, lexKeyEnd)
default:
return lx.errorf("expected key separator %q, but got %q instead",
keySep, r)
}
}
// lexValue starts the consumption of a value anywhere a value is expected.
// lexValue will ignore whitespace.
// After a value is lexed, the last state on the next is popped and returned.
func lexValue(lx *lexer) stateFn {
// We allow whitespace to precede a value, but NOT newlines.
// In array syntax, the array states are responsible for ignoring newlines.
r := lx.next()
switch {
case isWhitespace(r):
return lexSkip(lx, lexValue)
case isDigit(r):
lx.backup() // avoid an extra state and use the same as above
return lexNumberOrDateStart
}
switch r {
case arrayStart:
lx.ignore()
lx.emit(itemArray)
return lexArrayValue
case inlineTableStart:
lx.ignore()
lx.emit(itemInlineTableStart)
return lexInlineTableValue
case stringStart:
if lx.accept(stringStart) {
if lx.accept(stringStart) {
lx.ignore() // Ignore """
return lexMultilineString
}
lx.backup()
}
lx.ignore() // ignore the '"'
return lexString
case rawStringStart:
if lx.accept(rawStringStart) {
if lx.accept(rawStringStart) {
lx.ignore() // Ignore """
return lexMultilineRawString
}
lx.backup()
}
lx.ignore() // ignore the "'"
return lexRawString
case '+', '-':
return lexNumberStart
case '.': // special error case, be kind to users
return lx.errorf("floats must start with a digit, not '.'")
}
if unicode.IsLetter(r) {
// Be permissive here; lexBool will give a nice error if the
// user wrote something like
// x = foo
// (i.e. not 'true' or 'false' but is something else word-like.)
lx.backup()
return lexBool
}
return lx.errorf("expected value but found %q instead", r)
}
// lexArrayValue consumes one value in an array. It assumes that '[' or ','
// have already been consumed. All whitespace and newlines are ignored.
func lexArrayValue(lx *lexer) stateFn {
r := lx.next()
switch {
case isWhitespace(r) || isNL(r):
return lexSkip(lx, lexArrayValue)
case r == commentStart:
lx.push(lexArrayValue)
return lexCommentStart
case r == comma:
return lx.errorf("unexpected comma")
case r == arrayEnd:
// NOTE(caleb): The spec isn't clear about whether you can have
// a trailing comma or not, so we'll allow it.
return lexArrayEnd
}
lx.backup()
lx.push(lexArrayValueEnd)
return lexValue
}
// lexArrayValueEnd consumes everything between the end of an array value and
// the next value (or the end of the array): it ignores whitespace and newlines
// and expects either a ',' or a ']'.
func lexArrayValueEnd(lx *lexer) stateFn {
r := lx.next()
switch {
case isWhitespace(r) || isNL(r):
return lexSkip(lx, lexArrayValueEnd)
case r == commentStart:
lx.push(lexArrayValueEnd)
return lexCommentStart
case r == comma:
lx.ignore()
return lexArrayValue // move on to the next value
case r == arrayEnd:
return lexArrayEnd
}
return lx.errorf(
"expected a comma or array terminator %q, but got %q instead",
arrayEnd, r,
)
}
// lexArrayEnd finishes the lexing of an array.
// It assumes that a ']' has just been consumed.
func lexArrayEnd(lx *lexer) stateFn {
lx.ignore()
lx.emit(itemArrayEnd)
return lx.pop()
}
// lexInlineTableValue consumes one key/value pair in an inline table.
// It assumes that '{' or ',' have already been consumed. Whitespace is ignored.
func lexInlineTableValue(lx *lexer) stateFn {
r := lx.next()
switch {
case isWhitespace(r):
return lexSkip(lx, lexInlineTableValue)
case isNL(r):
return lx.errorf("newlines not allowed within inline tables")
case r == commentStart:
lx.push(lexInlineTableValue)
return lexCommentStart
case r == comma:
return lx.errorf("unexpected comma")
case r == inlineTableEnd:
return lexInlineTableEnd
}
lx.backup()
lx.push(lexInlineTableValueEnd)
return lexKeyStart
}
// lexInlineTableValueEnd consumes everything between the end of an inline table
// key/value pair and the next pair (or the end of the table):
// it ignores whitespace and expects either a ',' or a '}'.
func lexInlineTableValueEnd(lx *lexer) stateFn {
r := lx.next()
switch {
case isWhitespace(r):
return lexSkip(lx, lexInlineTableValueEnd)
case isNL(r):
return lx.errorf("newlines not allowed within inline tables")
case r == commentStart:
lx.push(lexInlineTableValueEnd)
return lexCommentStart
case r == comma:
lx.ignore()
return lexInlineTableValue
case r == inlineTableEnd:
return lexInlineTableEnd
}
return lx.errorf("expected a comma or an inline table terminator %q, "+
"but got %q instead", inlineTableEnd, r)
}
// lexInlineTableEnd finishes the lexing of an inline table.
// It assumes that a '}' has just been consumed.
func lexInlineTableEnd(lx *lexer) stateFn {
lx.ignore()
lx.emit(itemInlineTableEnd)
return lx.pop()
}
// lexString consumes the inner contents of a string. It assumes that the
// beginning '"' has already been consumed and ignored.
func lexString(lx *lexer) stateFn {
r := lx.next()
switch {
case r == eof:
return lx.errorf("unexpected EOF")
case isNL(r):
return lx.errorf("strings cannot contain newlines")
case r == '\\':
lx.push(lexString)
return lexStringEscape
case r == stringEnd:
lx.backup()
lx.emit(itemString)
lx.next()
lx.ignore()
return lx.pop()
}
return lexString
}
// lexMultilineString consumes the inner contents of a string. It assumes that
// the beginning '"""' has already been consumed and ignored.
func lexMultilineString(lx *lexer) stateFn {
switch lx.next() {
case eof:
return lx.errorf("unexpected EOF")
case '\\':
return lexMultilineStringEscape
case stringEnd:
if lx.accept(stringEnd) {
if lx.accept(stringEnd) {
lx.backup()
lx.backup()
lx.backup()
lx.emit(itemMultilineString)
lx.next()
lx.next()
lx.next()
lx.ignore()
return lx.pop()
}
lx.backup()
}
}
return lexMultilineString
}
// lexRawString consumes a raw string. Nothing can be escaped in such a string.
// It assumes that the beginning "'" has already been consumed and ignored.
func lexRawString(lx *lexer) stateFn {
r := lx.next()
switch {
case r == eof:
return lx.errorf("unexpected EOF")
case isNL(r):
return lx.errorf("strings cannot contain newlines")
case r == rawStringEnd:
lx.backup()
lx.emit(itemRawString)
lx.next()
lx.ignore()
return lx.pop()
}
return lexRawString
}
// lexMultilineRawString consumes a raw string. Nothing can be escaped in such
// a string. It assumes that the beginning "'''" has already been consumed and
// ignored.
func lexMultilineRawString(lx *lexer) stateFn {
switch lx.next() {
case eof:
return lx.errorf("unexpected EOF")
case rawStringEnd:
if lx.accept(rawStringEnd) {
if lx.accept(rawStringEnd) {
lx.backup()
lx.backup()
lx.backup()
lx.emit(itemRawMultilineString)
lx.next()
lx.next()
lx.next()
lx.ignore()
return lx.pop()
}
lx.backup()
}
}
return lexMultilineRawString
}
// lexMultilineStringEscape consumes an escaped character. It assumes that the
// preceding '\\' has already been consumed.
func lexMultilineStringEscape(lx *lexer) stateFn {
// Handle the special case first:
if isNL(lx.next()) {
return lexMultilineString
}
lx.backup()
lx.push(lexMultilineString)
return lexStringEscape(lx)
}
func lexStringEscape(lx *lexer) stateFn {
r := lx.next()
switch r {
case 'b':
fallthrough
case 't':
fallthrough
case 'n':
fallthrough
case 'f':
fallthrough
case 'r':
fallthrough
case '"':
fallthrough
case '\\':
return lx.pop()
case 'u':
return lexShortUnicodeEscape
case 'U':
return lexLongUnicodeEscape
}
return lx.errorf("invalid escape character %q; only the following "+
"escape characters are allowed: "+
`\b, \t, \n, \f, \r, \", \\, \uXXXX, and \UXXXXXXXX`, r)
}
func lexShortUnicodeEscape(lx *lexer) stateFn {
var r rune
for i := 0; i < 4; i++ {
r = lx.next()
if !isHexadecimal(r) {
return lx.errorf(`expected four hexadecimal digits after '\u', `+
"but got %q instead", lx.current())
}
}
return lx.pop()
}
func lexLongUnicodeEscape(lx *lexer) stateFn {
var r rune
for i := 0; i < 8; i++ {
r = lx.next()
if !isHexadecimal(r) {
return lx.errorf(`expected eight hexadecimal digits after '\U', `+
"but got %q instead", lx.current())
}
}
return lx.pop()
}
// lexNumberOrDateStart consumes either an integer, a float, or datetime.
func lexNumberOrDateStart(lx *lexer) stateFn {
r := lx.next()
if isDigit(r) {
return lexNumberOrDate
}
switch r {
case '_':
return lexNumber
case 'e', 'E':
return lexFloat
case '.':
return lx.errorf("floats must start with a digit, not '.'")
}
return lx.errorf("expected a digit but got %q", r)
}
// lexNumberOrDate consumes either an integer, float or datetime.
func lexNumberOrDate(lx *lexer) stateFn {
r := lx.next()
if isDigit(r) {
return lexNumberOrDate
}
switch r {
case '-':
return lexDatetime
case '_':
return lexNumber
case '.', 'e', 'E':
return lexFloat
}
lx.backup()
lx.emit(itemInteger)
return lx.pop()
}
// lexDatetime consumes a Datetime, to a first approximation.
// The parser validates that it matches one of the accepted formats.
func lexDatetime(lx *lexer) stateFn {
r := lx.next()
if isDigit(r) {
return lexDatetime
}
switch r {
case '-', 'T', ':', '.', 'Z', '+':
return lexDatetime
}
lx.backup()
lx.emit(itemDatetime)
return lx.pop()
}
// lexNumberStart consumes either an integer or a float. It assumes that a sign
// has already been read, but that *no* digits have been consumed.
// lexNumberStart will move to the appropriate integer or float states.
func lexNumberStart(lx *lexer) stateFn {
// We MUST see a digit. Even floats have to start with a digit.
r := lx.next()
if !isDigit(r) {
if r == '.' {
return lx.errorf("floats must start with a digit, not '.'")
}
return lx.errorf("expected a digit but got %q", r)
}
return lexNumber
}
// lexNumber consumes an integer or a float after seeing the first digit.
func lexNumber(lx *lexer) stateFn {
r := lx.next()
if isDigit(r) {
return lexNumber
}
switch r {
case '_':
return lexNumber
case '.', 'e', 'E':
return lexFloat
}
lx.backup()
lx.emit(itemInteger)
return lx.pop()
}
// lexFloat consumes the elements of a float. It allows any sequence of
// float-like characters, so floats emitted by the lexer are only a first
// approximation and must be validated by the parser.
func lexFloat(lx *lexer) stateFn {
r := lx.next()
if isDigit(r) {
return lexFloat
}
switch r {
case '_', '.', '-', '+', 'e', 'E':
return lexFloat
}
lx.backup()
lx.emit(itemFloat)
return lx.pop()
}
// lexBool consumes a bool string: 'true' or 'false.
func lexBool(lx *lexer) stateFn {
var rs []rune
for {
r := lx.next()
if !unicode.IsLetter(r) {
lx.backup()
break
}
rs = append(rs, r)
}
s := string(rs)
switch s {
case "true", "false":
lx.emit(itemBool)
return lx.pop()
}
return lx.errorf("expected value but found %q instead", s)
}
// lexCommentStart begins the lexing of a comment. It will emit
// itemCommentStart and consume no characters, passing control to lexComment.
func lexCommentStart(lx *lexer) stateFn {
lx.ignore()
lx.emit(itemCommentStart)
return lexComment
}
// lexComment lexes an entire comment. It assumes that '#' has been consumed.
// It will consume *up to* the first newline character, and pass control
// back to the last state on the stack.
func lexComment(lx *lexer) stateFn {
r := lx.peek()
if isNL(r) || r == eof {
lx.emit(itemText)
return lx.pop()
}
lx.next()
return lexComment
}
// lexSkip ignores all slurped input and moves on to the next state.
func lexSkip(lx *lexer, nextState stateFn) stateFn {
return func(lx *lexer) stateFn {
lx.ignore()
return nextState
}
}
// isWhitespace returns true if `r` is a whitespace character according
// to the spec.
func isWhitespace(r rune) bool {
return r == '\t' || r == ' '
}
func isNL(r rune) bool {
return r == '\n' || r == '\r'
}
func isDigit(r rune) bool {
return r >= '0' && r <= '9'
}
func isHexadecimal(r rune) bool {
return (r >= '0' && r <= '9') ||
(r >= 'a' && r <= 'f') ||
(r >= 'A' && r <= 'F')
}
func isBareKeyChar(r rune) bool {
return (r >= 'A' && r <= 'Z') ||
(r >= 'a' && r <= 'z') ||
(r >= '0' && r <= '9') ||
r == '_' ||
r == '-'
}
func (itype itemType) String() string {
switch itype {
case itemError:
return "Error"
case itemNIL:
return "NIL"
case itemEOF:
return "EOF"
case itemText:
return "Text"
case itemString, itemRawString, itemMultilineString, itemRawMultilineString:
return "String"
case itemBool:
return "Bool"
case itemInteger:
return "Integer"
case itemFloat:
return "Float"
case itemDatetime:
return "DateTime"
case itemTableStart:
return "TableStart"
case itemTableEnd:
return "TableEnd"
case itemKeyStart:
return "KeyStart"
case itemArray:
return "Array"
case itemArrayEnd:
return "ArrayEnd"
case itemCommentStart:
return "CommentStart"
}
panic(fmt.Sprintf("BUG: Unknown type '%d'.", int(itype)))
}
func (item item) String() string {
return fmt.Sprintf("(%s, %s)", item.typ.String(), item.val)
}

View File

@ -1,592 +0,0 @@
package toml
import (
"fmt"
"strconv"
"strings"
"time"
"unicode"
"unicode/utf8"
)
type parser struct {
mapping map[string]interface{}
types map[string]tomlType
lx *lexer
// A list of keys in the order that they appear in the TOML data.
ordered []Key
// the full key for the current hash in scope
context Key
// the base key name for everything except hashes
currentKey string
// rough approximation of line number
approxLine int
// A map of 'key.group.names' to whether they were created implicitly.
implicits map[string]bool
}
type parseError string
func (pe parseError) Error() string {
return string(pe)
}
func parse(data string) (p *parser, err error) {
defer func() {
if r := recover(); r != nil {
var ok bool
if err, ok = r.(parseError); ok {
return
}
panic(r)
}
}()
p = &parser{
mapping: make(map[string]interface{}),
types: make(map[string]tomlType),
lx: lex(data),
ordered: make([]Key, 0),
implicits: make(map[string]bool),
}
for {
item := p.next()
if item.typ == itemEOF {
break
}
p.topLevel(item)
}
return p, nil
}
func (p *parser) panicf(format string, v ...interface{}) {
msg := fmt.Sprintf("Near line %d (last key parsed '%s'): %s",
p.approxLine, p.current(), fmt.Sprintf(format, v...))
panic(parseError(msg))
}
func (p *parser) next() item {
it := p.lx.nextItem()
if it.typ == itemError {
p.panicf("%s", it.val)
}
return it
}
func (p *parser) bug(format string, v ...interface{}) {
panic(fmt.Sprintf("BUG: "+format+"\n\n", v...))
}
func (p *parser) expect(typ itemType) item {
it := p.next()
p.assertEqual(typ, it.typ)
return it
}
func (p *parser) assertEqual(expected, got itemType) {
if expected != got {
p.bug("Expected '%s' but got '%s'.", expected, got)
}
}
func (p *parser) topLevel(item item) {
switch item.typ {
case itemCommentStart:
p.approxLine = item.line
p.expect(itemText)
case itemTableStart:
kg := p.next()
p.approxLine = kg.line
var key Key
for ; kg.typ != itemTableEnd && kg.typ != itemEOF; kg = p.next() {
key = append(key, p.keyString(kg))
}
p.assertEqual(itemTableEnd, kg.typ)
p.establishContext(key, false)
p.setType("", tomlHash)
p.ordered = append(p.ordered, key)
case itemArrayTableStart:
kg := p.next()
p.approxLine = kg.line
var key Key
for ; kg.typ != itemArrayTableEnd && kg.typ != itemEOF; kg = p.next() {
key = append(key, p.keyString(kg))
}
p.assertEqual(itemArrayTableEnd, kg.typ)
p.establishContext(key, true)
p.setType("", tomlArrayHash)
p.ordered = append(p.ordered, key)
case itemKeyStart:
kname := p.next()
p.approxLine = kname.line
p.currentKey = p.keyString(kname)
val, typ := p.value(p.next())
p.setValue(p.currentKey, val)
p.setType(p.currentKey, typ)
p.ordered = append(p.ordered, p.context.add(p.currentKey))
p.currentKey = ""
default:
p.bug("Unexpected type at top level: %s", item.typ)
}
}
// Gets a string for a key (or part of a key in a table name).
func (p *parser) keyString(it item) string {
switch it.typ {
case itemText:
return it.val
case itemString, itemMultilineString,
itemRawString, itemRawMultilineString:
s, _ := p.value(it)
return s.(string)
default:
p.bug("Unexpected key type: %s", it.typ)
panic("unreachable")
}
}
// value translates an expected value from the lexer into a Go value wrapped
// as an empty interface.
func (p *parser) value(it item) (interface{}, tomlType) {
switch it.typ {
case itemString:
return p.replaceEscapes(it.val), p.typeOfPrimitive(it)
case itemMultilineString:
trimmed := stripFirstNewline(stripEscapedWhitespace(it.val))
return p.replaceEscapes(trimmed), p.typeOfPrimitive(it)
case itemRawString:
return it.val, p.typeOfPrimitive(it)
case itemRawMultilineString:
return stripFirstNewline(it.val), p.typeOfPrimitive(it)
case itemBool:
switch it.val {
case "true":
return true, p.typeOfPrimitive(it)
case "false":
return false, p.typeOfPrimitive(it)
}
p.bug("Expected boolean value, but got '%s'.", it.val)
case itemInteger:
if !numUnderscoresOK(it.val) {
p.panicf("Invalid integer %q: underscores must be surrounded by digits",
it.val)
}
val := strings.Replace(it.val, "_", "", -1)
num, err := strconv.ParseInt(val, 10, 64)
if err != nil {
// Distinguish integer values. Normally, it'd be a bug if the lexer
// provides an invalid integer, but it's possible that the number is
// out of range of valid values (which the lexer cannot determine).
// So mark the former as a bug but the latter as a legitimate user
// error.
if e, ok := err.(*strconv.NumError); ok &&
e.Err == strconv.ErrRange {
p.panicf("Integer '%s' is out of the range of 64-bit "+
"signed integers.", it.val)
} else {
p.bug("Expected integer value, but got '%s'.", it.val)
}
}
return num, p.typeOfPrimitive(it)
case itemFloat:
parts := strings.FieldsFunc(it.val, func(r rune) bool {
switch r {
case '.', 'e', 'E':
return true
}
return false
})
for _, part := range parts {
if !numUnderscoresOK(part) {
p.panicf("Invalid float %q: underscores must be "+
"surrounded by digits", it.val)
}
}
if !numPeriodsOK(it.val) {
// As a special case, numbers like '123.' or '1.e2',
// which are valid as far as Go/strconv are concerned,
// must be rejected because TOML says that a fractional
// part consists of '.' followed by 1+ digits.
p.panicf("Invalid float %q: '.' must be followed "+
"by one or more digits", it.val)
}
val := strings.Replace(it.val, "_", "", -1)
num, err := strconv.ParseFloat(val, 64)
if err != nil {
if e, ok := err.(*strconv.NumError); ok &&
e.Err == strconv.ErrRange {
p.panicf("Float '%s' is out of the range of 64-bit "+
"IEEE-754 floating-point numbers.", it.val)
} else {
p.panicf("Invalid float value: %q", it.val)
}
}
return num, p.typeOfPrimitive(it)
case itemDatetime:
var t time.Time
var ok bool
var err error
for _, format := range []string{
"2006-01-02T15:04:05Z07:00",
"2006-01-02T15:04:05",
"2006-01-02",
} {
t, err = time.ParseInLocation(format, it.val, time.Local)
if err == nil {
ok = true
break
}
}
if !ok {
p.panicf("Invalid TOML Datetime: %q.", it.val)
}
return t, p.typeOfPrimitive(it)
case itemArray:
array := make([]interface{}, 0)
types := make([]tomlType, 0)
for it = p.next(); it.typ != itemArrayEnd; it = p.next() {
if it.typ == itemCommentStart {
p.expect(itemText)
continue
}
val, typ := p.value(it)
array = append(array, val)
types = append(types, typ)
}
return array, p.typeOfArray(types)
case itemInlineTableStart:
var (
hash = make(map[string]interface{})
outerContext = p.context
outerKey = p.currentKey
)
p.context = append(p.context, p.currentKey)
p.currentKey = ""
for it := p.next(); it.typ != itemInlineTableEnd; it = p.next() {
if it.typ != itemKeyStart {
p.bug("Expected key start but instead found %q, around line %d",
it.val, p.approxLine)
}
if it.typ == itemCommentStart {
p.expect(itemText)
continue
}
// retrieve key
k := p.next()
p.approxLine = k.line
kname := p.keyString(k)
// retrieve value
p.currentKey = kname
val, typ := p.value(p.next())
// make sure we keep metadata up to date
p.setType(kname, typ)
p.ordered = append(p.ordered, p.context.add(p.currentKey))
hash[kname] = val
}
p.context = outerContext
p.currentKey = outerKey
return hash, tomlHash
}
p.bug("Unexpected value type: %s", it.typ)
panic("unreachable")
}
// numUnderscoresOK checks whether each underscore in s is surrounded by
// characters that are not underscores.
func numUnderscoresOK(s string) bool {
accept := false
for _, r := range s {
if r == '_' {
if !accept {
return false
}
accept = false
continue
}
accept = true
}
return accept
}
// numPeriodsOK checks whether every period in s is followed by a digit.
func numPeriodsOK(s string) bool {
period := false
for _, r := range s {
if period && !isDigit(r) {
return false
}
period = r == '.'
}
return !period
}
// establishContext sets the current context of the parser,
// where the context is either a hash or an array of hashes. Which one is
// set depends on the value of the `array` parameter.
//
// Establishing the context also makes sure that the key isn't a duplicate, and
// will create implicit hashes automatically.
func (p *parser) establishContext(key Key, array bool) {
var ok bool
// Always start at the top level and drill down for our context.
hashContext := p.mapping
keyContext := make(Key, 0)
// We only need implicit hashes for key[0:-1]
for _, k := range key[0 : len(key)-1] {
_, ok = hashContext[k]
keyContext = append(keyContext, k)
// No key? Make an implicit hash and move on.
if !ok {
p.addImplicit(keyContext)
hashContext[k] = make(map[string]interface{})
}
// If the hash context is actually an array of tables, then set
// the hash context to the last element in that array.
//
// Otherwise, it better be a table, since this MUST be a key group (by
// virtue of it not being the last element in a key).
switch t := hashContext[k].(type) {
case []map[string]interface{}:
hashContext = t[len(t)-1]
case map[string]interface{}:
hashContext = t
default:
p.panicf("Key '%s' was already created as a hash.", keyContext)
}
}
p.context = keyContext
if array {
// If this is the first element for this array, then allocate a new
// list of tables for it.
k := key[len(key)-1]
if _, ok := hashContext[k]; !ok {
hashContext[k] = make([]map[string]interface{}, 0, 5)
}
// Add a new table. But make sure the key hasn't already been used
// for something else.
if hash, ok := hashContext[k].([]map[string]interface{}); ok {
hashContext[k] = append(hash, make(map[string]interface{}))
} else {
p.panicf("Key '%s' was already created and cannot be used as "+
"an array.", keyContext)
}
} else {
p.setValue(key[len(key)-1], make(map[string]interface{}))
}
p.context = append(p.context, key[len(key)-1])
}
// setValue sets the given key to the given value in the current context.
// It will make sure that the key hasn't already been defined, account for
// implicit key groups.
func (p *parser) setValue(key string, value interface{}) {
var tmpHash interface{}
var ok bool
hash := p.mapping
keyContext := make(Key, 0)
for _, k := range p.context {
keyContext = append(keyContext, k)
if tmpHash, ok = hash[k]; !ok {
p.bug("Context for key '%s' has not been established.", keyContext)
}
switch t := tmpHash.(type) {
case []map[string]interface{}:
// The context is a table of hashes. Pick the most recent table
// defined as the current hash.
hash = t[len(t)-1]
case map[string]interface{}:
hash = t
default:
p.bug("Expected hash to have type 'map[string]interface{}', but "+
"it has '%T' instead.", tmpHash)
}
}
keyContext = append(keyContext, key)
if _, ok := hash[key]; ok {
// Typically, if the given key has already been set, then we have
// to raise an error since duplicate keys are disallowed. However,
// it's possible that a key was previously defined implicitly. In this
// case, it is allowed to be redefined concretely. (See the
// `tests/valid/implicit-and-explicit-after.toml` test in `toml-test`.)
//
// But we have to make sure to stop marking it as an implicit. (So that
// another redefinition provokes an error.)
//
// Note that since it has already been defined (as a hash), we don't
// want to overwrite it. So our business is done.
if p.isImplicit(keyContext) {
p.removeImplicit(keyContext)
return
}
// Otherwise, we have a concrete key trying to override a previous
// key, which is *always* wrong.
p.panicf("Key '%s' has already been defined.", keyContext)
}
hash[key] = value
}
// setType sets the type of a particular value at a given key.
// It should be called immediately AFTER setValue.
//
// Note that if `key` is empty, then the type given will be applied to the
// current context (which is either a table or an array of tables).
func (p *parser) setType(key string, typ tomlType) {
keyContext := make(Key, 0, len(p.context)+1)
for _, k := range p.context {
keyContext = append(keyContext, k)
}
if len(key) > 0 { // allow type setting for hashes
keyContext = append(keyContext, key)
}
p.types[keyContext.String()] = typ
}
// addImplicit sets the given Key as having been created implicitly.
func (p *parser) addImplicit(key Key) {
p.implicits[key.String()] = true
}
// removeImplicit stops tagging the given key as having been implicitly
// created.
func (p *parser) removeImplicit(key Key) {
p.implicits[key.String()] = false
}
// isImplicit returns true if the key group pointed to by the key was created
// implicitly.
func (p *parser) isImplicit(key Key) bool {
return p.implicits[key.String()]
}
// current returns the full key name of the current context.
func (p *parser) current() string {
if len(p.currentKey) == 0 {
return p.context.String()
}
if len(p.context) == 0 {
return p.currentKey
}
return fmt.Sprintf("%s.%s", p.context, p.currentKey)
}
func stripFirstNewline(s string) string {
if len(s) == 0 || s[0] != '\n' {
return s
}
return s[1:]
}
func stripEscapedWhitespace(s string) string {
esc := strings.Split(s, "\\\n")
if len(esc) > 1 {
for i := 1; i < len(esc); i++ {
esc[i] = strings.TrimLeftFunc(esc[i], unicode.IsSpace)
}
}
return strings.Join(esc, "")
}
func (p *parser) replaceEscapes(str string) string {
var replaced []rune
s := []byte(str)
r := 0
for r < len(s) {
if s[r] != '\\' {
c, size := utf8.DecodeRune(s[r:])
r += size
replaced = append(replaced, c)
continue
}
r += 1
if r >= len(s) {
p.bug("Escape sequence at end of string.")
return ""
}
switch s[r] {
default:
p.bug("Expected valid escape code after \\, but got %q.", s[r])
return ""
case 'b':
replaced = append(replaced, rune(0x0008))
r += 1
case 't':
replaced = append(replaced, rune(0x0009))
r += 1
case 'n':
replaced = append(replaced, rune(0x000A))
r += 1
case 'f':
replaced = append(replaced, rune(0x000C))
r += 1
case 'r':
replaced = append(replaced, rune(0x000D))
r += 1
case '"':
replaced = append(replaced, rune(0x0022))
r += 1
case '\\':
replaced = append(replaced, rune(0x005C))
r += 1
case 'u':
// At this point, we know we have a Unicode escape of the form
// `uXXXX` at [r, r+5). (Because the lexer guarantees this
// for us.)
escaped := p.asciiEscapeToUnicode(s[r+1 : r+5])
replaced = append(replaced, escaped)
r += 5
case 'U':
// At this point, we know we have a Unicode escape of the form
// `uXXXX` at [r, r+9). (Because the lexer guarantees this
// for us.)
escaped := p.asciiEscapeToUnicode(s[r+1 : r+9])
replaced = append(replaced, escaped)
r += 9
}
}
return string(replaced)
}
func (p *parser) asciiEscapeToUnicode(bs []byte) rune {
s := string(bs)
hex, err := strconv.ParseUint(strings.ToLower(s), 16, 32)
if err != nil {
p.bug("Could not parse '%s' as a hexadecimal number, but the "+
"lexer claims it's OK: %s", s, err)
}
if !utf8.ValidRune(rune(hex)) {
p.panicf("Escaped character '\\u%s' is not valid UTF-8.", s)
}
return rune(hex)
}
func isStringType(ty itemType) bool {
return ty == itemString || ty == itemMultilineString ||
ty == itemRawString || ty == itemRawMultilineString
}

View File

@ -1 +0,0 @@
au BufWritePost *.go silent!make tags > /dev/null 2>&1

View File

@ -1,91 +0,0 @@
package toml
// tomlType represents any Go type that corresponds to a TOML type.
// While the first draft of the TOML spec has a simplistic type system that
// probably doesn't need this level of sophistication, we seem to be militating
// toward adding real composite types.
type tomlType interface {
typeString() string
}
// typeEqual accepts any two types and returns true if they are equal.
func typeEqual(t1, t2 tomlType) bool {
if t1 == nil || t2 == nil {
return false
}
return t1.typeString() == t2.typeString()
}
func typeIsHash(t tomlType) bool {
return typeEqual(t, tomlHash) || typeEqual(t, tomlArrayHash)
}
type tomlBaseType string
func (btype tomlBaseType) typeString() string {
return string(btype)
}
func (btype tomlBaseType) String() string {
return btype.typeString()
}
var (
tomlInteger tomlBaseType = "Integer"
tomlFloat tomlBaseType = "Float"
tomlDatetime tomlBaseType = "Datetime"
tomlString tomlBaseType = "String"
tomlBool tomlBaseType = "Bool"
tomlArray tomlBaseType = "Array"
tomlHash tomlBaseType = "Hash"
tomlArrayHash tomlBaseType = "ArrayHash"
)
// typeOfPrimitive returns a tomlType of any primitive value in TOML.
// Primitive values are: Integer, Float, Datetime, String and Bool.
//
// Passing a lexer item other than the following will cause a BUG message
// to occur: itemString, itemBool, itemInteger, itemFloat, itemDatetime.
func (p *parser) typeOfPrimitive(lexItem item) tomlType {
switch lexItem.typ {
case itemInteger:
return tomlInteger
case itemFloat:
return tomlFloat
case itemDatetime:
return tomlDatetime
case itemString:
return tomlString
case itemMultilineString:
return tomlString
case itemRawString:
return tomlString
case itemRawMultilineString:
return tomlString
case itemBool:
return tomlBool
}
p.bug("Cannot infer primitive type of lex item '%s'.", lexItem)
panic("unreachable")
}
// typeOfArray returns a tomlType for an array given a list of types of its
// values.
//
// In the current spec, if an array is homogeneous, then its type is always
// "Array". If the array is not homogeneous, an error is generated.
func (p *parser) typeOfArray(types []tomlType) tomlType {
// Empty arrays are cool.
if len(types) == 0 {
return tomlArray
}
theType := types[0]
for _, t := range types[1:] {
if !typeEqual(theType, t) {
p.panicf("Array contains values of type '%s' and '%s', but "+
"arrays must be homogeneous.", theType, t)
}
}
return tomlArray
}

View File

@ -1,242 +0,0 @@
package toml
// Struct field handling is adapted from code in encoding/json:
//
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the Go distribution.
import (
"reflect"
"sort"
"sync"
)
// A field represents a single field found in a struct.
type field struct {
name string // the name of the field (`toml` tag included)
tag bool // whether field has a `toml` tag
index []int // represents the depth of an anonymous field
typ reflect.Type // the type of the field
}
// byName sorts field by name, breaking ties with depth,
// then breaking ties with "name came from toml tag", then
// breaking ties with index sequence.
type byName []field
func (x byName) Len() int { return len(x) }
func (x byName) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
func (x byName) Less(i, j int) bool {
if x[i].name != x[j].name {
return x[i].name < x[j].name
}
if len(x[i].index) != len(x[j].index) {
return len(x[i].index) < len(x[j].index)
}
if x[i].tag != x[j].tag {
return x[i].tag
}
return byIndex(x).Less(i, j)
}
// byIndex sorts field by index sequence.
type byIndex []field
func (x byIndex) Len() int { return len(x) }
func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
func (x byIndex) Less(i, j int) bool {
for k, xik := range x[i].index {
if k >= len(x[j].index) {
return false
}
if xik != x[j].index[k] {
return xik < x[j].index[k]
}
}
return len(x[i].index) < len(x[j].index)
}
// typeFields returns a list of fields that TOML should recognize for the given
// type. The algorithm is breadth-first search over the set of structs to
// include - the top struct and then any reachable anonymous structs.
func typeFields(t reflect.Type) []field {
// Anonymous fields to explore at the current level and the next.
current := []field{}
next := []field{{typ: t}}
// Count of queued names for current level and the next.
count := map[reflect.Type]int{}
nextCount := map[reflect.Type]int{}
// Types already visited at an earlier level.
visited := map[reflect.Type]bool{}
// Fields found.
var fields []field
for len(next) > 0 {
current, next = next, current[:0]
count, nextCount = nextCount, map[reflect.Type]int{}
for _, f := range current {
if visited[f.typ] {
continue
}
visited[f.typ] = true
// Scan f.typ for fields to include.
for i := 0; i < f.typ.NumField(); i++ {
sf := f.typ.Field(i)
if sf.PkgPath != "" && !sf.Anonymous { // unexported
continue
}
opts := getOptions(sf.Tag)
if opts.skip {
continue
}
index := make([]int, len(f.index)+1)
copy(index, f.index)
index[len(f.index)] = i
ft := sf.Type
if ft.Name() == "" && ft.Kind() == reflect.Ptr {
// Follow pointer.
ft = ft.Elem()
}
// Record found field and index sequence.
if opts.name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct {
tagged := opts.name != ""
name := opts.name
if name == "" {
name = sf.Name
}
fields = append(fields, field{name, tagged, index, ft})
if count[f.typ] > 1 {
// If there were multiple instances, add a second,
// so that the annihilation code will see a duplicate.
// It only cares about the distinction between 1 or 2,
// so don't bother generating any more copies.
fields = append(fields, fields[len(fields)-1])
}
continue
}
// Record new anonymous struct to explore in next round.
nextCount[ft]++
if nextCount[ft] == 1 {
f := field{name: ft.Name(), index: index, typ: ft}
next = append(next, f)
}
}
}
}
sort.Sort(byName(fields))
// Delete all fields that are hidden by the Go rules for embedded fields,
// except that fields with TOML tags are promoted.
// The fields are sorted in primary order of name, secondary order
// of field index length. Loop over names; for each name, delete
// hidden fields by choosing the one dominant field that survives.
out := fields[:0]
for advance, i := 0, 0; i < len(fields); i += advance {
// One iteration per name.
// Find the sequence of fields with the name of this first field.
fi := fields[i]
name := fi.name
for advance = 1; i+advance < len(fields); advance++ {
fj := fields[i+advance]
if fj.name != name {
break
}
}
if advance == 1 { // Only one field with this name
out = append(out, fi)
continue
}
dominant, ok := dominantField(fields[i : i+advance])
if ok {
out = append(out, dominant)
}
}
fields = out
sort.Sort(byIndex(fields))
return fields
}
// dominantField looks through the fields, all of which are known to
// have the same name, to find the single field that dominates the
// others using Go's embedding rules, modified by the presence of
// TOML tags. If there are multiple top-level fields, the boolean
// will be false: This condition is an error in Go and we skip all
// the fields.
func dominantField(fields []field) (field, bool) {
// The fields are sorted in increasing index-length order. The winner
// must therefore be one with the shortest index length. Drop all
// longer entries, which is easy: just truncate the slice.
length := len(fields[0].index)
tagged := -1 // Index of first tagged field.
for i, f := range fields {
if len(f.index) > length {
fields = fields[:i]
break
}
if f.tag {
if tagged >= 0 {
// Multiple tagged fields at the same level: conflict.
// Return no field.
return field{}, false
}
tagged = i
}
}
if tagged >= 0 {
return fields[tagged], true
}
// All remaining fields have the same length. If there's more than one,
// we have a conflict (two fields named "X" at the same level) and we
// return no field.
if len(fields) > 1 {
return field{}, false
}
return fields[0], true
}
var fieldCache struct {
sync.RWMutex
m map[reflect.Type][]field
}
// cachedTypeFields is like typeFields but uses a cache to avoid repeated work.
func cachedTypeFields(t reflect.Type) []field {
fieldCache.RLock()
f := fieldCache.m[t]
fieldCache.RUnlock()
if f != nil {
return f
}
// Compute fields without lock.
// Might duplicate effort but won't hold other computations back.
f = typeFields(t)
if f == nil {
f = []field{}
}
fieldCache.Lock()
if fieldCache.m == nil {
fieldCache.m = map[reflect.Type][]field{}
}
fieldCache.m[t] = f
fieldCache.Unlock()
return f
}

View File

@ -1,15 +0,0 @@
ISC License
Copyright (c) 2012-2016 Dave Collins <dave@davec.name>
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

View File

@ -1,145 +0,0 @@
// Copyright (c) 2015-2016 Dave Collins <dave@davec.name>
//
// Permission to use, copy, modify, and distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
// NOTE: Due to the following build constraints, this file will only be compiled
// when the code is not running on Google App Engine, compiled by GopherJS, and
// "-tags safe" is not added to the go build command line. The "disableunsafe"
// tag is deprecated and thus should not be used.
// Go versions prior to 1.4 are disabled because they use a different layout
// for interfaces which make the implementation of unsafeReflectValue more complex.
// +build !js,!appengine,!safe,!disableunsafe,go1.4
package spew
import (
"reflect"
"unsafe"
)
const (
// UnsafeDisabled is a build-time constant which specifies whether or
// not access to the unsafe package is available.
UnsafeDisabled = false
// ptrSize is the size of a pointer on the current arch.
ptrSize = unsafe.Sizeof((*byte)(nil))
)
type flag uintptr
var (
// flagRO indicates whether the value field of a reflect.Value
// is read-only.
flagRO flag
// flagAddr indicates whether the address of the reflect.Value's
// value may be taken.
flagAddr flag
)
// flagKindMask holds the bits that make up the kind
// part of the flags field. In all the supported versions,
// it is in the lower 5 bits.
const flagKindMask = flag(0x1f)
// Different versions of Go have used different
// bit layouts for the flags type. This table
// records the known combinations.
var okFlags = []struct {
ro, addr flag
}{{
// From Go 1.4 to 1.5
ro: 1 << 5,
addr: 1 << 7,
}, {
// Up to Go tip.
ro: 1<<5 | 1<<6,
addr: 1 << 8,
}}
var flagValOffset = func() uintptr {
field, ok := reflect.TypeOf(reflect.Value{}).FieldByName("flag")
if !ok {
panic("reflect.Value has no flag field")
}
return field.Offset
}()
// flagField returns a pointer to the flag field of a reflect.Value.
func flagField(v *reflect.Value) *flag {
return (*flag)(unsafe.Pointer(uintptr(unsafe.Pointer(v)) + flagValOffset))
}
// unsafeReflectValue converts the passed reflect.Value into a one that bypasses
// the typical safety restrictions preventing access to unaddressable and
// unexported data. It works by digging the raw pointer to the underlying
// value out of the protected value and generating a new unprotected (unsafe)
// reflect.Value to it.
//
// This allows us to check for implementations of the Stringer and error
// interfaces to be used for pretty printing ordinarily unaddressable and
// inaccessible values such as unexported struct fields.
func unsafeReflectValue(v reflect.Value) reflect.Value {
if !v.IsValid() || (v.CanInterface() && v.CanAddr()) {
return v
}
flagFieldPtr := flagField(&v)
*flagFieldPtr &^= flagRO
*flagFieldPtr |= flagAddr
return v
}
// Sanity checks against future reflect package changes
// to the type or semantics of the Value.flag field.
func init() {
field, ok := reflect.TypeOf(reflect.Value{}).FieldByName("flag")
if !ok {
panic("reflect.Value has no flag field")
}
if field.Type.Kind() != reflect.TypeOf(flag(0)).Kind() {
panic("reflect.Value flag field has changed kind")
}
type t0 int
var t struct {
A t0
// t0 will have flagEmbedRO set.
t0
// a will have flagStickyRO set
a t0
}
vA := reflect.ValueOf(t).FieldByName("A")
va := reflect.ValueOf(t).FieldByName("a")
vt0 := reflect.ValueOf(t).FieldByName("t0")
// Infer flagRO from the difference between the flags
// for the (otherwise identical) fields in t.
flagPublic := *flagField(&vA)
flagWithRO := *flagField(&va) | *flagField(&vt0)
flagRO = flagPublic ^ flagWithRO
// Infer flagAddr from the difference between a value
// taken from a pointer and not.
vPtrA := reflect.ValueOf(&t).Elem().FieldByName("A")
flagNoPtr := *flagField(&vA)
flagPtr := *flagField(&vPtrA)
flagAddr = flagNoPtr ^ flagPtr
// Check that the inferred flags tally with one of the known versions.
for _, f := range okFlags {
if flagRO == f.ro && flagAddr == f.addr {
return
}
}
panic("reflect.Value read-only flag has changed semantics")
}

View File

@ -1,38 +0,0 @@
// Copyright (c) 2015-2016 Dave Collins <dave@davec.name>
//
// Permission to use, copy, modify, and distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
// NOTE: Due to the following build constraints, this file will only be compiled
// when the code is running on Google App Engine, compiled by GopherJS, or
// "-tags safe" is added to the go build command line. The "disableunsafe"
// tag is deprecated and thus should not be used.
// +build js appengine safe disableunsafe !go1.4
package spew
import "reflect"
const (
// UnsafeDisabled is a build-time constant which specifies whether or
// not access to the unsafe package is available.
UnsafeDisabled = true
)
// unsafeReflectValue typically converts the passed reflect.Value into a one
// that bypasses the typical safety restrictions preventing access to
// unaddressable and unexported data. However, doing this relies on access to
// the unsafe package. This is a stub version which simply returns the passed
// reflect.Value when the unsafe package is not available.
func unsafeReflectValue(v reflect.Value) reflect.Value {
return v
}

View File

@ -1,341 +0,0 @@
/*
* Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew
import (
"bytes"
"fmt"
"io"
"reflect"
"sort"
"strconv"
)
// Some constants in the form of bytes to avoid string overhead. This mirrors
// the technique used in the fmt package.
var (
panicBytes = []byte("(PANIC=")
plusBytes = []byte("+")
iBytes = []byte("i")
trueBytes = []byte("true")
falseBytes = []byte("false")
interfaceBytes = []byte("(interface {})")
commaNewlineBytes = []byte(",\n")
newlineBytes = []byte("\n")
openBraceBytes = []byte("{")
openBraceNewlineBytes = []byte("{\n")
closeBraceBytes = []byte("}")
asteriskBytes = []byte("*")
colonBytes = []byte(":")
colonSpaceBytes = []byte(": ")
openParenBytes = []byte("(")
closeParenBytes = []byte(")")
spaceBytes = []byte(" ")
pointerChainBytes = []byte("->")
nilAngleBytes = []byte("<nil>")
maxNewlineBytes = []byte("<max depth reached>\n")
maxShortBytes = []byte("<max>")
circularBytes = []byte("<already shown>")
circularShortBytes = []byte("<shown>")
invalidAngleBytes = []byte("<invalid>")
openBracketBytes = []byte("[")
closeBracketBytes = []byte("]")
percentBytes = []byte("%")
precisionBytes = []byte(".")
openAngleBytes = []byte("<")
closeAngleBytes = []byte(">")
openMapBytes = []byte("map[")
closeMapBytes = []byte("]")
lenEqualsBytes = []byte("len=")
capEqualsBytes = []byte("cap=")
)
// hexDigits is used to map a decimal value to a hex digit.
var hexDigits = "0123456789abcdef"
// catchPanic handles any panics that might occur during the handleMethods
// calls.
func catchPanic(w io.Writer, v reflect.Value) {
if err := recover(); err != nil {
w.Write(panicBytes)
fmt.Fprintf(w, "%v", err)
w.Write(closeParenBytes)
}
}
// handleMethods attempts to call the Error and String methods on the underlying
// type the passed reflect.Value represents and outputes the result to Writer w.
//
// It handles panics in any called methods by catching and displaying the error
// as the formatted value.
func handleMethods(cs *ConfigState, w io.Writer, v reflect.Value) (handled bool) {
// We need an interface to check if the type implements the error or
// Stringer interface. However, the reflect package won't give us an
// interface on certain things like unexported struct fields in order
// to enforce visibility rules. We use unsafe, when it's available,
// to bypass these restrictions since this package does not mutate the
// values.
if !v.CanInterface() {
if UnsafeDisabled {
return false
}
v = unsafeReflectValue(v)
}
// Choose whether or not to do error and Stringer interface lookups against
// the base type or a pointer to the base type depending on settings.
// Technically calling one of these methods with a pointer receiver can
// mutate the value, however, types which choose to satisify an error or
// Stringer interface with a pointer receiver should not be mutating their
// state inside these interface methods.
if !cs.DisablePointerMethods && !UnsafeDisabled && !v.CanAddr() {
v = unsafeReflectValue(v)
}
if v.CanAddr() {
v = v.Addr()
}
// Is it an error or Stringer?
switch iface := v.Interface().(type) {
case error:
defer catchPanic(w, v)
if cs.ContinueOnMethod {
w.Write(openParenBytes)
w.Write([]byte(iface.Error()))
w.Write(closeParenBytes)
w.Write(spaceBytes)
return false
}
w.Write([]byte(iface.Error()))
return true
case fmt.Stringer:
defer catchPanic(w, v)
if cs.ContinueOnMethod {
w.Write(openParenBytes)
w.Write([]byte(iface.String()))
w.Write(closeParenBytes)
w.Write(spaceBytes)
return false
}
w.Write([]byte(iface.String()))
return true
}
return false
}
// printBool outputs a boolean value as true or false to Writer w.
func printBool(w io.Writer, val bool) {
if val {
w.Write(trueBytes)
} else {
w.Write(falseBytes)
}
}
// printInt outputs a signed integer value to Writer w.
func printInt(w io.Writer, val int64, base int) {
w.Write([]byte(strconv.FormatInt(val, base)))
}
// printUint outputs an unsigned integer value to Writer w.
func printUint(w io.Writer, val uint64, base int) {
w.Write([]byte(strconv.FormatUint(val, base)))
}
// printFloat outputs a floating point value using the specified precision,
// which is expected to be 32 or 64bit, to Writer w.
func printFloat(w io.Writer, val float64, precision int) {
w.Write([]byte(strconv.FormatFloat(val, 'g', -1, precision)))
}
// printComplex outputs a complex value using the specified float precision
// for the real and imaginary parts to Writer w.
func printComplex(w io.Writer, c complex128, floatPrecision int) {
r := real(c)
w.Write(openParenBytes)
w.Write([]byte(strconv.FormatFloat(r, 'g', -1, floatPrecision)))
i := imag(c)
if i >= 0 {
w.Write(plusBytes)
}
w.Write([]byte(strconv.FormatFloat(i, 'g', -1, floatPrecision)))
w.Write(iBytes)
w.Write(closeParenBytes)
}
// printHexPtr outputs a uintptr formatted as hexadecimal with a leading '0x'
// prefix to Writer w.
func printHexPtr(w io.Writer, p uintptr) {
// Null pointer.
num := uint64(p)
if num == 0 {
w.Write(nilAngleBytes)
return
}
// Max uint64 is 16 bytes in hex + 2 bytes for '0x' prefix
buf := make([]byte, 18)
// It's simpler to construct the hex string right to left.
base := uint64(16)
i := len(buf) - 1
for num >= base {
buf[i] = hexDigits[num%base]
num /= base
i--
}
buf[i] = hexDigits[num]
// Add '0x' prefix.
i--
buf[i] = 'x'
i--
buf[i] = '0'
// Strip unused leading bytes.
buf = buf[i:]
w.Write(buf)
}
// valuesSorter implements sort.Interface to allow a slice of reflect.Value
// elements to be sorted.
type valuesSorter struct {
values []reflect.Value
strings []string // either nil or same len and values
cs *ConfigState
}
// newValuesSorter initializes a valuesSorter instance, which holds a set of
// surrogate keys on which the data should be sorted. It uses flags in
// ConfigState to decide if and how to populate those surrogate keys.
func newValuesSorter(values []reflect.Value, cs *ConfigState) sort.Interface {
vs := &valuesSorter{values: values, cs: cs}
if canSortSimply(vs.values[0].Kind()) {
return vs
}
if !cs.DisableMethods {
vs.strings = make([]string, len(values))
for i := range vs.values {
b := bytes.Buffer{}
if !handleMethods(cs, &b, vs.values[i]) {
vs.strings = nil
break
}
vs.strings[i] = b.String()
}
}
if vs.strings == nil && cs.SpewKeys {
vs.strings = make([]string, len(values))
for i := range vs.values {
vs.strings[i] = Sprintf("%#v", vs.values[i].Interface())
}
}
return vs
}
// canSortSimply tests whether a reflect.Kind is a primitive that can be sorted
// directly, or whether it should be considered for sorting by surrogate keys
// (if the ConfigState allows it).
func canSortSimply(kind reflect.Kind) bool {
// This switch parallels valueSortLess, except for the default case.
switch kind {
case reflect.Bool:
return true
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
return true
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
return true
case reflect.Float32, reflect.Float64:
return true
case reflect.String:
return true
case reflect.Uintptr:
return true
case reflect.Array:
return true
}
return false
}
// Len returns the number of values in the slice. It is part of the
// sort.Interface implementation.
func (s *valuesSorter) Len() int {
return len(s.values)
}
// Swap swaps the values at the passed indices. It is part of the
// sort.Interface implementation.
func (s *valuesSorter) Swap(i, j int) {
s.values[i], s.values[j] = s.values[j], s.values[i]
if s.strings != nil {
s.strings[i], s.strings[j] = s.strings[j], s.strings[i]
}
}
// valueSortLess returns whether the first value should sort before the second
// value. It is used by valueSorter.Less as part of the sort.Interface
// implementation.
func valueSortLess(a, b reflect.Value) bool {
switch a.Kind() {
case reflect.Bool:
return !a.Bool() && b.Bool()
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
return a.Int() < b.Int()
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
return a.Uint() < b.Uint()
case reflect.Float32, reflect.Float64:
return a.Float() < b.Float()
case reflect.String:
return a.String() < b.String()
case reflect.Uintptr:
return a.Uint() < b.Uint()
case reflect.Array:
// Compare the contents of both arrays.
l := a.Len()
for i := 0; i < l; i++ {
av := a.Index(i)
bv := b.Index(i)
if av.Interface() == bv.Interface() {
continue
}
return valueSortLess(av, bv)
}
}
return a.String() < b.String()
}
// Less returns whether the value at index i should sort before the
// value at index j. It is part of the sort.Interface implementation.
func (s *valuesSorter) Less(i, j int) bool {
if s.strings == nil {
return valueSortLess(s.values[i], s.values[j])
}
return s.strings[i] < s.strings[j]
}
// sortValues is a sort function that handles both native types and any type that
// can be converted to error or Stringer. Other inputs are sorted according to
// their Value.String() value to ensure display stability.
func sortValues(values []reflect.Value, cs *ConfigState) {
if len(values) == 0 {
return
}
sort.Sort(newValuesSorter(values, cs))
}

View File

@ -1,306 +0,0 @@
/*
* Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew
import (
"bytes"
"fmt"
"io"
"os"
)
// ConfigState houses the configuration options used by spew to format and
// display values. There is a global instance, Config, that is used to control
// all top-level Formatter and Dump functionality. Each ConfigState instance
// provides methods equivalent to the top-level functions.
//
// The zero value for ConfigState provides no indentation. You would typically
// want to set it to a space or a tab.
//
// Alternatively, you can use NewDefaultConfig to get a ConfigState instance
// with default settings. See the documentation of NewDefaultConfig for default
// values.
type ConfigState struct {
// Indent specifies the string to use for each indentation level. The
// global config instance that all top-level functions use set this to a
// single space by default. If you would like more indentation, you might
// set this to a tab with "\t" or perhaps two spaces with " ".
Indent string
// MaxDepth controls the maximum number of levels to descend into nested
// data structures. The default, 0, means there is no limit.
//
// NOTE: Circular data structures are properly detected, so it is not
// necessary to set this value unless you specifically want to limit deeply
// nested data structures.
MaxDepth int
// DisableMethods specifies whether or not error and Stringer interfaces are
// invoked for types that implement them.
DisableMethods bool
// DisablePointerMethods specifies whether or not to check for and invoke
// error and Stringer interfaces on types which only accept a pointer
// receiver when the current type is not a pointer.
//
// NOTE: This might be an unsafe action since calling one of these methods
// with a pointer receiver could technically mutate the value, however,
// in practice, types which choose to satisify an error or Stringer
// interface with a pointer receiver should not be mutating their state
// inside these interface methods. As a result, this option relies on
// access to the unsafe package, so it will not have any effect when
// running in environments without access to the unsafe package such as
// Google App Engine or with the "safe" build tag specified.
DisablePointerMethods bool
// DisablePointerAddresses specifies whether to disable the printing of
// pointer addresses. This is useful when diffing data structures in tests.
DisablePointerAddresses bool
// DisableCapacities specifies whether to disable the printing of capacities
// for arrays, slices, maps and channels. This is useful when diffing
// data structures in tests.
DisableCapacities bool
// ContinueOnMethod specifies whether or not recursion should continue once
// a custom error or Stringer interface is invoked. The default, false,
// means it will print the results of invoking the custom error or Stringer
// interface and return immediately instead of continuing to recurse into
// the internals of the data type.
//
// NOTE: This flag does not have any effect if method invocation is disabled
// via the DisableMethods or DisablePointerMethods options.
ContinueOnMethod bool
// SortKeys specifies map keys should be sorted before being printed. Use
// this to have a more deterministic, diffable output. Note that only
// native types (bool, int, uint, floats, uintptr and string) and types
// that support the error or Stringer interfaces (if methods are
// enabled) are supported, with other types sorted according to the
// reflect.Value.String() output which guarantees display stability.
SortKeys bool
// SpewKeys specifies that, as a last resort attempt, map keys should
// be spewed to strings and sorted by those strings. This is only
// considered if SortKeys is true.
SpewKeys bool
}
// Config is the active configuration of the top-level functions.
// The configuration can be changed by modifying the contents of spew.Config.
var Config = ConfigState{Indent: " "}
// Errorf is a wrapper for fmt.Errorf that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the formatted string as a value that satisfies error. See NewFormatter
// for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Errorf(format, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Errorf(format string, a ...interface{}) (err error) {
return fmt.Errorf(format, c.convertArgs(a)...)
}
// Fprint is a wrapper for fmt.Fprint that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprint(w, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Fprint(w io.Writer, a ...interface{}) (n int, err error) {
return fmt.Fprint(w, c.convertArgs(a)...)
}
// Fprintf is a wrapper for fmt.Fprintf that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprintf(w, format, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error) {
return fmt.Fprintf(w, format, c.convertArgs(a)...)
}
// Fprintln is a wrapper for fmt.Fprintln that treats each argument as if it
// passed with a Formatter interface returned by c.NewFormatter. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprintln(w, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Fprintln(w io.Writer, a ...interface{}) (n int, err error) {
return fmt.Fprintln(w, c.convertArgs(a)...)
}
// Print is a wrapper for fmt.Print that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Print(c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Print(a ...interface{}) (n int, err error) {
return fmt.Print(c.convertArgs(a)...)
}
// Printf is a wrapper for fmt.Printf that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Printf(format, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Printf(format string, a ...interface{}) (n int, err error) {
return fmt.Printf(format, c.convertArgs(a)...)
}
// Println is a wrapper for fmt.Println that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Println(c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Println(a ...interface{}) (n int, err error) {
return fmt.Println(c.convertArgs(a)...)
}
// Sprint is a wrapper for fmt.Sprint that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprint(c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Sprint(a ...interface{}) string {
return fmt.Sprint(c.convertArgs(a)...)
}
// Sprintf is a wrapper for fmt.Sprintf that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprintf(format, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Sprintf(format string, a ...interface{}) string {
return fmt.Sprintf(format, c.convertArgs(a)...)
}
// Sprintln is a wrapper for fmt.Sprintln that treats each argument as if it
// were passed with a Formatter interface returned by c.NewFormatter. It
// returns the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprintln(c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Sprintln(a ...interface{}) string {
return fmt.Sprintln(c.convertArgs(a)...)
}
/*
NewFormatter returns a custom formatter that satisfies the fmt.Formatter
interface. As a result, it integrates cleanly with standard fmt package
printing functions. The formatter is useful for inline printing of smaller data
types similar to the standard %v format specifier.
The custom formatter only responds to the %v (most compact), %+v (adds pointer
addresses), %#v (adds types), and %#+v (adds types and pointer addresses) verb
combinations. Any other verbs such as %x and %q will be sent to the the
standard fmt package for formatting. In addition, the custom formatter ignores
the width and precision arguments (however they will still work on the format
specifiers not handled by the custom formatter).
Typically this function shouldn't be called directly. It is much easier to make
use of the custom formatter by calling one of the convenience functions such as
c.Printf, c.Println, or c.Printf.
*/
func (c *ConfigState) NewFormatter(v interface{}) fmt.Formatter {
return newFormatter(c, v)
}
// Fdump formats and displays the passed arguments to io.Writer w. It formats
// exactly the same as Dump.
func (c *ConfigState) Fdump(w io.Writer, a ...interface{}) {
fdump(c, w, a...)
}
/*
Dump displays the passed parameters to standard out with newlines, customizable
indentation, and additional debug information such as complete types and all
pointer addresses used to indirect to the final value. It provides the
following features over the built-in printing facilities provided by the fmt
package:
* Pointers are dereferenced and followed
* Circular data structures are detected and handled properly
* Custom Stringer/error interfaces are optionally invoked, including
on unexported types
* Custom types which only implement the Stringer/error interfaces via
a pointer receiver are optionally invoked when passing non-pointer
variables
* Byte arrays and slices are dumped like the hexdump -C command which
includes offsets, byte values in hex, and ASCII output
The configuration options are controlled by modifying the public members
of c. See ConfigState for options documentation.
See Fdump if you would prefer dumping to an arbitrary io.Writer or Sdump to
get the formatted result as a string.
*/
func (c *ConfigState) Dump(a ...interface{}) {
fdump(c, os.Stdout, a...)
}
// Sdump returns a string with the passed arguments formatted exactly the same
// as Dump.
func (c *ConfigState) Sdump(a ...interface{}) string {
var buf bytes.Buffer
fdump(c, &buf, a...)
return buf.String()
}
// convertArgs accepts a slice of arguments and returns a slice of the same
// length with each argument converted to a spew Formatter interface using
// the ConfigState associated with s.
func (c *ConfigState) convertArgs(args []interface{}) (formatters []interface{}) {
formatters = make([]interface{}, len(args))
for index, arg := range args {
formatters[index] = newFormatter(c, arg)
}
return formatters
}
// NewDefaultConfig returns a ConfigState with the following default settings.
//
// Indent: " "
// MaxDepth: 0
// DisableMethods: false
// DisablePointerMethods: false
// ContinueOnMethod: false
// SortKeys: false
func NewDefaultConfig() *ConfigState {
return &ConfigState{Indent: " "}
}

View File

@ -1,211 +0,0 @@
/*
* Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
Package spew implements a deep pretty printer for Go data structures to aid in
debugging.
A quick overview of the additional features spew provides over the built-in
printing facilities for Go data types are as follows:
* Pointers are dereferenced and followed
* Circular data structures are detected and handled properly
* Custom Stringer/error interfaces are optionally invoked, including
on unexported types
* Custom types which only implement the Stringer/error interfaces via
a pointer receiver are optionally invoked when passing non-pointer
variables
* Byte arrays and slices are dumped like the hexdump -C command which
includes offsets, byte values in hex, and ASCII output (only when using
Dump style)
There are two different approaches spew allows for dumping Go data structures:
* Dump style which prints with newlines, customizable indentation,
and additional debug information such as types and all pointer addresses
used to indirect to the final value
* A custom Formatter interface that integrates cleanly with the standard fmt
package and replaces %v, %+v, %#v, and %#+v to provide inline printing
similar to the default %v while providing the additional functionality
outlined above and passing unsupported format verbs such as %x and %q
along to fmt
Quick Start
This section demonstrates how to quickly get started with spew. See the
sections below for further details on formatting and configuration options.
To dump a variable with full newlines, indentation, type, and pointer
information use Dump, Fdump, or Sdump:
spew.Dump(myVar1, myVar2, ...)
spew.Fdump(someWriter, myVar1, myVar2, ...)
str := spew.Sdump(myVar1, myVar2, ...)
Alternatively, if you would prefer to use format strings with a compacted inline
printing style, use the convenience wrappers Printf, Fprintf, etc with
%v (most compact), %+v (adds pointer addresses), %#v (adds types), or
%#+v (adds types and pointer addresses):
spew.Printf("myVar1: %v -- myVar2: %+v", myVar1, myVar2)
spew.Printf("myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
spew.Fprintf(someWriter, "myVar1: %v -- myVar2: %+v", myVar1, myVar2)
spew.Fprintf(someWriter, "myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
Configuration Options
Configuration of spew is handled by fields in the ConfigState type. For
convenience, all of the top-level functions use a global state available
via the spew.Config global.
It is also possible to create a ConfigState instance that provides methods
equivalent to the top-level functions. This allows concurrent configuration
options. See the ConfigState documentation for more details.
The following configuration options are available:
* Indent
String to use for each indentation level for Dump functions.
It is a single space by default. A popular alternative is "\t".
* MaxDepth
Maximum number of levels to descend into nested data structures.
There is no limit by default.
* DisableMethods
Disables invocation of error and Stringer interface methods.
Method invocation is enabled by default.
* DisablePointerMethods
Disables invocation of error and Stringer interface methods on types
which only accept pointer receivers from non-pointer variables.
Pointer method invocation is enabled by default.
* DisablePointerAddresses
DisablePointerAddresses specifies whether to disable the printing of
pointer addresses. This is useful when diffing data structures in tests.
* DisableCapacities
DisableCapacities specifies whether to disable the printing of
capacities for arrays, slices, maps and channels. This is useful when
diffing data structures in tests.
* ContinueOnMethod
Enables recursion into types after invoking error and Stringer interface
methods. Recursion after method invocation is disabled by default.
* SortKeys
Specifies map keys should be sorted before being printed. Use
this to have a more deterministic, diffable output. Note that
only native types (bool, int, uint, floats, uintptr and string)
and types which implement error or Stringer interfaces are
supported with other types sorted according to the
reflect.Value.String() output which guarantees display
stability. Natural map order is used by default.
* SpewKeys
Specifies that, as a last resort attempt, map keys should be
spewed to strings and sorted by those strings. This is only
considered if SortKeys is true.
Dump Usage
Simply call spew.Dump with a list of variables you want to dump:
spew.Dump(myVar1, myVar2, ...)
You may also call spew.Fdump if you would prefer to output to an arbitrary
io.Writer. For example, to dump to standard error:
spew.Fdump(os.Stderr, myVar1, myVar2, ...)
A third option is to call spew.Sdump to get the formatted output as a string:
str := spew.Sdump(myVar1, myVar2, ...)
Sample Dump Output
See the Dump example for details on the setup of the types and variables being
shown here.
(main.Foo) {
unexportedField: (*main.Bar)(0xf84002e210)({
flag: (main.Flag) flagTwo,
data: (uintptr) <nil>
}),
ExportedField: (map[interface {}]interface {}) (len=1) {
(string) (len=3) "one": (bool) true
}
}
Byte (and uint8) arrays and slices are displayed uniquely like the hexdump -C
command as shown.
([]uint8) (len=32 cap=32) {
00000000 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20 |............... |
00000010 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 30 |!"#$%&'()*+,-./0|
00000020 31 32 |12|
}
Custom Formatter
Spew provides a custom formatter that implements the fmt.Formatter interface
so that it integrates cleanly with standard fmt package printing functions. The
formatter is useful for inline printing of smaller data types similar to the
standard %v format specifier.
The custom formatter only responds to the %v (most compact), %+v (adds pointer
addresses), %#v (adds types), or %#+v (adds types and pointer addresses) verb
combinations. Any other verbs such as %x and %q will be sent to the the
standard fmt package for formatting. In addition, the custom formatter ignores
the width and precision arguments (however they will still work on the format
specifiers not handled by the custom formatter).
Custom Formatter Usage
The simplest way to make use of the spew custom formatter is to call one of the
convenience functions such as spew.Printf, spew.Println, or spew.Printf. The
functions have syntax you are most likely already familiar with:
spew.Printf("myVar1: %v -- myVar2: %+v", myVar1, myVar2)
spew.Printf("myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
spew.Println(myVar, myVar2)
spew.Fprintf(os.Stderr, "myVar1: %v -- myVar2: %+v", myVar1, myVar2)
spew.Fprintf(os.Stderr, "myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
See the Index for the full list convenience functions.
Sample Formatter Output
Double pointer to a uint8:
%v: <**>5
%+v: <**>(0xf8400420d0->0xf8400420c8)5
%#v: (**uint8)5
%#+v: (**uint8)(0xf8400420d0->0xf8400420c8)5
Pointer to circular struct with a uint8 field and a pointer to itself:
%v: <*>{1 <*><shown>}
%+v: <*>(0xf84003e260){ui8:1 c:<*>(0xf84003e260)<shown>}
%#v: (*main.circular){ui8:(uint8)1 c:(*main.circular)<shown>}
%#+v: (*main.circular)(0xf84003e260){ui8:(uint8)1 c:(*main.circular)(0xf84003e260)<shown>}
See the Printf example for details on the setup of variables being shown
here.
Errors
Since it is possible for custom Stringer/error interfaces to panic, spew
detects them and handles them internally by printing the panic information
inline with the output. Since spew is intended to provide deep pretty printing
capabilities on structures, it intentionally does not return any errors.
*/
package spew

View File

@ -1,509 +0,0 @@
/*
* Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew
import (
"bytes"
"encoding/hex"
"fmt"
"io"
"os"
"reflect"
"regexp"
"strconv"
"strings"
)
var (
// uint8Type is a reflect.Type representing a uint8. It is used to
// convert cgo types to uint8 slices for hexdumping.
uint8Type = reflect.TypeOf(uint8(0))
// cCharRE is a regular expression that matches a cgo char.
// It is used to detect character arrays to hexdump them.
cCharRE = regexp.MustCompile(`^.*\._Ctype_char$`)
// cUnsignedCharRE is a regular expression that matches a cgo unsigned
// char. It is used to detect unsigned character arrays to hexdump
// them.
cUnsignedCharRE = regexp.MustCompile(`^.*\._Ctype_unsignedchar$`)
// cUint8tCharRE is a regular expression that matches a cgo uint8_t.
// It is used to detect uint8_t arrays to hexdump them.
cUint8tCharRE = regexp.MustCompile(`^.*\._Ctype_uint8_t$`)
)
// dumpState contains information about the state of a dump operation.
type dumpState struct {
w io.Writer
depth int
pointers map[uintptr]int
ignoreNextType bool
ignoreNextIndent bool
cs *ConfigState
}
// indent performs indentation according to the depth level and cs.Indent
// option.
func (d *dumpState) indent() {
if d.ignoreNextIndent {
d.ignoreNextIndent = false
return
}
d.w.Write(bytes.Repeat([]byte(d.cs.Indent), d.depth))
}
// unpackValue returns values inside of non-nil interfaces when possible.
// This is useful for data types like structs, arrays, slices, and maps which
// can contain varying types packed inside an interface.
func (d *dumpState) unpackValue(v reflect.Value) reflect.Value {
if v.Kind() == reflect.Interface && !v.IsNil() {
v = v.Elem()
}
return v
}
// dumpPtr handles formatting of pointers by indirecting them as necessary.
func (d *dumpState) dumpPtr(v reflect.Value) {
// Remove pointers at or below the current depth from map used to detect
// circular refs.
for k, depth := range d.pointers {
if depth >= d.depth {
delete(d.pointers, k)
}
}
// Keep list of all dereferenced pointers to show later.
pointerChain := make([]uintptr, 0)
// Figure out how many levels of indirection there are by dereferencing
// pointers and unpacking interfaces down the chain while detecting circular
// references.
nilFound := false
cycleFound := false
indirects := 0
ve := v
for ve.Kind() == reflect.Ptr {
if ve.IsNil() {
nilFound = true
break
}
indirects++
addr := ve.Pointer()
pointerChain = append(pointerChain, addr)
if pd, ok := d.pointers[addr]; ok && pd < d.depth {
cycleFound = true
indirects--
break
}
d.pointers[addr] = d.depth
ve = ve.Elem()
if ve.Kind() == reflect.Interface {
if ve.IsNil() {
nilFound = true
break
}
ve = ve.Elem()
}
}
// Display type information.
d.w.Write(openParenBytes)
d.w.Write(bytes.Repeat(asteriskBytes, indirects))
d.w.Write([]byte(ve.Type().String()))
d.w.Write(closeParenBytes)
// Display pointer information.
if !d.cs.DisablePointerAddresses && len(pointerChain) > 0 {
d.w.Write(openParenBytes)
for i, addr := range pointerChain {
if i > 0 {
d.w.Write(pointerChainBytes)
}
printHexPtr(d.w, addr)
}
d.w.Write(closeParenBytes)
}
// Display dereferenced value.
d.w.Write(openParenBytes)
switch {
case nilFound:
d.w.Write(nilAngleBytes)
case cycleFound:
d.w.Write(circularBytes)
default:
d.ignoreNextType = true
d.dump(ve)
}
d.w.Write(closeParenBytes)
}
// dumpSlice handles formatting of arrays and slices. Byte (uint8 under
// reflection) arrays and slices are dumped in hexdump -C fashion.
func (d *dumpState) dumpSlice(v reflect.Value) {
// Determine whether this type should be hex dumped or not. Also,
// for types which should be hexdumped, try to use the underlying data
// first, then fall back to trying to convert them to a uint8 slice.
var buf []uint8
doConvert := false
doHexDump := false
numEntries := v.Len()
if numEntries > 0 {
vt := v.Index(0).Type()
vts := vt.String()
switch {
// C types that need to be converted.
case cCharRE.MatchString(vts):
fallthrough
case cUnsignedCharRE.MatchString(vts):
fallthrough
case cUint8tCharRE.MatchString(vts):
doConvert = true
// Try to use existing uint8 slices and fall back to converting
// and copying if that fails.
case vt.Kind() == reflect.Uint8:
// We need an addressable interface to convert the type
// to a byte slice. However, the reflect package won't
// give us an interface on certain things like
// unexported struct fields in order to enforce
// visibility rules. We use unsafe, when available, to
// bypass these restrictions since this package does not
// mutate the values.
vs := v
if !vs.CanInterface() || !vs.CanAddr() {
vs = unsafeReflectValue(vs)
}
if !UnsafeDisabled {
vs = vs.Slice(0, numEntries)
// Use the existing uint8 slice if it can be
// type asserted.
iface := vs.Interface()
if slice, ok := iface.([]uint8); ok {
buf = slice
doHexDump = true
break
}
}
// The underlying data needs to be converted if it can't
// be type asserted to a uint8 slice.
doConvert = true
}
// Copy and convert the underlying type if needed.
if doConvert && vt.ConvertibleTo(uint8Type) {
// Convert and copy each element into a uint8 byte
// slice.
buf = make([]uint8, numEntries)
for i := 0; i < numEntries; i++ {
vv := v.Index(i)
buf[i] = uint8(vv.Convert(uint8Type).Uint())
}
doHexDump = true
}
}
// Hexdump the entire slice as needed.
if doHexDump {
indent := strings.Repeat(d.cs.Indent, d.depth)
str := indent + hex.Dump(buf)
str = strings.Replace(str, "\n", "\n"+indent, -1)
str = strings.TrimRight(str, d.cs.Indent)
d.w.Write([]byte(str))
return
}
// Recursively call dump for each item.
for i := 0; i < numEntries; i++ {
d.dump(d.unpackValue(v.Index(i)))
if i < (numEntries - 1) {
d.w.Write(commaNewlineBytes)
} else {
d.w.Write(newlineBytes)
}
}
}
// dump is the main workhorse for dumping a value. It uses the passed reflect
// value to figure out what kind of object we are dealing with and formats it
// appropriately. It is a recursive function, however circular data structures
// are detected and handled properly.
func (d *dumpState) dump(v reflect.Value) {
// Handle invalid reflect values immediately.
kind := v.Kind()
if kind == reflect.Invalid {
d.w.Write(invalidAngleBytes)
return
}
// Handle pointers specially.
if kind == reflect.Ptr {
d.indent()
d.dumpPtr(v)
return
}
// Print type information unless already handled elsewhere.
if !d.ignoreNextType {
d.indent()
d.w.Write(openParenBytes)
d.w.Write([]byte(v.Type().String()))
d.w.Write(closeParenBytes)
d.w.Write(spaceBytes)
}
d.ignoreNextType = false
// Display length and capacity if the built-in len and cap functions
// work with the value's kind and the len/cap itself is non-zero.
valueLen, valueCap := 0, 0
switch v.Kind() {
case reflect.Array, reflect.Slice, reflect.Chan:
valueLen, valueCap = v.Len(), v.Cap()
case reflect.Map, reflect.String:
valueLen = v.Len()
}
if valueLen != 0 || !d.cs.DisableCapacities && valueCap != 0 {
d.w.Write(openParenBytes)
if valueLen != 0 {
d.w.Write(lenEqualsBytes)
printInt(d.w, int64(valueLen), 10)
}
if !d.cs.DisableCapacities && valueCap != 0 {
if valueLen != 0 {
d.w.Write(spaceBytes)
}
d.w.Write(capEqualsBytes)
printInt(d.w, int64(valueCap), 10)
}
d.w.Write(closeParenBytes)
d.w.Write(spaceBytes)
}
// Call Stringer/error interfaces if they exist and the handle methods flag
// is enabled
if !d.cs.DisableMethods {
if (kind != reflect.Invalid) && (kind != reflect.Interface) {
if handled := handleMethods(d.cs, d.w, v); handled {
return
}
}
}
switch kind {
case reflect.Invalid:
// Do nothing. We should never get here since invalid has already
// been handled above.
case reflect.Bool:
printBool(d.w, v.Bool())
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
printInt(d.w, v.Int(), 10)
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
printUint(d.w, v.Uint(), 10)
case reflect.Float32:
printFloat(d.w, v.Float(), 32)
case reflect.Float64:
printFloat(d.w, v.Float(), 64)
case reflect.Complex64:
printComplex(d.w, v.Complex(), 32)
case reflect.Complex128:
printComplex(d.w, v.Complex(), 64)
case reflect.Slice:
if v.IsNil() {
d.w.Write(nilAngleBytes)
break
}
fallthrough
case reflect.Array:
d.w.Write(openBraceNewlineBytes)
d.depth++
if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) {
d.indent()
d.w.Write(maxNewlineBytes)
} else {
d.dumpSlice(v)
}
d.depth--
d.indent()
d.w.Write(closeBraceBytes)
case reflect.String:
d.w.Write([]byte(strconv.Quote(v.String())))
case reflect.Interface:
// The only time we should get here is for nil interfaces due to
// unpackValue calls.
if v.IsNil() {
d.w.Write(nilAngleBytes)
}
case reflect.Ptr:
// Do nothing. We should never get here since pointers have already
// been handled above.
case reflect.Map:
// nil maps should be indicated as different than empty maps
if v.IsNil() {
d.w.Write(nilAngleBytes)
break
}
d.w.Write(openBraceNewlineBytes)
d.depth++
if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) {
d.indent()
d.w.Write(maxNewlineBytes)
} else {
numEntries := v.Len()
keys := v.MapKeys()
if d.cs.SortKeys {
sortValues(keys, d.cs)
}
for i, key := range keys {
d.dump(d.unpackValue(key))
d.w.Write(colonSpaceBytes)
d.ignoreNextIndent = true
d.dump(d.unpackValue(v.MapIndex(key)))
if i < (numEntries - 1) {
d.w.Write(commaNewlineBytes)
} else {
d.w.Write(newlineBytes)
}
}
}
d.depth--
d.indent()
d.w.Write(closeBraceBytes)
case reflect.Struct:
d.w.Write(openBraceNewlineBytes)
d.depth++
if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) {
d.indent()
d.w.Write(maxNewlineBytes)
} else {
vt := v.Type()
numFields := v.NumField()
for i := 0; i < numFields; i++ {
d.indent()
vtf := vt.Field(i)
d.w.Write([]byte(vtf.Name))
d.w.Write(colonSpaceBytes)
d.ignoreNextIndent = true
d.dump(d.unpackValue(v.Field(i)))
if i < (numFields - 1) {
d.w.Write(commaNewlineBytes)
} else {
d.w.Write(newlineBytes)
}
}
}
d.depth--
d.indent()
d.w.Write(closeBraceBytes)
case reflect.Uintptr:
printHexPtr(d.w, uintptr(v.Uint()))
case reflect.UnsafePointer, reflect.Chan, reflect.Func:
printHexPtr(d.w, v.Pointer())
// There were not any other types at the time this code was written, but
// fall back to letting the default fmt package handle it in case any new
// types are added.
default:
if v.CanInterface() {
fmt.Fprintf(d.w, "%v", v.Interface())
} else {
fmt.Fprintf(d.w, "%v", v.String())
}
}
}
// fdump is a helper function to consolidate the logic from the various public
// methods which take varying writers and config states.
func fdump(cs *ConfigState, w io.Writer, a ...interface{}) {
for _, arg := range a {
if arg == nil {
w.Write(interfaceBytes)
w.Write(spaceBytes)
w.Write(nilAngleBytes)
w.Write(newlineBytes)
continue
}
d := dumpState{w: w, cs: cs}
d.pointers = make(map[uintptr]int)
d.dump(reflect.ValueOf(arg))
d.w.Write(newlineBytes)
}
}
// Fdump formats and displays the passed arguments to io.Writer w. It formats
// exactly the same as Dump.
func Fdump(w io.Writer, a ...interface{}) {
fdump(&Config, w, a...)
}
// Sdump returns a string with the passed arguments formatted exactly the same
// as Dump.
func Sdump(a ...interface{}) string {
var buf bytes.Buffer
fdump(&Config, &buf, a...)
return buf.String()
}
/*
Dump displays the passed parameters to standard out with newlines, customizable
indentation, and additional debug information such as complete types and all
pointer addresses used to indirect to the final value. It provides the
following features over the built-in printing facilities provided by the fmt
package:
* Pointers are dereferenced and followed
* Circular data structures are detected and handled properly
* Custom Stringer/error interfaces are optionally invoked, including
on unexported types
* Custom types which only implement the Stringer/error interfaces via
a pointer receiver are optionally invoked when passing non-pointer
variables
* Byte arrays and slices are dumped like the hexdump -C command which
includes offsets, byte values in hex, and ASCII output
The configuration options are controlled by an exported package global,
spew.Config. See ConfigState for options documentation.
See Fdump if you would prefer dumping to an arbitrary io.Writer or Sdump to
get the formatted result as a string.
*/
func Dump(a ...interface{}) {
fdump(&Config, os.Stdout, a...)
}

View File

@ -1,419 +0,0 @@
/*
* Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew
import (
"bytes"
"fmt"
"reflect"
"strconv"
"strings"
)
// supportedFlags is a list of all the character flags supported by fmt package.
const supportedFlags = "0-+# "
// formatState implements the fmt.Formatter interface and contains information
// about the state of a formatting operation. The NewFormatter function can
// be used to get a new Formatter which can be used directly as arguments
// in standard fmt package printing calls.
type formatState struct {
value interface{}
fs fmt.State
depth int
pointers map[uintptr]int
ignoreNextType bool
cs *ConfigState
}
// buildDefaultFormat recreates the original format string without precision
// and width information to pass in to fmt.Sprintf in the case of an
// unrecognized type. Unless new types are added to the language, this
// function won't ever be called.
func (f *formatState) buildDefaultFormat() (format string) {
buf := bytes.NewBuffer(percentBytes)
for _, flag := range supportedFlags {
if f.fs.Flag(int(flag)) {
buf.WriteRune(flag)
}
}
buf.WriteRune('v')
format = buf.String()
return format
}
// constructOrigFormat recreates the original format string including precision
// and width information to pass along to the standard fmt package. This allows
// automatic deferral of all format strings this package doesn't support.
func (f *formatState) constructOrigFormat(verb rune) (format string) {
buf := bytes.NewBuffer(percentBytes)
for _, flag := range supportedFlags {
if f.fs.Flag(int(flag)) {
buf.WriteRune(flag)
}
}
if width, ok := f.fs.Width(); ok {
buf.WriteString(strconv.Itoa(width))
}
if precision, ok := f.fs.Precision(); ok {
buf.Write(precisionBytes)
buf.WriteString(strconv.Itoa(precision))
}
buf.WriteRune(verb)
format = buf.String()
return format
}
// unpackValue returns values inside of non-nil interfaces when possible and
// ensures that types for values which have been unpacked from an interface
// are displayed when the show types flag is also set.
// This is useful for data types like structs, arrays, slices, and maps which
// can contain varying types packed inside an interface.
func (f *formatState) unpackValue(v reflect.Value) reflect.Value {
if v.Kind() == reflect.Interface {
f.ignoreNextType = false
if !v.IsNil() {
v = v.Elem()
}
}
return v
}
// formatPtr handles formatting of pointers by indirecting them as necessary.
func (f *formatState) formatPtr(v reflect.Value) {
// Display nil if top level pointer is nil.
showTypes := f.fs.Flag('#')
if v.IsNil() && (!showTypes || f.ignoreNextType) {
f.fs.Write(nilAngleBytes)
return
}
// Remove pointers at or below the current depth from map used to detect
// circular refs.
for k, depth := range f.pointers {
if depth >= f.depth {
delete(f.pointers, k)
}
}
// Keep list of all dereferenced pointers to possibly show later.
pointerChain := make([]uintptr, 0)
// Figure out how many levels of indirection there are by derferencing
// pointers and unpacking interfaces down the chain while detecting circular
// references.
nilFound := false
cycleFound := false
indirects := 0
ve := v
for ve.Kind() == reflect.Ptr {
if ve.IsNil() {
nilFound = true
break
}
indirects++
addr := ve.Pointer()
pointerChain = append(pointerChain, addr)
if pd, ok := f.pointers[addr]; ok && pd < f.depth {
cycleFound = true
indirects--
break
}
f.pointers[addr] = f.depth
ve = ve.Elem()
if ve.Kind() == reflect.Interface {
if ve.IsNil() {
nilFound = true
break
}
ve = ve.Elem()
}
}
// Display type or indirection level depending on flags.
if showTypes && !f.ignoreNextType {
f.fs.Write(openParenBytes)
f.fs.Write(bytes.Repeat(asteriskBytes, indirects))
f.fs.Write([]byte(ve.Type().String()))
f.fs.Write(closeParenBytes)
} else {
if nilFound || cycleFound {
indirects += strings.Count(ve.Type().String(), "*")
}
f.fs.Write(openAngleBytes)
f.fs.Write([]byte(strings.Repeat("*", indirects)))
f.fs.Write(closeAngleBytes)
}
// Display pointer information depending on flags.
if f.fs.Flag('+') && (len(pointerChain) > 0) {
f.fs.Write(openParenBytes)
for i, addr := range pointerChain {
if i > 0 {
f.fs.Write(pointerChainBytes)
}
printHexPtr(f.fs, addr)
}
f.fs.Write(closeParenBytes)
}
// Display dereferenced value.
switch {
case nilFound:
f.fs.Write(nilAngleBytes)
case cycleFound:
f.fs.Write(circularShortBytes)
default:
f.ignoreNextType = true
f.format(ve)
}
}
// format is the main workhorse for providing the Formatter interface. It
// uses the passed reflect value to figure out what kind of object we are
// dealing with and formats it appropriately. It is a recursive function,
// however circular data structures are detected and handled properly.
func (f *formatState) format(v reflect.Value) {
// Handle invalid reflect values immediately.
kind := v.Kind()
if kind == reflect.Invalid {
f.fs.Write(invalidAngleBytes)
return
}
// Handle pointers specially.
if kind == reflect.Ptr {
f.formatPtr(v)
return
}
// Print type information unless already handled elsewhere.
if !f.ignoreNextType && f.fs.Flag('#') {
f.fs.Write(openParenBytes)
f.fs.Write([]byte(v.Type().String()))
f.fs.Write(closeParenBytes)
}
f.ignoreNextType = false
// Call Stringer/error interfaces if they exist and the handle methods
// flag is enabled.
if !f.cs.DisableMethods {
if (kind != reflect.Invalid) && (kind != reflect.Interface) {
if handled := handleMethods(f.cs, f.fs, v); handled {
return
}
}
}
switch kind {
case reflect.Invalid:
// Do nothing. We should never get here since invalid has already
// been handled above.
case reflect.Bool:
printBool(f.fs, v.Bool())
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
printInt(f.fs, v.Int(), 10)
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
printUint(f.fs, v.Uint(), 10)
case reflect.Float32:
printFloat(f.fs, v.Float(), 32)
case reflect.Float64:
printFloat(f.fs, v.Float(), 64)
case reflect.Complex64:
printComplex(f.fs, v.Complex(), 32)
case reflect.Complex128:
printComplex(f.fs, v.Complex(), 64)
case reflect.Slice:
if v.IsNil() {
f.fs.Write(nilAngleBytes)
break
}
fallthrough
case reflect.Array:
f.fs.Write(openBracketBytes)
f.depth++
if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) {
f.fs.Write(maxShortBytes)
} else {
numEntries := v.Len()
for i := 0; i < numEntries; i++ {
if i > 0 {
f.fs.Write(spaceBytes)
}
f.ignoreNextType = true
f.format(f.unpackValue(v.Index(i)))
}
}
f.depth--
f.fs.Write(closeBracketBytes)
case reflect.String:
f.fs.Write([]byte(v.String()))
case reflect.Interface:
// The only time we should get here is for nil interfaces due to
// unpackValue calls.
if v.IsNil() {
f.fs.Write(nilAngleBytes)
}
case reflect.Ptr:
// Do nothing. We should never get here since pointers have already
// been handled above.
case reflect.Map:
// nil maps should be indicated as different than empty maps
if v.IsNil() {
f.fs.Write(nilAngleBytes)
break
}
f.fs.Write(openMapBytes)
f.depth++
if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) {
f.fs.Write(maxShortBytes)
} else {
keys := v.MapKeys()
if f.cs.SortKeys {
sortValues(keys, f.cs)
}
for i, key := range keys {
if i > 0 {
f.fs.Write(spaceBytes)
}
f.ignoreNextType = true
f.format(f.unpackValue(key))
f.fs.Write(colonBytes)
f.ignoreNextType = true
f.format(f.unpackValue(v.MapIndex(key)))
}
}
f.depth--
f.fs.Write(closeMapBytes)
case reflect.Struct:
numFields := v.NumField()
f.fs.Write(openBraceBytes)
f.depth++
if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) {
f.fs.Write(maxShortBytes)
} else {
vt := v.Type()
for i := 0; i < numFields; i++ {
if i > 0 {
f.fs.Write(spaceBytes)
}
vtf := vt.Field(i)
if f.fs.Flag('+') || f.fs.Flag('#') {
f.fs.Write([]byte(vtf.Name))
f.fs.Write(colonBytes)
}
f.format(f.unpackValue(v.Field(i)))
}
}
f.depth--
f.fs.Write(closeBraceBytes)
case reflect.Uintptr:
printHexPtr(f.fs, uintptr(v.Uint()))
case reflect.UnsafePointer, reflect.Chan, reflect.Func:
printHexPtr(f.fs, v.Pointer())
// There were not any other types at the time this code was written, but
// fall back to letting the default fmt package handle it if any get added.
default:
format := f.buildDefaultFormat()
if v.CanInterface() {
fmt.Fprintf(f.fs, format, v.Interface())
} else {
fmt.Fprintf(f.fs, format, v.String())
}
}
}
// Format satisfies the fmt.Formatter interface. See NewFormatter for usage
// details.
func (f *formatState) Format(fs fmt.State, verb rune) {
f.fs = fs
// Use standard formatting for verbs that are not v.
if verb != 'v' {
format := f.constructOrigFormat(verb)
fmt.Fprintf(fs, format, f.value)
return
}
if f.value == nil {
if fs.Flag('#') {
fs.Write(interfaceBytes)
}
fs.Write(nilAngleBytes)
return
}
f.format(reflect.ValueOf(f.value))
}
// newFormatter is a helper function to consolidate the logic from the various
// public methods which take varying config states.
func newFormatter(cs *ConfigState, v interface{}) fmt.Formatter {
fs := &formatState{value: v, cs: cs}
fs.pointers = make(map[uintptr]int)
return fs
}
/*
NewFormatter returns a custom formatter that satisfies the fmt.Formatter
interface. As a result, it integrates cleanly with standard fmt package
printing functions. The formatter is useful for inline printing of smaller data
types similar to the standard %v format specifier.
The custom formatter only responds to the %v (most compact), %+v (adds pointer
addresses), %#v (adds types), or %#+v (adds types and pointer addresses) verb
combinations. Any other verbs such as %x and %q will be sent to the the
standard fmt package for formatting. In addition, the custom formatter ignores
the width and precision arguments (however they will still work on the format
specifiers not handled by the custom formatter).
Typically this function shouldn't be called directly. It is much easier to make
use of the custom formatter by calling one of the convenience functions such as
Printf, Println, or Fprintf.
*/
func NewFormatter(v interface{}) fmt.Formatter {
return newFormatter(&Config, v)
}

View File

@ -1,148 +0,0 @@
/*
* Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew
import (
"fmt"
"io"
)
// Errorf is a wrapper for fmt.Errorf that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the formatted string as a value that satisfies error. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Errorf(format, spew.NewFormatter(a), spew.NewFormatter(b))
func Errorf(format string, a ...interface{}) (err error) {
return fmt.Errorf(format, convertArgs(a)...)
}
// Fprint is a wrapper for fmt.Fprint that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprint(w, spew.NewFormatter(a), spew.NewFormatter(b))
func Fprint(w io.Writer, a ...interface{}) (n int, err error) {
return fmt.Fprint(w, convertArgs(a)...)
}
// Fprintf is a wrapper for fmt.Fprintf that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprintf(w, format, spew.NewFormatter(a), spew.NewFormatter(b))
func Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error) {
return fmt.Fprintf(w, format, convertArgs(a)...)
}
// Fprintln is a wrapper for fmt.Fprintln that treats each argument as if it
// passed with a default Formatter interface returned by NewFormatter. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprintln(w, spew.NewFormatter(a), spew.NewFormatter(b))
func Fprintln(w io.Writer, a ...interface{}) (n int, err error) {
return fmt.Fprintln(w, convertArgs(a)...)
}
// Print is a wrapper for fmt.Print that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Print(spew.NewFormatter(a), spew.NewFormatter(b))
func Print(a ...interface{}) (n int, err error) {
return fmt.Print(convertArgs(a)...)
}
// Printf is a wrapper for fmt.Printf that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Printf(format, spew.NewFormatter(a), spew.NewFormatter(b))
func Printf(format string, a ...interface{}) (n int, err error) {
return fmt.Printf(format, convertArgs(a)...)
}
// Println is a wrapper for fmt.Println that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Println(spew.NewFormatter(a), spew.NewFormatter(b))
func Println(a ...interface{}) (n int, err error) {
return fmt.Println(convertArgs(a)...)
}
// Sprint is a wrapper for fmt.Sprint that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprint(spew.NewFormatter(a), spew.NewFormatter(b))
func Sprint(a ...interface{}) string {
return fmt.Sprint(convertArgs(a)...)
}
// Sprintf is a wrapper for fmt.Sprintf that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprintf(format, spew.NewFormatter(a), spew.NewFormatter(b))
func Sprintf(format string, a ...interface{}) string {
return fmt.Sprintf(format, convertArgs(a)...)
}
// Sprintln is a wrapper for fmt.Sprintln that treats each argument as if it
// were passed with a default Formatter interface returned by NewFormatter. It
// returns the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprintln(spew.NewFormatter(a), spew.NewFormatter(b))
func Sprintln(a ...interface{}) string {
return fmt.Sprintln(convertArgs(a)...)
}
// convertArgs accepts a slice of arguments and returns a slice of the same
// length with each argument converted to a default spew Formatter interface.
func convertArgs(args []interface{}) (formatters []interface{}) {
formatters = make([]interface{}, len(args))
for index, arg := range args {
formatters[index] = NewFormatter(arg)
}
return formatters
}

21
vendor/github.com/go-gl/gl/LICENSE generated vendored
View File

@ -1,21 +0,0 @@
The MIT License (MIT)
Copyright (c) 2014 Eric Woroshow
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -1,109 +0,0 @@
// Code generated by glow (https://github.com/go-gl/glow). DO NOT EDIT.
package gl
import (
"fmt"
"reflect"
"strings"
"unsafe"
)
// #include <stdlib.h>
import "C"
// Ptr takes a slice or pointer (to a singular scalar value or the first
// element of an array or slice) and returns its GL-compatible address.
//
// For example:
//
// var data []uint8
// ...
// gl.TexImage2D(gl.TEXTURE_2D, ..., gl.UNSIGNED_BYTE, gl.Ptr(&data[0]))
func Ptr(data interface{}) unsafe.Pointer {
if data == nil {
return unsafe.Pointer(nil)
}
var addr unsafe.Pointer
v := reflect.ValueOf(data)
switch v.Type().Kind() {
case reflect.Ptr:
e := v.Elem()
switch e.Kind() {
case
reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64,
reflect.Float32, reflect.Float64:
addr = unsafe.Pointer(e.UnsafeAddr())
default:
panic(fmt.Errorf("unsupported pointer to type %s; must be a slice or pointer to a singular scalar value or the first element of an array or slice", e.Kind()))
}
case reflect.Uintptr:
addr = unsafe.Pointer(v.Pointer())
case reflect.Slice:
addr = unsafe.Pointer(v.Index(0).UnsafeAddr())
default:
panic(fmt.Errorf("unsupported type %s; must be a slice or pointer to a singular scalar value or the first element of an array or slice", v.Type()))
}
return addr
}
// PtrOffset takes a pointer offset and returns a GL-compatible pointer.
// Useful for functions such as glVertexAttribPointer that take pointer
// parameters indicating an offset rather than an absolute memory address.
func PtrOffset(offset int) unsafe.Pointer {
return unsafe.Pointer(uintptr(offset))
}
// Str takes a null-terminated Go string and returns its GL-compatible address.
// This function reaches into Go string storage in an unsafe way so the caller
// must ensure the string is not garbage collected.
func Str(str string) *uint8 {
if !strings.HasSuffix(str, "\x00") {
panic("str argument missing null terminator: " + str)
}
header := (*reflect.StringHeader)(unsafe.Pointer(&str))
return (*uint8)(unsafe.Pointer(header.Data))
}
// GoStr takes a null-terminated string returned by OpenGL and constructs a
// corresponding Go string.
func GoStr(cstr *uint8) string {
return C.GoString((*C.char)(unsafe.Pointer(cstr)))
}
// Strs takes a list of Go strings (with or without null-termination) and
// returns their C counterpart.
//
// The returned free function must be called once you are done using the strings
// in order to free the memory.
//
// If no strings are provided as a parameter this function will panic.
func Strs(strs ...string) (cstrs **uint8, free func()) {
if len(strs) == 0 {
panic("Strs: expected at least 1 string")
}
// Allocate a contiguous array large enough to hold all the strings' contents.
n := 0
for i := range strs {
n += len(strs[i])
}
data := C.malloc(C.size_t(n))
// Copy all the strings into data.
dataSlice := *(*[]byte)(unsafe.Pointer(&reflect.SliceHeader{
Data: uintptr(data),
Len: n,
Cap: n,
}))
css := make([]*uint8, len(strs)) // Populated with pointers to each string.
offset := 0
for i := range strs {
copy(dataSlice[offset:offset+len(strs[i])], strs[i][:]) // Copy strs[i] into proper data location.
css[i] = (*uint8)(unsafe.Pointer(&dataSlice[offset])) // Set a pointer to it.
offset += len(strs[i])
}
return (**uint8)(&css[0]), func() { C.free(data) }
}

View File

@ -1,31 +0,0 @@
// Code generated by glow (https://github.com/go-gl/glow). DO NOT EDIT.
package gl
import "C"
import "unsafe"
type DebugProc func(
source uint32,
gltype uint32,
id uint32,
severity uint32,
length int32,
message string,
userParam unsafe.Pointer)
var userDebugCallback DebugProc
//export glowDebugCallback_glcoreall
func glowDebugCallback_glcoreall(
source uint32,
gltype uint32,
id uint32,
severity uint32,
length int32,
message *uint8,
userParam unsafe.Pointer) {
if userDebugCallback != nil {
userDebugCallback(source, gltype, id, severity, length, GoStr(message), userParam)
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,71 +0,0 @@
// Code generated by glow (https://github.com/go-gl/glow). DO NOT EDIT.
// This file implements GlowGetProcAddress for every supported platform. The
// correct version is chosen automatically based on build tags:
//
// windows: WGL
// darwin: CGL
// linux freebsd: GLX
//
// Use of EGL instead of the platform's default (listed above) is made possible
// via the "egl" build tag.
//
// It is also possible to install your own function outside this package for
// retrieving OpenGL function pointers, to do this see InitWithProcAddrFunc.
package gl
/*
#cgo windows CFLAGS: -DTAG_WINDOWS
#cgo windows LDFLAGS: -lopengl32
#cgo darwin CFLAGS: -DTAG_DARWIN
#cgo darwin LDFLAGS: -framework OpenGL
#cgo linux freebsd CFLAGS: -DTAG_POSIX
#cgo linux freebsd LDFLAGS: -lGL
#cgo egl CFLAGS: -DTAG_EGL
#cgo egl LDFLAGS: -lEGL
// Check the EGL tag first as it takes priority over the platform's default
// configuration of WGL/GLX/CGL.
#if defined(TAG_EGL)
#include <stdlib.h>
#include <EGL/egl.h>
void* GlowGetProcAddress_glcoreall(const char* name) {
return eglGetProcAddress(name);
}
#elif defined(TAG_WINDOWS)
#define WIN32_LEAN_AND_MEAN 1
#include <windows.h>
#include <stdlib.h>
static HMODULE ogl32dll = NULL;
void* GlowGetProcAddress_glcoreall(const char* name) {
void* pf = wglGetProcAddress((LPCSTR) name);
if (pf) {
return pf;
}
if (ogl32dll == NULL) {
ogl32dll = LoadLibraryA("opengl32.dll");
}
return GetProcAddress(ogl32dll, (LPCSTR) name);
}
#elif defined(TAG_DARWIN)
#include <stdlib.h>
#include <dlfcn.h>
void* GlowGetProcAddress_glcoreall(const char* name) {
return dlsym(RTLD_DEFAULT, name);
}
#elif defined(TAG_POSIX)
#include <stdlib.h>
#include <GL/glx.h>
void* GlowGetProcAddress_glcoreall(const char* name) {
return glXGetProcAddress((const GLubyte *) name);
}
#endif
*/
import "C"
import "unsafe"
func getProcAddress(namea string) unsafe.Pointer {
cname := C.CString(namea)
defer C.free(unsafe.Pointer(cname))
return C.GlowGetProcAddress_glcoreall(cname)
}

10
vendor/github.com/go-gl/glfw/AUTHORS generated vendored
View File

@ -1,10 +0,0 @@
# This is the official list of glfw3-go authors for copyright purposes.
# Please keep the list sorted.
Coşku Baş
Dmitri Shuralyov
James Gray
Peter Waller <p@pwaller.net> (github:pwaller)
Robin Eklind
Stephen Gutekanst

27
vendor/github.com/go-gl/glfw/LICENSE generated vendored
View File

@ -1,27 +0,0 @@
Copyright (c) 2012 The glfw3-go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@ -1 +0,0 @@
999f3556fdd80983b10051746264489f2cb1ef16

View File

@ -1,43 +0,0 @@
package glfw
/*
// Windows Build Tags
// ----------------
// GLFW Options:
#cgo windows CFLAGS: -D_GLFW_WIN32 -Iglfw/deps/mingw
// Linker Options:
#cgo windows LDFLAGS: -lopengl32 -lgdi32
// Darwin Build Tags
// ----------------
// GLFW Options:
#cgo darwin CFLAGS: -D_GLFW_COCOA -D_GLFW_USE_CHDIR -D_GLFW_USE_MENUBAR -D_GLFW_USE_RETINA -Wno-deprecated-declarations
// Linker Options:
#cgo darwin LDFLAGS: -framework Cocoa -framework OpenGL -framework IOKit -framework CoreVideo
// Linux Build Tags
// ----------------
// GLFW Options:
#cgo linux,!wayland CFLAGS: -D_GLFW_X11 -D_GNU_SOURCE
#cgo linux,wayland CFLAGS: -D_GLFW_WAYLAND -D_GNU_SOURCE
// Linker Options:
#cgo linux,!wayland LDFLAGS: -lGL -lX11 -lXrandr -lXxf86vm -lXi -lXcursor -lm -lXinerama -ldl -lrt
#cgo linux,wayland LDFLAGS: -lGL -lwayland-client -lwayland-cursor -lwayland-egl -lxkbcommon -lm -ldl -lrt
// FreeBSD Build Tags
// ----------------
// GLFW Options:
#cgo freebsd,!wayland CFLAGS: -D_GLFW_X11 -D_GLFW_HAS_GLXGETPROCADDRESSARB -D_GLFW_HAS_DLOPEN
#cgo freebsd,wayland CFLAGS: -D_GLFW_WAYLAND -D_GLFW_HAS_DLOPEN
// Linker Options:
#cgo freebsd,!wayland LDFLAGS: -lGL -lX11 -lXrandr -lXxf86vm -lXi -lXcursor -lm -lXinerama
#cgo freebsd,wayland LDFLAGS: -lGL -lwayland-client -lwayland-cursor -lwayland-egl -lxkbcommon -lm
*/
import "C"

View File

@ -1,11 +0,0 @@
package glfw
/*
#include "glfw/src/context.c"
#include "glfw/src/init.c"
#include "glfw/src/input.c"
#include "glfw/src/monitor.c"
#include "glfw/src/vulkan.c"
#include "glfw/src/window.c"
*/
import "C"

View File

@ -1,13 +0,0 @@
package glfw
/*
#cgo CFLAGS: -x objective-c
#include "glfw/src/cocoa_init.m"
#include "glfw/src/cocoa_joystick.m"
#include "glfw/src/cocoa_monitor.m"
#include "glfw/src/cocoa_window.m"
#include "glfw/src/cocoa_time.c"
#include "glfw/src/posix_tls.c"
#include "glfw/src/nsgl_context.m"
*/
import "C"

View File

@ -1,30 +0,0 @@
// +build linux freebsd
package glfw
/*
#ifdef _GLFW_MIR
#include "glfw/src/mir_init.c"
#include "glfw/src/mir_monitor.c"
#include "glfw/src/mir_window.c"
#endif
#ifdef _GLFW_WAYLAND
#include "glfw/src/wl_init.c"
#include "glfw/src/wl_monitor.c"
#include "glfw/src/wl_window.c"
#include "glfw/src/wayland-pointer-constraints-unstable-v1-client-protocol.c"
#include "glfw/src/wayland-relative-pointer-unstable-v1-client-protocol.c"
#endif
#ifdef _GLFW_X11
#include "glfw/src/x11_init.c"
#include "glfw/src/x11_monitor.c"
#include "glfw/src/x11_window.c"
#include "glfw/src/glx_context.c"
#endif
#include "glfw/src/linux_joystick.c"
#include "glfw/src/posix_time.c"
#include "glfw/src/posix_tls.c"
#include "glfw/src/xkb_unicode.c"
#include "glfw/src/egl_context.c"
*/
import "C"

View File

@ -1,13 +0,0 @@
package glfw
/*
#include "glfw/src/win32_init.c"
#include "glfw/src/win32_joystick.c"
#include "glfw/src/win32_monitor.c"
#include "glfw/src/win32_time.c"
#include "glfw/src/win32_tls.c"
#include "glfw/src/win32_window.c"
#include "glfw/src/wgl_context.c"
#include "glfw/src/egl_context.c"
*/
import "C"

View File

@ -1,77 +0,0 @@
package glfw
//#include <stdlib.h>
//#include "glfw/include/GLFW/glfw3.h"
import "C"
import (
"unsafe"
)
// MakeContextCurrent makes the context of the window current.
// Originally GLFW 3 passes a null pointer to detach the context.
// But since we're using receievers, DetachCurrentContext should
// be used instead.
func (w *Window) MakeContextCurrent() {
C.glfwMakeContextCurrent(w.data)
panicError()
}
// DetachCurrentContext detaches the current context.
func DetachCurrentContext() {
C.glfwMakeContextCurrent(nil)
panicError()
}
// GetCurrentContext returns the window whose context is current.
func GetCurrentContext() *Window {
w := C.glfwGetCurrentContext()
panicError()
if w == nil {
return nil
}
return windows.get(w)
}
// SwapBuffers swaps the front and back buffers of the window. If the
// swap interval is greater than zero, the GPU driver waits the specified number
// of screen updates before swapping the buffers.
func (w *Window) SwapBuffers() {
C.glfwSwapBuffers(w.data)
panicError()
}
// SwapInterval sets the swap interval for the current context, i.e. the number
// of screen updates to wait before swapping the buffers of a window and
// returning from SwapBuffers. This is sometimes called
// 'vertical synchronization', 'vertical retrace synchronization' or 'vsync'.
//
// Contexts that support either of the WGL_EXT_swap_control_tear and
// GLX_EXT_swap_control_tear extensions also accept negative swap intervals,
// which allow the driver to swap even if a frame arrives a little bit late.
// You can check for the presence of these extensions using
// ExtensionSupported. For more information about swap tearing,
// see the extension specifications.
//
// Some GPU drivers do not honor the requested swap interval, either because of
// user settings that override the request or due to bugs in the driver.
func SwapInterval(interval int) {
C.glfwSwapInterval(C.int(interval))
panicError()
}
// ExtensionSupported reports whether the specified OpenGL or context creation
// API extension is supported by the current context. For example, on Windows
// both the OpenGL and WGL extension strings are checked.
//
// As this functions searches one or more extension strings on each call, it is
// recommended that you cache its results if it's going to be used frequently.
// The extension strings will not change during the lifetime of a context, so
// there is no danger in doing this.
func ExtensionSupported(extension string) bool {
e := C.CString(extension)
defer C.free(unsafe.Pointer(e))
ret := glfwbool(C.glfwExtensionSupported(e))
panicError()
return ret
}

View File

@ -1,9 +0,0 @@
#include "_cgo_export.h"
void glfwErrorCB(int code, const char *desc) {
goErrorCB(code, (char*)desc);
}
void glfwSetErrorCallbackCB() {
glfwSetErrorCallback(glfwErrorCB);
}

View File

@ -1,199 +0,0 @@
package glfw
//#include "glfw/include/GLFW/glfw3.h"
//void glfwSetErrorCallbackCB();
import "C"
import (
"fmt"
"log"
)
// ErrorCode corresponds to an error code.
type ErrorCode int
// Error codes that are translated to panics and the programmer should not
// expect to handle.
const (
notInitialized ErrorCode = C.GLFW_NOT_INITIALIZED // GLFW has not been initialized.
noCurrentContext ErrorCode = C.GLFW_NO_CURRENT_CONTEXT // No context is current.
invalidEnum ErrorCode = C.GLFW_INVALID_ENUM // One of the enum parameters for the function was given an invalid enum.
invalidValue ErrorCode = C.GLFW_INVALID_VALUE // One of the parameters for the function was given an invalid value.
outOfMemory ErrorCode = C.GLFW_OUT_OF_MEMORY // A memory allocation failed.
platformError ErrorCode = C.GLFW_PLATFORM_ERROR // A platform-specific error occurred that does not match any of the more specific categories.
)
const (
// APIUnavailable is the error code used when GLFW could not find support
// for the requested client API on the system.
//
// The installed graphics driver does not support the requested client API,
// or does not support it via the chosen context creation backend. Below
// are a few examples.
//
// Some pre-installed Windows graphics drivers do not support OpenGL. AMD
// only supports OpenGL ES via EGL, while Nvidia and Intel only supports it
// via a WGL or GLX extension. OS X does not provide OpenGL ES at all. The
// Mesa EGL, OpenGL and OpenGL ES libraries do not interface with the
// Nvidia binary driver.
APIUnavailable ErrorCode = C.GLFW_API_UNAVAILABLE
// VersionUnavailable is the error code used when the requested OpenGL or
// OpenGL ES (including any requested profile or context option) is not
// available on this machine.
//
// The machine does not support your requirements. If your application is
// sufficiently flexible, downgrade your requirements and try again.
// Otherwise, inform the user that their machine does not match your
// requirements.
//
// Future invalid OpenGL and OpenGL ES versions, for example OpenGL 4.8 if
// 5.0 comes out before the 4.x series gets that far, also fail with this
// error and not GLFW_INVALID_VALUE, because GLFW cannot know what future
// versions will exist.
VersionUnavailable ErrorCode = C.GLFW_VERSION_UNAVAILABLE
// FormatUnavailable is the error code used for both window creation and
// clipboard querying format errors.
//
// If emitted during window creation, the requested pixel format is not
// supported. This means one or more hard constraints did not match any of
// the available pixel formats. If your application is sufficiently
// flexible, downgrade your requirements and try again. Otherwise, inform
// the user that their machine does not match your requirements.
//
// If emitted when querying the clipboard, the contents of the clipboard
// could not be converted to the requested format. You should ignore the
// error or report it to the user, as appropriate.
FormatUnavailable ErrorCode = C.GLFW_FORMAT_UNAVAILABLE
)
func (e ErrorCode) String() string {
switch e {
case notInitialized:
return "NotInitialized"
case noCurrentContext:
return "NoCurrentContext"
case invalidEnum:
return "InvalidEnum"
case invalidValue:
return "InvalidValue"
case outOfMemory:
return "OutOfMemory"
case platformError:
return "PlatformError"
case APIUnavailable:
return "APIUnavailable"
case VersionUnavailable:
return "VersionUnavailable"
case FormatUnavailable:
return "FormatUnavailable"
default:
return fmt.Sprintf("ErrorCode(%d)", e)
}
}
// Error holds error code and description.
type Error struct {
Code ErrorCode
Desc string
}
// Error prints the error code and description in a readable format.
func (e *Error) Error() string {
return fmt.Sprintf("%s: %s", e.Code.String(), e.Desc)
}
// Note: There are many cryptic caveats to proper error handling here.
// See: https://github.com/go-gl/glfw3/pull/86
// Holds the value of the last error.
var lastError = make(chan *Error, 1)
//export goErrorCB
func goErrorCB(code C.int, desc *C.char) {
flushErrors()
err := &Error{ErrorCode(code), C.GoString(desc)}
select {
case lastError <- err:
default:
fmt.Println("GLFW: An uncaught error has occurred:", err)
fmt.Println("GLFW: Please report this bug in the Go package immediately.")
}
}
// Set the glfw callback internally
func init() {
C.glfwSetErrorCallbackCB()
}
// flushErrors is called by Terminate before it actually calls C.glfwTerminate,
// this ensures that any uncaught errors buffered in lastError are printed
// before the program exits.
func flushErrors() {
err := fetchError()
if err != nil {
fmt.Println("GLFW: An uncaught error has occurred:", err)
fmt.Println("GLFW: Please report this bug in the Go package immediately.")
}
}
// acceptError fetches the next error from the error channel, it accepts only
// errors with one of the given error codes. If any other error is encountered,
// a panic will occur.
//
// Platform errors are always printed, for information why please see:
//
// https://github.com/go-gl/glfw/issues/127
//
func acceptError(codes ...ErrorCode) error {
// Grab the next error, if there is one.
err := fetchError()
if err == nil {
return nil
}
// Only if the error has the specific error code accepted by the caller, do
// we return the error.
for _, code := range codes {
if err.Code == code {
return err
}
}
// The error isn't accepted by the caller. If the error code is not a code
// defined in the GLFW C documentation as a programmer error, then the
// caller should have accepted it. This is effectively a bug in this
// package.
switch err.Code {
case platformError:
log.Println(err)
return nil
case notInitialized, noCurrentContext, invalidEnum, invalidValue, outOfMemory:
panic(err)
default:
fmt.Println("GLFW: An invalid error was not accepted by the caller:", err)
fmt.Println("GLFW: Please report this bug in the Go package immediately.")
panic(err)
}
}
// panicError is a helper used by functions which expect no errors (except
// programmer errors) to occur. It will panic if it finds any such error.
func panicError() {
err := acceptError()
if err != nil {
panic(err)
}
}
// fetchError fetches the next error from the error channel, it does not block
// and returns nil if there is no error present.
func fetchError() *Error {
select {
case err := <-lastError:
return err
default:
return nil
}
}

View File

@ -1,76 +0,0 @@
package glfw
//#include "glfw/include/GLFW/glfw3.h"
import "C"
// Version constants.
const (
VersionMajor = C.GLFW_VERSION_MAJOR // This is incremented when the API is changed in non-compatible ways.
VersionMinor = C.GLFW_VERSION_MINOR // This is incremented when features are added to the API but it remains backward-compatible.
VersionRevision = C.GLFW_VERSION_REVISION // This is incremented when a bug fix release is made that does not contain any API changes.
)
// Init initializes the GLFW library. Before most GLFW functions can be used,
// GLFW must be initialized, and before a program terminates GLFW should be
// terminated in order to free any resources allocated during or after
// initialization.
//
// If this function fails, it calls Terminate before returning. If it succeeds,
// you should call Terminate before the program exits.
//
// Additional calls to this function after successful initialization but before
// termination will succeed but will do nothing.
//
// This function may take several seconds to complete on some systems, while on
// other systems it may take only a fraction of a second to complete.
//
// On Mac OS X, this function will change the current directory of the
// application to the Contents/Resources subdirectory of the application's
// bundle, if present.
//
// This function may only be called from the main thread.
func Init() error {
C.glfwInit()
return acceptError(APIUnavailable)
}
// Terminate destroys all remaining windows, frees any allocated resources and
// sets the library to an uninitialized state. Once this is called, you must
// again call Init successfully before you will be able to use most GLFW
// functions.
//
// If GLFW has been successfully initialized, this function should be called
// before the program exits. If initialization fails, there is no need to call
// this function, as it is called by Init before it returns failure.
//
// This function may only be called from the main thread.
func Terminate() {
flushErrors()
C.glfwTerminate()
}
// GetVersion retrieves the major, minor and revision numbers of the GLFW
// library. It is intended for when you are using GLFW as a shared library and
// want to ensure that you are using the minimum required version.
//
// This function may be called before Init.
func GetVersion() (major, minor, revision int) {
var (
maj C.int
min C.int
rev C.int
)
C.glfwGetVersion(&maj, &min, &rev)
return int(maj), int(min), int(rev)
}
// GetVersionString returns a static string generated at compile-time according
// to which configuration macros were defined. This is intended for use when
// submitting bug reports, to allow developers to see which code paths are
// enabled in a binary.
//
// This function may be called before Init.
func GetVersionString() string {
return C.GoString(C.glfwGetVersionString())
}

View File

@ -1,81 +0,0 @@
#include "_cgo_export.h"
void glfwJoystickCB(int joy, int event) {
goJoystickCB(joy, event);
}
void glfwMouseButtonCB(GLFWwindow* window, int button, int action, int mods) {
goMouseButtonCB(window, button, action, mods);
}
void glfwCursorPosCB(GLFWwindow* window, double xpos, double ypos) {
goCursorPosCB(window, xpos, ypos);
}
void glfwCursorEnterCB(GLFWwindow* window, int entered) {
goCursorEnterCB(window, entered);
}
void glfwScrollCB(GLFWwindow* window, double xoff, double yoff) {
goScrollCB(window, xoff, yoff);
}
void glfwKeyCB(GLFWwindow* window, int key, int scancode, int action, int mods) {
goKeyCB(window, key, scancode, action, mods);
}
void glfwCharCB(GLFWwindow* window, unsigned int character) {
goCharCB(window, character);
}
void glfwCharModsCB(GLFWwindow* window, unsigned int character, int mods) {
goCharModsCB(window, character, mods);
}
void glfwDropCB(GLFWwindow* window, int count, const char **names) {
goDropCB(window, count, (char**)names);
}
void glfwSetJoystickCallbackCB() {
glfwSetJoystickCallback(glfwJoystickCB);
}
void glfwSetKeyCallbackCB(GLFWwindow *window) {
glfwSetKeyCallback(window, glfwKeyCB);
}
void glfwSetCharCallbackCB(GLFWwindow *window) {
glfwSetCharCallback(window, glfwCharCB);
}
void glfwSetCharModsCallbackCB(GLFWwindow *window) {
glfwSetCharModsCallback(window, glfwCharModsCB);
}
void glfwSetMouseButtonCallbackCB(GLFWwindow *window) {
glfwSetMouseButtonCallback(window, glfwMouseButtonCB);
}
void glfwSetCursorPosCallbackCB(GLFWwindow *window) {
glfwSetCursorPosCallback(window, glfwCursorPosCB);
}
void glfwSetCursorEnterCallbackCB(GLFWwindow *window) {
glfwSetCursorEnterCallback(window, glfwCursorEnterCB);
}
void glfwSetScrollCallbackCB(GLFWwindow *window) {
glfwSetScrollCallback(window, glfwScrollCB);
}
void glfwSetDropCallbackCB(GLFWwindow *window) {
glfwSetDropCallback(window, glfwDropCB);
}
float GetAxisAtIndex(float *axis, int i) {
return axis[i];
}
unsigned char GetButtonsAtIndex(unsigned char *buttons, int i) {
return buttons[i];
}

View File

@ -1,696 +0,0 @@
package glfw
//#include "glfw/include/GLFW/glfw3.h"
//void glfwSetJoystickCallbackCB();
//void glfwSetKeyCallbackCB(GLFWwindow *window);
//void glfwSetCharCallbackCB(GLFWwindow *window);
//void glfwSetCharModsCallbackCB(GLFWwindow *window);
//void glfwSetMouseButtonCallbackCB(GLFWwindow *window);
//void glfwSetCursorPosCallbackCB(GLFWwindow *window);
//void glfwSetCursorEnterCallbackCB(GLFWwindow *window);
//void glfwSetScrollCallbackCB(GLFWwindow *window);
//void glfwSetDropCallbackCB(GLFWwindow *window);
//float GetAxisAtIndex(float *axis, int i);
//unsigned char GetButtonsAtIndex(unsigned char *buttons, int i);
import "C"
import (
"image"
"image/draw"
"unsafe"
)
var fJoystickHolder func(joy, event int)
// Joystick corresponds to a joystick.
type Joystick int
// Joystick IDs.
const (
Joystick1 Joystick = C.GLFW_JOYSTICK_1
Joystick2 Joystick = C.GLFW_JOYSTICK_2
Joystick3 Joystick = C.GLFW_JOYSTICK_3
Joystick4 Joystick = C.GLFW_JOYSTICK_4
Joystick5 Joystick = C.GLFW_JOYSTICK_5
Joystick6 Joystick = C.GLFW_JOYSTICK_6
Joystick7 Joystick = C.GLFW_JOYSTICK_7
Joystick8 Joystick = C.GLFW_JOYSTICK_8
Joystick9 Joystick = C.GLFW_JOYSTICK_9
Joystick10 Joystick = C.GLFW_JOYSTICK_10
Joystick11 Joystick = C.GLFW_JOYSTICK_11
Joystick12 Joystick = C.GLFW_JOYSTICK_12
Joystick13 Joystick = C.GLFW_JOYSTICK_13
Joystick14 Joystick = C.GLFW_JOYSTICK_14
Joystick15 Joystick = C.GLFW_JOYSTICK_15
Joystick16 Joystick = C.GLFW_JOYSTICK_16
JoystickLast Joystick = C.GLFW_JOYSTICK_LAST
)
// Key corresponds to a keyboard key.
type Key int
// These key codes are inspired by the USB HID Usage Tables v1.12 (p. 53-60),
// but re-arranged to map to 7-bit ASCII for printable keys (function keys are
// put in the 256+ range).
const (
KeyUnknown Key = C.GLFW_KEY_UNKNOWN
KeySpace Key = C.GLFW_KEY_SPACE
KeyApostrophe Key = C.GLFW_KEY_APOSTROPHE
KeyComma Key = C.GLFW_KEY_COMMA
KeyMinus Key = C.GLFW_KEY_MINUS
KeyPeriod Key = C.GLFW_KEY_PERIOD
KeySlash Key = C.GLFW_KEY_SLASH
Key0 Key = C.GLFW_KEY_0
Key1 Key = C.GLFW_KEY_1
Key2 Key = C.GLFW_KEY_2
Key3 Key = C.GLFW_KEY_3
Key4 Key = C.GLFW_KEY_4
Key5 Key = C.GLFW_KEY_5
Key6 Key = C.GLFW_KEY_6
Key7 Key = C.GLFW_KEY_7
Key8 Key = C.GLFW_KEY_8
Key9 Key = C.GLFW_KEY_9
KeySemicolon Key = C.GLFW_KEY_SEMICOLON
KeyEqual Key = C.GLFW_KEY_EQUAL
KeyA Key = C.GLFW_KEY_A
KeyB Key = C.GLFW_KEY_B
KeyC Key = C.GLFW_KEY_C
KeyD Key = C.GLFW_KEY_D
KeyE Key = C.GLFW_KEY_E
KeyF Key = C.GLFW_KEY_F
KeyG Key = C.GLFW_KEY_G
KeyH Key = C.GLFW_KEY_H
KeyI Key = C.GLFW_KEY_I
KeyJ Key = C.GLFW_KEY_J
KeyK Key = C.GLFW_KEY_K
KeyL Key = C.GLFW_KEY_L
KeyM Key = C.GLFW_KEY_M
KeyN Key = C.GLFW_KEY_N
KeyO Key = C.GLFW_KEY_O
KeyP Key = C.GLFW_KEY_P
KeyQ Key = C.GLFW_KEY_Q
KeyR Key = C.GLFW_KEY_R
KeyS Key = C.GLFW_KEY_S
KeyT Key = C.GLFW_KEY_T
KeyU Key = C.GLFW_KEY_U
KeyV Key = C.GLFW_KEY_V
KeyW Key = C.GLFW_KEY_W
KeyX Key = C.GLFW_KEY_X
KeyY Key = C.GLFW_KEY_Y
KeyZ Key = C.GLFW_KEY_Z
KeyLeftBracket Key = C.GLFW_KEY_LEFT_BRACKET
KeyBackslash Key = C.GLFW_KEY_BACKSLASH
KeyRightBracket Key = C.GLFW_KEY_RIGHT_BRACKET
KeyGraveAccent Key = C.GLFW_KEY_GRAVE_ACCENT
KeyWorld1 Key = C.GLFW_KEY_WORLD_1
KeyWorld2 Key = C.GLFW_KEY_WORLD_2
KeyEscape Key = C.GLFW_KEY_ESCAPE
KeyEnter Key = C.GLFW_KEY_ENTER
KeyTab Key = C.GLFW_KEY_TAB
KeyBackspace Key = C.GLFW_KEY_BACKSPACE
KeyInsert Key = C.GLFW_KEY_INSERT
KeyDelete Key = C.GLFW_KEY_DELETE
KeyRight Key = C.GLFW_KEY_RIGHT
KeyLeft Key = C.GLFW_KEY_LEFT
KeyDown Key = C.GLFW_KEY_DOWN
KeyUp Key = C.GLFW_KEY_UP
KeyPageUp Key = C.GLFW_KEY_PAGE_UP
KeyPageDown Key = C.GLFW_KEY_PAGE_DOWN
KeyHome Key = C.GLFW_KEY_HOME
KeyEnd Key = C.GLFW_KEY_END
KeyCapsLock Key = C.GLFW_KEY_CAPS_LOCK
KeyScrollLock Key = C.GLFW_KEY_SCROLL_LOCK
KeyNumLock Key = C.GLFW_KEY_NUM_LOCK
KeyPrintScreen Key = C.GLFW_KEY_PRINT_SCREEN
KeyPause Key = C.GLFW_KEY_PAUSE
KeyF1 Key = C.GLFW_KEY_F1
KeyF2 Key = C.GLFW_KEY_F2
KeyF3 Key = C.GLFW_KEY_F3
KeyF4 Key = C.GLFW_KEY_F4
KeyF5 Key = C.GLFW_KEY_F5
KeyF6 Key = C.GLFW_KEY_F6
KeyF7 Key = C.GLFW_KEY_F7
KeyF8 Key = C.GLFW_KEY_F8
KeyF9 Key = C.GLFW_KEY_F9
KeyF10 Key = C.GLFW_KEY_F10
KeyF11 Key = C.GLFW_KEY_F11
KeyF12 Key = C.GLFW_KEY_F12
KeyF13 Key = C.GLFW_KEY_F13
KeyF14 Key = C.GLFW_KEY_F14
KeyF15 Key = C.GLFW_KEY_F15
KeyF16 Key = C.GLFW_KEY_F16
KeyF17 Key = C.GLFW_KEY_F17
KeyF18 Key = C.GLFW_KEY_F18
KeyF19 Key = C.GLFW_KEY_F19
KeyF20 Key = C.GLFW_KEY_F20
KeyF21 Key = C.GLFW_KEY_F21
KeyF22 Key = C.GLFW_KEY_F22
KeyF23 Key = C.GLFW_KEY_F23
KeyF24 Key = C.GLFW_KEY_F24
KeyF25 Key = C.GLFW_KEY_F25
KeyKP0 Key = C.GLFW_KEY_KP_0
KeyKP1 Key = C.GLFW_KEY_KP_1
KeyKP2 Key = C.GLFW_KEY_KP_2
KeyKP3 Key = C.GLFW_KEY_KP_3
KeyKP4 Key = C.GLFW_KEY_KP_4
KeyKP5 Key = C.GLFW_KEY_KP_5
KeyKP6 Key = C.GLFW_KEY_KP_6
KeyKP7 Key = C.GLFW_KEY_KP_7
KeyKP8 Key = C.GLFW_KEY_KP_8
KeyKP9 Key = C.GLFW_KEY_KP_9
KeyKPDecimal Key = C.GLFW_KEY_KP_DECIMAL
KeyKPDivide Key = C.GLFW_KEY_KP_DIVIDE
KeyKPMultiply Key = C.GLFW_KEY_KP_MULTIPLY
KeyKPSubtract Key = C.GLFW_KEY_KP_SUBTRACT
KeyKPAdd Key = C.GLFW_KEY_KP_ADD
KeyKPEnter Key = C.GLFW_KEY_KP_ENTER
KeyKPEqual Key = C.GLFW_KEY_KP_EQUAL
KeyLeftShift Key = C.GLFW_KEY_LEFT_SHIFT
KeyLeftControl Key = C.GLFW_KEY_LEFT_CONTROL
KeyLeftAlt Key = C.GLFW_KEY_LEFT_ALT
KeyLeftSuper Key = C.GLFW_KEY_LEFT_SUPER
KeyRightShift Key = C.GLFW_KEY_RIGHT_SHIFT
KeyRightControl Key = C.GLFW_KEY_RIGHT_CONTROL
KeyRightAlt Key = C.GLFW_KEY_RIGHT_ALT
KeyRightSuper Key = C.GLFW_KEY_RIGHT_SUPER
KeyMenu Key = C.GLFW_KEY_MENU
KeyLast Key = C.GLFW_KEY_LAST
)
// ModifierKey corresponds to a modifier key.
type ModifierKey int
// Modifier keys.
const (
ModShift ModifierKey = C.GLFW_MOD_SHIFT
ModControl ModifierKey = C.GLFW_MOD_CONTROL
ModAlt ModifierKey = C.GLFW_MOD_ALT
ModSuper ModifierKey = C.GLFW_MOD_SUPER
)
// MouseButton corresponds to a mouse button.
type MouseButton int
// Mouse buttons.
const (
MouseButton1 MouseButton = C.GLFW_MOUSE_BUTTON_1
MouseButton2 MouseButton = C.GLFW_MOUSE_BUTTON_2
MouseButton3 MouseButton = C.GLFW_MOUSE_BUTTON_3
MouseButton4 MouseButton = C.GLFW_MOUSE_BUTTON_4
MouseButton5 MouseButton = C.GLFW_MOUSE_BUTTON_5
MouseButton6 MouseButton = C.GLFW_MOUSE_BUTTON_6
MouseButton7 MouseButton = C.GLFW_MOUSE_BUTTON_7
MouseButton8 MouseButton = C.GLFW_MOUSE_BUTTON_8
MouseButtonLast MouseButton = C.GLFW_MOUSE_BUTTON_LAST
MouseButtonLeft MouseButton = C.GLFW_MOUSE_BUTTON_LEFT
MouseButtonRight MouseButton = C.GLFW_MOUSE_BUTTON_RIGHT
MouseButtonMiddle MouseButton = C.GLFW_MOUSE_BUTTON_MIDDLE
)
// StandardCursor corresponds to a standard cursor icon.
type StandardCursor int
// Standard cursors
const (
ArrowCursor StandardCursor = C.GLFW_ARROW_CURSOR
IBeamCursor StandardCursor = C.GLFW_IBEAM_CURSOR
CrosshairCursor StandardCursor = C.GLFW_CROSSHAIR_CURSOR
HandCursor StandardCursor = C.GLFW_HAND_CURSOR
HResizeCursor StandardCursor = C.GLFW_HRESIZE_CURSOR
VResizeCursor StandardCursor = C.GLFW_VRESIZE_CURSOR
)
// Action corresponds to a key or button action.
type Action int
// Action types.
const (
Release Action = C.GLFW_RELEASE // The key or button was released.
Press Action = C.GLFW_PRESS // The key or button was pressed.
Repeat Action = C.GLFW_REPEAT // The key was held down until it repeated.
)
// InputMode corresponds to an input mode.
type InputMode int
// Input modes.
const (
CursorMode InputMode = C.GLFW_CURSOR // See Cursor mode values
StickyKeysMode InputMode = C.GLFW_STICKY_KEYS // Value can be either 1 or 0
StickyMouseButtonsMode InputMode = C.GLFW_STICKY_MOUSE_BUTTONS // Value can be either 1 or 0
)
// Cursor mode values.
const (
CursorNormal int = C.GLFW_CURSOR_NORMAL
CursorHidden int = C.GLFW_CURSOR_HIDDEN
CursorDisabled int = C.GLFW_CURSOR_DISABLED
)
// Cursor represents a cursor.
type Cursor struct {
data *C.GLFWcursor
}
//export goJoystickCB
func goJoystickCB(joy, event C.int) {
fJoystickHolder(int(joy), int(event))
}
//export goMouseButtonCB
func goMouseButtonCB(window unsafe.Pointer, button, action, mods C.int) {
w := windows.get((*C.GLFWwindow)(window))
w.fMouseButtonHolder(w, MouseButton(button), Action(action), ModifierKey(mods))
}
//export goCursorPosCB
func goCursorPosCB(window unsafe.Pointer, xpos, ypos C.double) {
w := windows.get((*C.GLFWwindow)(window))
w.fCursorPosHolder(w, float64(xpos), float64(ypos))
}
//export goCursorEnterCB
func goCursorEnterCB(window unsafe.Pointer, entered C.int) {
w := windows.get((*C.GLFWwindow)(window))
hasEntered := glfwbool(entered)
w.fCursorEnterHolder(w, hasEntered)
}
//export goScrollCB
func goScrollCB(window unsafe.Pointer, xoff, yoff C.double) {
w := windows.get((*C.GLFWwindow)(window))
w.fScrollHolder(w, float64(xoff), float64(yoff))
}
//export goKeyCB
func goKeyCB(window unsafe.Pointer, key, scancode, action, mods C.int) {
w := windows.get((*C.GLFWwindow)(window))
w.fKeyHolder(w, Key(key), int(scancode), Action(action), ModifierKey(mods))
}
//export goCharCB
func goCharCB(window unsafe.Pointer, character C.uint) {
w := windows.get((*C.GLFWwindow)(window))
w.fCharHolder(w, rune(character))
}
//export goCharModsCB
func goCharModsCB(window unsafe.Pointer, character C.uint, mods C.int) {
w := windows.get((*C.GLFWwindow)(window))
w.fCharModsHolder(w, rune(character), ModifierKey(mods))
}
//export goDropCB
func goDropCB(window unsafe.Pointer, count C.int, names **C.char) { // TODO: The types of name can be `**C.char` or `unsafe.Pointer`, use whichever is better.
w := windows.get((*C.GLFWwindow)(window))
namesSlice := make([]string, int(count)) // TODO: Make this better. This part is unfinished, hacky, probably not correct, and not idiomatic.
for i := 0; i < int(count); i++ { // TODO: Make this better. It should be cleaned up and vetted.
var x *C.char // TODO: Make this better.
p := (**C.char)(unsafe.Pointer(uintptr(unsafe.Pointer(names)) + uintptr(i)*unsafe.Sizeof(x))) // TODO: Make this better.
namesSlice[i] = C.GoString(*p) // TODO: Make this better.
}
w.fDropHolder(w, namesSlice)
}
// GetInputMode returns the value of an input option of the window.
func (w *Window) GetInputMode(mode InputMode) int {
ret := int(C.glfwGetInputMode(w.data, C.int(mode)))
panicError()
return ret
}
// SetInputMode sets an input option for the window.
func (w *Window) SetInputMode(mode InputMode, value int) {
C.glfwSetInputMode(w.data, C.int(mode), C.int(value))
panicError()
}
// GetKey returns the last reported state of a keyboard key. The returned state
// is one of Press or Release. The higher-level state Repeat is only reported to
// the key callback.
//
// If the StickyKeys input mode is enabled, this function returns Press the first
// time you call this function after a key has been pressed, even if the key has
// already been released.
//
// The key functions deal with physical keys, with key tokens named after their
// use on the standard US keyboard layout. If you want to input text, use the
// Unicode character callback instead.
func (w *Window) GetKey(key Key) Action {
ret := Action(C.glfwGetKey(w.data, C.int(key)))
panicError()
return ret
}
// GetKeyName returns the localized name of the specified printable key.
//
// If the key is glfw.KeyUnknown, the scancode is used, otherwise the scancode is ignored.
func GetKeyName(key Key, scancode int) string {
ret := C.glfwGetKeyName(C.int(key), C.int(scancode))
panicError()
return C.GoString(ret)
}
// GetMouseButton returns the last state reported for the specified mouse button.
//
// If the StickyMouseButtons input mode is enabled, this function returns Press
// the first time you call this function after a mouse button has been pressed,
// even if the mouse button has already been released.
func (w *Window) GetMouseButton(button MouseButton) Action {
ret := Action(C.glfwGetMouseButton(w.data, C.int(button)))
panicError()
return ret
}
// GetCursorPos returns the last reported position of the cursor.
//
// If the cursor is disabled (with CursorDisabled) then the cursor position is
// unbounded and limited only by the minimum and maximum values of a double.
//
// The coordinate can be converted to their integer equivalents with the floor
// function. Casting directly to an integer type works for positive coordinates,
// but fails for negative ones.
func (w *Window) GetCursorPos() (x, y float64) {
var xpos, ypos C.double
C.glfwGetCursorPos(w.data, &xpos, &ypos)
panicError()
return float64(xpos), float64(ypos)
}
// SetCursorPos sets the position of the cursor. The specified window must
// be focused. If the window does not have focus when this function is called,
// it fails silently.
//
// If the cursor is disabled (with CursorDisabled) then the cursor position is
// unbounded and limited only by the minimum and maximum values of a double.
func (w *Window) SetCursorPos(xpos, ypos float64) {
C.glfwSetCursorPos(w.data, C.double(xpos), C.double(ypos))
panicError()
}
// CreateCursor creates a new custom cursor image that can be set for a window with SetCursor.
// The cursor can be destroyed with Destroy. Any remaining cursors are destroyed by Terminate.
//
// The image is ideally provided in the form of *image.NRGBA.
// The pixels are 32-bit, little-endian, non-premultiplied RGBA, i.e. eight
// bits per channel with the red channel first. They are arranged canonically
// as packed sequential rows, starting from the top-left corner. If the image
// type is not *image.NRGBA, it will be converted to it.
//
// The cursor hotspot is specified in pixels, relative to the upper-left corner of the cursor image.
// Like all other coordinate systems in GLFW, the X-axis points to the right and the Y-axis points down.
func CreateCursor(img image.Image, xhot, yhot int) *Cursor {
var imgC C.GLFWimage
var pixels []uint8
b := img.Bounds()
switch img := img.(type) {
case *image.NRGBA:
pixels = img.Pix
default:
m := image.NewNRGBA(image.Rect(0, 0, b.Dx(), b.Dy()))
draw.Draw(m, m.Bounds(), img, b.Min, draw.Src)
pixels = m.Pix
}
pix, free := bytes(pixels)
imgC.width = C.int(b.Dx())
imgC.height = C.int(b.Dy())
imgC.pixels = (*C.uchar)(pix)
c := C.glfwCreateCursor(&imgC, C.int(xhot), C.int(yhot))
free()
panicError()
return &Cursor{c}
}
// CreateStandardCursor returns a cursor with a standard shape,
// that can be set for a window with SetCursor.
func CreateStandardCursor(shape StandardCursor) *Cursor {
c := C.glfwCreateStandardCursor(C.int(shape))
panicError()
return &Cursor{c}
}
// Destroy destroys a cursor previously created with CreateCursor.
// Any remaining cursors will be destroyed by Terminate.
func (c *Cursor) Destroy() {
C.glfwDestroyCursor(c.data)
panicError()
}
// SetCursor sets the cursor image to be used when the cursor is over the client area
// of the specified window. The set cursor will only be visible when the cursor mode of the
// window is CursorNormal.
//
// On some platforms, the set cursor may not be visible unless the window also has input focus.
func (w *Window) SetCursor(c *Cursor) {
if c == nil {
C.glfwSetCursor(w.data, nil)
} else {
C.glfwSetCursor(w.data, c.data)
}
panicError()
}
// JoystickCallback is the joystick configuration callback.
type JoystickCallback func(joy, event int)
// SetJoystickCallback sets the joystick configuration callback, or removes the
// currently set callback. This is called when a joystick is connected to or
// disconnected from the system.
func SetJoystickCallback(cbfun JoystickCallback) (previous JoystickCallback) {
previous = fJoystickHolder
fJoystickHolder = cbfun
if cbfun == nil {
C.glfwSetJoystickCallback(nil)
} else {
C.glfwSetJoystickCallbackCB()
}
panicError()
return previous
}
// KeyCallback is the key callback.
type KeyCallback func(w *Window, key Key, scancode int, action Action, mods ModifierKey)
// SetKeyCallback sets the key callback which is called when a key is pressed,
// repeated or released.
//
// The key functions deal with physical keys, with layout independent key tokens
// named after their values in the standard US keyboard layout. If you want to
// input text, use the SetCharCallback instead.
//
// When a window loses focus, it will generate synthetic key release events for
// all pressed keys. You can tell these events from user-generated events by the
// fact that the synthetic ones are generated after the window has lost focus,
// i.e. Focused will be false and the focus callback will have already been
// called.
func (w *Window) SetKeyCallback(cbfun KeyCallback) (previous KeyCallback) {
previous = w.fKeyHolder
w.fKeyHolder = cbfun
if cbfun == nil {
C.glfwSetKeyCallback(w.data, nil)
} else {
C.glfwSetKeyCallbackCB(w.data)
}
panicError()
return previous
}
// CharCallback is the character callback.
type CharCallback func(w *Window, char rune)
// SetCharCallback sets the character callback which is called when a
// Unicode character is input.
//
// The character callback is intended for Unicode text input. As it deals with
// characters, it is keyboard layout dependent, whereas the
// key callback is not. Characters do not map 1:1
// to physical keys, as a key may produce zero, one or more characters. If you
// want to know whether a specific physical key was pressed or released, see
// the key callback instead.
//
// The character callback behaves as system text input normally does and will
// not be called if modifier keys are held down that would prevent normal text
// input on that platform, for example a Super (Command) key on OS X or Alt key
// on Windows. There is a character with modifiers callback that receives these events.
func (w *Window) SetCharCallback(cbfun CharCallback) (previous CharCallback) {
previous = w.fCharHolder
w.fCharHolder = cbfun
if cbfun == nil {
C.glfwSetCharCallback(w.data, nil)
} else {
C.glfwSetCharCallbackCB(w.data)
}
panicError()
return previous
}
// CharModsCallback is the character with modifiers callback.
type CharModsCallback func(w *Window, char rune, mods ModifierKey)
// SetCharModsCallback sets the character with modifiers callback which is called when a
// Unicode character is input regardless of what modifier keys are used.
//
// The character with modifiers callback is intended for implementing custom
// Unicode character input. For regular Unicode text input, see the
// character callback. Like the character callback, the character with modifiers callback
// deals with characters and is keyboard layout dependent. Characters do not
// map 1:1 to physical keys, as a key may produce zero, one or more characters.
// If you want to know whether a specific physical key was pressed or released,
// see the key callback instead.
func (w *Window) SetCharModsCallback(cbfun CharModsCallback) (previous CharModsCallback) {
previous = w.fCharModsHolder
w.fCharModsHolder = cbfun
if cbfun == nil {
C.glfwSetCharModsCallback(w.data, nil)
} else {
C.glfwSetCharModsCallbackCB(w.data)
}
panicError()
return previous
}
// MouseButtonCallback is the mouse button callback.
type MouseButtonCallback func(w *Window, button MouseButton, action Action, mod ModifierKey)
// SetMouseButtonCallback sets the mouse button callback which is called when a
// mouse button is pressed or released.
//
// When a window loses focus, it will generate synthetic mouse button release
// events for all pressed mouse buttons. You can tell these events from
// user-generated events by the fact that the synthetic ones are generated after
// the window has lost focus, i.e. Focused will be false and the focus
// callback will have already been called.
func (w *Window) SetMouseButtonCallback(cbfun MouseButtonCallback) (previous MouseButtonCallback) {
previous = w.fMouseButtonHolder
w.fMouseButtonHolder = cbfun
if cbfun == nil {
C.glfwSetMouseButtonCallback(w.data, nil)
} else {
C.glfwSetMouseButtonCallbackCB(w.data)
}
panicError()
return previous
}
// CursorPosCallback the cursor position callback.
type CursorPosCallback func(w *Window, xpos float64, ypos float64)
// SetCursorPosCallback sets the cursor position callback which is called
// when the cursor is moved. The callback is provided with the position relative
// to the upper-left corner of the client area of the window.
func (w *Window) SetCursorPosCallback(cbfun CursorPosCallback) (previous CursorPosCallback) {
previous = w.fCursorPosHolder
w.fCursorPosHolder = cbfun
if cbfun == nil {
C.glfwSetCursorPosCallback(w.data, nil)
} else {
C.glfwSetCursorPosCallbackCB(w.data)
}
panicError()
return previous
}
// CursorEnterCallback is the cursor boundary crossing callback.
type CursorEnterCallback func(w *Window, entered bool)
// SetCursorEnterCallback the cursor boundary crossing callback which is called
// when the cursor enters or leaves the client area of the window.
func (w *Window) SetCursorEnterCallback(cbfun CursorEnterCallback) (previous CursorEnterCallback) {
previous = w.fCursorEnterHolder
w.fCursorEnterHolder = cbfun
if cbfun == nil {
C.glfwSetCursorEnterCallback(w.data, nil)
} else {
C.glfwSetCursorEnterCallbackCB(w.data)
}
panicError()
return previous
}
// ScrollCallback is the scroll callback.
type ScrollCallback func(w *Window, xoff float64, yoff float64)
// SetScrollCallback sets the scroll callback which is called when a scrolling
// device is used, such as a mouse wheel or scrolling area of a touchpad.
func (w *Window) SetScrollCallback(cbfun ScrollCallback) (previous ScrollCallback) {
previous = w.fScrollHolder
w.fScrollHolder = cbfun
if cbfun == nil {
C.glfwSetScrollCallback(w.data, nil)
} else {
C.glfwSetScrollCallbackCB(w.data)
}
panicError()
return previous
}
// DropCallback is the drop callback.
type DropCallback func(w *Window, names []string)
// SetDropCallback sets the drop callback which is called when an object
// is dropped over the window.
func (w *Window) SetDropCallback(cbfun DropCallback) (previous DropCallback) {
previous = w.fDropHolder
w.fDropHolder = cbfun
if cbfun == nil {
C.glfwSetDropCallback(w.data, nil)
} else {
C.glfwSetDropCallbackCB(w.data)
}
panicError()
return previous
}
// JoystickPresent reports whether the specified joystick is present.
func JoystickPresent(joy Joystick) bool {
ret := glfwbool(C.glfwJoystickPresent(C.int(joy)))
panicError()
return ret
}
// GetJoystickAxes returns a slice of axis values.
func GetJoystickAxes(joy Joystick) []float32 {
var length int
axis := C.glfwGetJoystickAxes(C.int(joy), (*C.int)(unsafe.Pointer(&length)))
panicError()
if axis == nil {
return nil
}
a := make([]float32, length)
for i := 0; i < length; i++ {
a[i] = float32(C.GetAxisAtIndex(axis, C.int(i)))
}
return a
}
// GetJoystickButtons returns a slice of button values.
func GetJoystickButtons(joy Joystick) []byte {
var length int
buttons := C.glfwGetJoystickButtons(C.int(joy), (*C.int)(unsafe.Pointer(&length)))
panicError()
if buttons == nil {
return nil
}
b := make([]byte, length)
for i := 0; i < length; i++ {
b[i] = byte(C.GetButtonsAtIndex(buttons, C.int(i)))
}
return b
}
// GetJoystickName returns the name, encoded as UTF-8, of the specified joystick.
func GetJoystickName(joy Joystick) string {
jn := C.glfwGetJoystickName(C.int(joy))
panicError()
return C.GoString(jn)
}

View File

@ -1,25 +0,0 @@
#include "_cgo_export.h"
GLFWmonitor *GetMonitorAtIndex(GLFWmonitor **monitors, int index) {
return monitors[index];
}
GLFWvidmode GetVidmodeAtIndex(GLFWvidmode *vidmodes, int index) {
return vidmodes[index];
}
void glfwMonitorCB(GLFWmonitor* monitor, int event) {
goMonitorCB(monitor, event);
}
void glfwSetMonitorCallbackCB() {
glfwSetMonitorCallback(glfwMonitorCB);
}
unsigned int GetGammaAtIndex(unsigned short *color, int i) {
return color[i];
}
void SetGammaAtIndex(unsigned short *color, int i, unsigned short value) {
color[i] = value;
}

View File

@ -1,208 +0,0 @@
package glfw
//#include "glfw/include/GLFW/glfw3.h"
//GLFWmonitor* GetMonitorAtIndex(GLFWmonitor **monitors, int index);
//GLFWvidmode GetVidmodeAtIndex(GLFWvidmode *vidmodes, int index);
//void glfwSetMonitorCallbackCB();
//unsigned int GetGammaAtIndex(unsigned short *color, int i);
//void SetGammaAtIndex(unsigned short *color, int i, unsigned short value);
import "C"
import (
"unsafe"
)
// Monitor represents a monitor.
type Monitor struct {
data *C.GLFWmonitor
}
// MonitorEvent corresponds to a monitor configuration event.
type MonitorEvent int
// GammaRamp describes the gamma ramp for a monitor.
type GammaRamp struct {
Red []uint16 // A slice of value describing the response of the red channel.
Green []uint16 // A slice of value describing the response of the green channel.
Blue []uint16 // A slice of value describing the response of the blue channel.
}
// Monitor events.
const (
Connected MonitorEvent = C.GLFW_CONNECTED
Disconnected MonitorEvent = C.GLFW_DISCONNECTED
)
// VidMode describes a single video mode.
type VidMode struct {
Width int // The width, in pixels, of the video mode.
Height int // The height, in pixels, of the video mode.
RedBits int // The bit depth of the red channel of the video mode.
GreenBits int // The bit depth of the green channel of the video mode.
BlueBits int // The bit depth of the blue channel of the video mode.
RefreshRate int // The refresh rate, in Hz, of the video mode.
}
var fMonitorHolder func(monitor *Monitor, event MonitorEvent)
//export goMonitorCB
func goMonitorCB(monitor unsafe.Pointer, event C.int) {
fMonitorHolder(&Monitor{(*C.GLFWmonitor)(monitor)}, MonitorEvent(event))
}
// GetMonitors returns a slice of handles for all currently connected monitors.
func GetMonitors() []*Monitor {
var length int
mC := C.glfwGetMonitors((*C.int)(unsafe.Pointer(&length)))
panicError()
if mC == nil {
return nil
}
m := make([]*Monitor, length)
for i := 0; i < length; i++ {
m[i] = &Monitor{C.GetMonitorAtIndex(mC, C.int(i))}
}
return m
}
// GetPrimaryMonitor returns the primary monitor. This is usually the monitor
// where elements like the Windows task bar or the OS X menu bar is located.
func GetPrimaryMonitor() *Monitor {
m := C.glfwGetPrimaryMonitor()
panicError()
if m == nil {
return nil
}
return &Monitor{m}
}
// GetPos returns the position, in screen coordinates, of the upper-left
// corner of the monitor.
func (m *Monitor) GetPos() (x, y int) {
var xpos, ypos C.int
C.glfwGetMonitorPos(m.data, &xpos, &ypos)
panicError()
return int(xpos), int(ypos)
}
// GetPhysicalSize returns the size, in millimetres, of the display area of the
// monitor.
//
// Note: Some operating systems do not provide accurate information, either
// because the monitor's EDID data is incorrect, or because the driver does not
// report it accurately.
func (m *Monitor) GetPhysicalSize() (width, height int) {
var wi, h C.int
C.glfwGetMonitorPhysicalSize(m.data, &wi, &h)
panicError()
return int(wi), int(h)
}
// GetName returns a human-readable name of the monitor, encoded as UTF-8.
func (m *Monitor) GetName() string {
mn := C.glfwGetMonitorName(m.data)
panicError()
if mn == nil {
return ""
}
return C.GoString(mn)
}
// SetMonitorCallback sets the monitor configuration callback, or removes the
// currently set callback. This is called when a monitor is connected to or
// disconnected from the system.
func SetMonitorCallback(cbfun func(monitor *Monitor, event MonitorEvent)) {
if cbfun == nil {
C.glfwSetMonitorCallback(nil)
} else {
fMonitorHolder = cbfun
C.glfwSetMonitorCallbackCB()
}
panicError()
}
// GetVideoModes returns an array of all video modes supported by the monitor.
// The returned array is sorted in ascending order, first by color bit depth
// (the sum of all channel depths) and then by resolution area (the product of
// width and height).
func (m *Monitor) GetVideoModes() []*VidMode {
var length int
vC := C.glfwGetVideoModes(m.data, (*C.int)(unsafe.Pointer(&length)))
panicError()
if vC == nil {
return nil
}
v := make([]*VidMode, length)
for i := 0; i < length; i++ {
t := C.GetVidmodeAtIndex(vC, C.int(i))
v[i] = &VidMode{int(t.width), int(t.height), int(t.redBits), int(t.greenBits), int(t.blueBits), int(t.refreshRate)}
}
return v
}
// GetVideoMode returns the current video mode of the monitor. If you
// are using a full screen window, the return value will therefore depend on
// whether it is focused.
func (m *Monitor) GetVideoMode() *VidMode {
t := C.glfwGetVideoMode(m.data)
if t == nil {
return nil
}
panicError()
return &VidMode{int(t.width), int(t.height), int(t.redBits), int(t.greenBits), int(t.blueBits), int(t.refreshRate)}
}
// SetGamma generates a 256-element gamma ramp from the specified exponent and then calls
// SetGamma with it.
func (m *Monitor) SetGamma(gamma float32) {
C.glfwSetGamma(m.data, C.float(gamma))
panicError()
}
// GetGammaRamp retrieves the current gamma ramp of the monitor.
func (m *Monitor) GetGammaRamp() *GammaRamp {
var ramp GammaRamp
rampC := C.glfwGetGammaRamp(m.data)
panicError()
if rampC == nil {
return nil
}
length := int(rampC.size)
ramp.Red = make([]uint16, length)
ramp.Green = make([]uint16, length)
ramp.Blue = make([]uint16, length)
for i := 0; i < length; i++ {
ramp.Red[i] = uint16(C.GetGammaAtIndex(rampC.red, C.int(i)))
ramp.Green[i] = uint16(C.GetGammaAtIndex(rampC.green, C.int(i)))
ramp.Blue[i] = uint16(C.GetGammaAtIndex(rampC.blue, C.int(i)))
}
return &ramp
}
// SetGammaRamp sets the current gamma ramp for the monitor.
func (m *Monitor) SetGammaRamp(ramp *GammaRamp) {
var rampC C.GLFWgammaramp
length := len(ramp.Red)
for i := 0; i < length; i++ {
C.SetGammaAtIndex(rampC.red, C.int(i), C.ushort(ramp.Red[i]))
C.SetGammaAtIndex(rampC.green, C.int(i), C.ushort(ramp.Green[i]))
C.SetGammaAtIndex(rampC.blue, C.int(i), C.ushort(ramp.Blue[i]))
}
C.glfwSetGammaRamp(m.data, &rampC)
panicError()
}

View File

@ -1,39 +0,0 @@
package glfw
/*
#define GLFW_EXPOSE_NATIVE_COCOA
#define GLFW_EXPOSE_NATIVE_NSGL
#include "glfw/include/GLFW/glfw3.h"
#include "glfw/include/GLFW/glfw3native.h"
// workaround wrappers needed due to a cgo and/or LLVM bug.
// See: https://github.com/go-gl/glfw/issues/136
void *workaround_glfwGetCocoaWindow(GLFWwindow *w) {
return (void *)glfwGetCocoaWindow(w);
}
void *workaround_glfwGetNSGLContext(GLFWwindow *w) {
return (void *)glfwGetNSGLContext(w);
}
*/
import "C"
// GetCocoaMonitor returns the CGDirectDisplayID of the monitor.
func (m *Monitor) GetCocoaMonitor() uintptr {
ret := uintptr(C.glfwGetCocoaMonitor(m.data))
panicError()
return ret
}
// GetCocoaWindow returns the NSWindow of the window.
func (w *Window) GetCocoaWindow() uintptr {
ret := uintptr(C.workaround_glfwGetCocoaWindow(w.data))
panicError()
return ret
}
// GetNSGLContext returns the NSOpenGLContext of the window.
func (w *Window) GetNSGLContext() uintptr {
ret := uintptr(C.workaround_glfwGetNSGLContext(w.data))
panicError()
return ret
}

View File

@ -1,50 +0,0 @@
// +build linux,!wayland freebsd,!wayland
package glfw
//#define GLFW_EXPOSE_NATIVE_X11
//#define GLFW_EXPOSE_NATIVE_GLX
//#include "glfw/include/GLFW/glfw3.h"
//#include "glfw/include/GLFW/glfw3native.h"
import "C"
func GetX11Display() *C.Display {
ret := C.glfwGetX11Display()
panicError()
return ret
}
// GetX11Adapter returns the RRCrtc of the monitor.
func (m *Monitor) GetX11Adapter() C.RRCrtc {
ret := C.glfwGetX11Adapter(m.data)
panicError()
return ret
}
// GetX11Monitor returns the RROutput of the monitor.
func (m *Monitor) GetX11Monitor() C.RROutput {
ret := C.glfwGetX11Monitor(m.data)
panicError()
return ret
}
// GetX11Window returns the Window of the window.
func (w *Window) GetX11Window() C.Window {
ret := C.glfwGetX11Window(w.data)
panicError()
return ret
}
// GetGLXContext returns the GLXContext of the window.
func (w *Window) GetGLXContext() C.GLXContext {
ret := C.glfwGetGLXContext(w.data)
panicError()
return ret
}
// GetGLXWindow returns the GLXWindow of the window.
func (w *Window) GetGLXWindow() C.GLXWindow {
ret := C.glfwGetGLXWindow(w.data)
panicError()
return ret
}

View File

@ -1,35 +0,0 @@
package glfw
//#define GLFW_EXPOSE_NATIVE_WIN32
//#define GLFW_EXPOSE_NATIVE_WGL
//#include "glfw/include/GLFW/glfw3.h"
//#include "glfw/include/GLFW/glfw3native.h"
import "C"
// GetWin32Adapter returns the adapter device name of the monitor.
func (m *Monitor) GetWin32Adapter() string {
ret := C.glfwGetWin32Adapter(m.data)
panicError()
return C.GoString(ret)
}
// GetWin32Monitor returns the display device name of the monitor.
func (m *Monitor) GetWin32Monitor() string {
ret := C.glfwGetWin32Monitor(m.data)
panicError()
return C.GoString(ret)
}
// GetWin32Window returns the HWND of the window.
func (w *Window) GetWin32Window() C.HWND {
ret := C.glfwGetWin32Window(w.data)
panicError()
return ret
}
// GetWGLContext returns the HGLRC of the window.
func (w *Window) GetWGLContext() C.HGLRC {
ret := C.glfwGetWGLContext(w.data)
panicError()
return ret
}

View File

@ -1,41 +0,0 @@
package glfw
//#include "glfw/include/GLFW/glfw3.h"
import "C"
// GetTime returns the value of the GLFW timer. Unless the timer has been set
// using SetTime, the timer measures time elapsed since GLFW was initialized.
//
// The resolution of the timer is system dependent, but is usually on the order
// of a few micro- or nanoseconds. It uses the highest-resolution monotonic time
// source on each supported platform.
func GetTime() float64 {
ret := float64(C.glfwGetTime())
panicError()
return ret
}
// SetTime sets the value of the GLFW timer. It then continues to count up from
// that value.
//
// The resolution of the timer is system dependent, but is usually on the order
// of a few micro- or nanoseconds. It uses the highest-resolution monotonic time
// source on each supported platform.
func SetTime(time float64) {
C.glfwSetTime(C.double(time))
panicError()
}
// GetTimerFrequency returns frequency of the timer, in Hz, or zero if an error occurred.
func GetTimerFrequency() uint64 {
ret := uint64(C.glfwGetTimerFrequency())
panicError()
return ret
}
// GetTimerValue returns the current value of the raw timer, measured in 1 / frequency seconds.
func GetTimerValue() uint64 {
ret := uint64(C.glfwGetTimerValue())
panicError()
return ret
}

View File

@ -1,37 +0,0 @@
package glfw
//#include <stdlib.h>
//#include "glfw/include/GLFW/glfw3.h"
import "C"
import (
"reflect"
"unsafe"
)
func glfwbool(b C.int) bool {
if b == C.GL_TRUE {
return true
}
return false
}
func bytes(origin []byte) (pointer *uint8, free func()) {
n := len(origin)
if n == 0 {
return nil, func() {}
}
data := C.malloc(C.size_t(n))
dataSlice := *(*[]byte)(unsafe.Pointer(&reflect.SliceHeader{
Data: uintptr(data),
Len: n,
Cap: n,
}))
copy(dataSlice, origin)
return &dataSlice[0], func() { C.free(data) }
}

View File

@ -1,14 +0,0 @@
package glfw
//#include "glfw/include/GLFW/glfw3.h"
import "C"
// VulkanSupported reports whether the Vulkan loader has been found. This check is performed by Init.
//
// The availability of a Vulkan loader does not by itself guarantee that window surface creation or
// even device creation is possible. Call GetRequiredInstanceExtensions to check whether the
// extensions necessary for Vulkan surface creation are available and GetPhysicalDevicePresentationSupport
// to check whether a queue family of a physical device supports image presentation.
func VulkanSupported() bool {
return glfwbool(C.glfwVulkanSupported())
}

View File

@ -1,57 +0,0 @@
#include "_cgo_export.h"
void glfwWindowPosCB(GLFWwindow* window, int xpos, int ypos) {
goWindowPosCB(window, xpos, ypos);
}
void glfwWindowSizeCB(GLFWwindow* window, int width, int height) {
goWindowSizeCB(window, width, height);
}
void glfwFramebufferSizeCB(GLFWwindow* window, int width, int height) {
goFramebufferSizeCB(window, width, height);
}
void glfwWindowCloseCB(GLFWwindow* window) {
goWindowCloseCB(window);
}
void glfwWindowRefreshCB(GLFWwindow* window) {
goWindowRefreshCB(window);
}
void glfwWindowFocusCB(GLFWwindow* window, int focused) {
goWindowFocusCB(window, focused);
}
void glfwWindowIconifyCB(GLFWwindow* window, int iconified) {
goWindowIconifyCB(window, iconified);
}
void glfwSetWindowPosCallbackCB(GLFWwindow* window) {
glfwSetWindowPosCallback(window, glfwWindowPosCB);
}
void glfwSetWindowSizeCallbackCB(GLFWwindow* window) {
glfwSetWindowSizeCallback(window, glfwWindowSizeCB);
}
void glfwSetFramebufferSizeCallbackCB(GLFWwindow* window) {
glfwSetFramebufferSizeCallback(window, glfwFramebufferSizeCB);
}
void glfwSetWindowCloseCallbackCB(GLFWwindow* window) {
glfwSetWindowCloseCallback(window, glfwWindowCloseCB);
}
void glfwSetWindowRefreshCallbackCB(GLFWwindow* window) {
glfwSetWindowRefreshCallback(window, glfwWindowRefreshCB);
}
void glfwSetWindowFocusCallbackCB(GLFWwindow* window) {
glfwSetWindowFocusCallback(window, glfwWindowFocusCB);
}
void glfwSetWindowIconifyCallbackCB(GLFWwindow* window) {
glfwSetWindowIconifyCallback(window, glfwWindowIconifyCB);
}

View File

@ -1,836 +0,0 @@
package glfw
//#include <stdlib.h>
//#include "glfw/include/GLFW/glfw3.h"
//void glfwSetWindowPosCallbackCB(GLFWwindow *window);
//void glfwSetWindowSizeCallbackCB(GLFWwindow *window);
//void glfwSetFramebufferSizeCallbackCB(GLFWwindow *window);
//void glfwSetWindowCloseCallbackCB(GLFWwindow *window);
//void glfwSetWindowRefreshCallbackCB(GLFWwindow *window);
//void glfwSetWindowFocusCallbackCB(GLFWwindow *window);
//void glfwSetWindowIconifyCallbackCB(GLFWwindow *window);
import "C"
import (
"image"
"image/draw"
"sync"
"unsafe"
)
// Internal window list stuff
type windowList struct {
l sync.Mutex
m map[*C.GLFWwindow]*Window
}
var windows = windowList{m: map[*C.GLFWwindow]*Window{}}
func (w *windowList) put(wnd *Window) {
w.l.Lock()
defer w.l.Unlock()
w.m[wnd.data] = wnd
}
func (w *windowList) remove(wnd *C.GLFWwindow) {
w.l.Lock()
defer w.l.Unlock()
delete(w.m, wnd)
}
func (w *windowList) get(wnd *C.GLFWwindow) *Window {
w.l.Lock()
defer w.l.Unlock()
return w.m[wnd]
}
// Hint corresponds to hints that can be set before creating a window.
//
// Hint also corresponds to the attributes of the window that can be get after
// its creation.
type Hint int
// Window related hints.
const (
Focused Hint = C.GLFW_FOCUSED // Specifies whether the window will be given input focus when created. This hint is ignored for full screen and initially hidden windows.
Iconified Hint = C.GLFW_ICONIFIED // Specifies whether the window will be minimized.
Maximized Hint = C.GLFW_MAXIMIZED // Specifies whether the window is maximized.
Visible Hint = C.GLFW_VISIBLE // Specifies whether the window will be initially visible.
Resizable Hint = C.GLFW_RESIZABLE // Specifies whether the window will be resizable by the user.
Decorated Hint = C.GLFW_DECORATED // Specifies whether the window will have window decorations such as a border, a close widget, etc.
Floating Hint = C.GLFW_FLOATING // Specifies whether the window will be always-on-top.
AutoIconify Hint = C.GLFW_AUTO_ICONIFY // Specifies whether fullscreen windows automatically iconify (and restore the previous video mode) on focus loss.
)
// Context related hints.
const (
ClientAPI Hint = C.GLFW_CLIENT_API // Specifies which client API to create the context for. Hard constraint.
ContextVersionMajor Hint = C.GLFW_CONTEXT_VERSION_MAJOR // Specifies the client API version that the created context must be compatible with.
ContextVersionMinor Hint = C.GLFW_CONTEXT_VERSION_MINOR // Specifies the client API version that the created context must be compatible with.
ContextRobustness Hint = C.GLFW_CONTEXT_ROBUSTNESS // Specifies the robustness strategy to be used by the context.
ContextReleaseBehavior Hint = C.GLFW_CONTEXT_RELEASE_BEHAVIOR // Specifies the release behavior to be used by the context.
OpenGLForwardCompatible Hint = C.GLFW_OPENGL_FORWARD_COMPAT // Specifies whether the OpenGL context should be forward-compatible. Hard constraint.
OpenGLDebugContext Hint = C.GLFW_OPENGL_DEBUG_CONTEXT // Specifies whether to create a debug OpenGL context, which may have additional error and performance issue reporting functionality. If OpenGL ES is requested, this hint is ignored.
OpenGLProfile Hint = C.GLFW_OPENGL_PROFILE // Specifies which OpenGL profile to create the context for. Hard constraint.
ContextCreationAPI Hint = C.GLFW_CONTEXT_CREATION_API // Specifies which context creation API to use to create the context.
)
// Framebuffer related hints.
const (
ContextRevision Hint = C.GLFW_CONTEXT_REVISION
RedBits Hint = C.GLFW_RED_BITS // Specifies the desired bit depth of the default framebuffer.
GreenBits Hint = C.GLFW_GREEN_BITS // Specifies the desired bit depth of the default framebuffer.
BlueBits Hint = C.GLFW_BLUE_BITS // Specifies the desired bit depth of the default framebuffer.
AlphaBits Hint = C.GLFW_ALPHA_BITS // Specifies the desired bit depth of the default framebuffer.
DepthBits Hint = C.GLFW_DEPTH_BITS // Specifies the desired bit depth of the default framebuffer.
StencilBits Hint = C.GLFW_STENCIL_BITS // Specifies the desired bit depth of the default framebuffer.
AccumRedBits Hint = C.GLFW_ACCUM_RED_BITS // Specifies the desired bit depth of the accumulation buffer.
AccumGreenBits Hint = C.GLFW_ACCUM_GREEN_BITS // Specifies the desired bit depth of the accumulation buffer.
AccumBlueBits Hint = C.GLFW_ACCUM_BLUE_BITS // Specifies the desired bit depth of the accumulation buffer.
AccumAlphaBits Hint = C.GLFW_ACCUM_ALPHA_BITS // Specifies the desired bit depth of the accumulation buffer.
AuxBuffers Hint = C.GLFW_AUX_BUFFERS // Specifies the desired number of auxiliary buffers.
Stereo Hint = C.GLFW_STEREO // Specifies whether to use stereoscopic rendering. Hard constraint.
Samples Hint = C.GLFW_SAMPLES // Specifies the desired number of samples to use for multisampling. Zero disables multisampling.
SRGBCapable Hint = C.GLFW_SRGB_CAPABLE // Specifies whether the framebuffer should be sRGB capable.
RefreshRate Hint = C.GLFW_REFRESH_RATE // Specifies the desired refresh rate for full screen windows. If set to zero, the highest available refresh rate will be used. This hint is ignored for windowed mode windows.
DoubleBuffer Hint = C.GLFW_DOUBLEBUFFER // Specifies whether the framebuffer should be double buffered. You nearly always want to use double buffering. This is a hard constraint.
)
// Values for the ClientAPI hint.
const (
OpenGLAPI int = C.GLFW_OPENGL_API
OpenGLESAPI int = C.GLFW_OPENGL_ES_API
NoAPI int = C.GLFW_NO_API
)
// Values for ContextCreationAPI hint.
const (
NativeContextAPI int = C.GLFW_NATIVE_CONTEXT_API
EGLContextAPI int = C.GLFW_EGL_CONTEXT_API
)
// Values for the ContextRobustness hint.
const (
NoRobustness int = C.GLFW_NO_ROBUSTNESS
NoResetNotification int = C.GLFW_NO_RESET_NOTIFICATION
LoseContextOnReset int = C.GLFW_LOSE_CONTEXT_ON_RESET
)
// Values for ContextReleaseBehavior hint.
const (
AnyReleaseBehavior int = C.GLFW_ANY_RELEASE_BEHAVIOR
ReleaseBehaviorFlush int = C.GLFW_RELEASE_BEHAVIOR_FLUSH
ReleaseBehaviorNone int = C.GLFW_RELEASE_BEHAVIOR_NONE
)
// Values for the OpenGLProfile hint.
const (
OpenGLAnyProfile int = C.GLFW_OPENGL_ANY_PROFILE
OpenGLCoreProfile int = C.GLFW_OPENGL_CORE_PROFILE
OpenGLCompatProfile int = C.GLFW_OPENGL_COMPAT_PROFILE
)
// Other values.
const (
True int = C.GL_TRUE
False int = C.GL_FALSE
DontCare int = C.GLFW_DONT_CARE
)
// Window represents a window.
type Window struct {
data *C.GLFWwindow
// Window.
fPosHolder func(w *Window, xpos int, ypos int)
fSizeHolder func(w *Window, width int, height int)
fFramebufferSizeHolder func(w *Window, width int, height int)
fCloseHolder func(w *Window)
fRefreshHolder func(w *Window)
fFocusHolder func(w *Window, focused bool)
fIconifyHolder func(w *Window, iconified bool)
// Input.
fMouseButtonHolder func(w *Window, button MouseButton, action Action, mod ModifierKey)
fCursorPosHolder func(w *Window, xpos float64, ypos float64)
fCursorEnterHolder func(w *Window, entered bool)
fScrollHolder func(w *Window, xoff float64, yoff float64)
fKeyHolder func(w *Window, key Key, scancode int, action Action, mods ModifierKey)
fCharHolder func(w *Window, char rune)
fCharModsHolder func(w *Window, char rune, mods ModifierKey)
fDropHolder func(w *Window, names []string)
}
// GLFWWindow returns a *C.GLFWwindow reference (i.e. the GLFW window itself). This can be used for
// passing the GLFW window handle to external C libraries.
func (w *Window) GLFWWindow() uintptr {
return uintptr(unsafe.Pointer(w.data))
}
// GoWindow creates a Window from a *C.GLFWwindow reference.
// Used when an external C library is calling your Go handlers.
func GoWindow(window unsafe.Pointer) *Window {
return &Window{data: (*C.GLFWwindow)(window)}
}
//export goWindowPosCB
func goWindowPosCB(window unsafe.Pointer, xpos, ypos C.int) {
w := windows.get((*C.GLFWwindow)(window))
w.fPosHolder(w, int(xpos), int(ypos))
}
//export goWindowSizeCB
func goWindowSizeCB(window unsafe.Pointer, width, height C.int) {
w := windows.get((*C.GLFWwindow)(window))
w.fSizeHolder(w, int(width), int(height))
}
//export goFramebufferSizeCB
func goFramebufferSizeCB(window unsafe.Pointer, width, height C.int) {
w := windows.get((*C.GLFWwindow)(window))
w.fFramebufferSizeHolder(w, int(width), int(height))
}
//export goWindowCloseCB
func goWindowCloseCB(window unsafe.Pointer) {
w := windows.get((*C.GLFWwindow)(window))
w.fCloseHolder(w)
}
//export goWindowRefreshCB
func goWindowRefreshCB(window unsafe.Pointer) {
w := windows.get((*C.GLFWwindow)(window))
w.fRefreshHolder(w)
}
//export goWindowFocusCB
func goWindowFocusCB(window unsafe.Pointer, focused C.int) {
w := windows.get((*C.GLFWwindow)(window))
isFocused := glfwbool(focused)
w.fFocusHolder(w, isFocused)
}
//export goWindowIconifyCB
func goWindowIconifyCB(window unsafe.Pointer, iconified C.int) {
isIconified := glfwbool(iconified)
w := windows.get((*C.GLFWwindow)(window))
w.fIconifyHolder(w, isIconified)
}
// DefaultWindowHints resets all window hints to their default values.
//
// This function may only be called from the main thread.
func DefaultWindowHints() {
C.glfwDefaultWindowHints()
panicError()
}
// WindowHint sets hints for the next call to CreateWindow. The hints,
// once set, retain their values until changed by a call to WindowHint or
// DefaultWindowHints, or until the library is terminated with Terminate.
//
// This function may only be called from the main thread.
func WindowHint(target Hint, hint int) {
C.glfwWindowHint(C.int(target), C.int(hint))
panicError()
}
// CreateWindow creates a window and its associated context. Most of the options
// controlling how the window and its context should be created are specified
// through Hint.
//
// Successful creation does not change which context is current. Before you can
// use the newly created context, you need to make it current using
// MakeContextCurrent.
//
// Note that the created window and context may differ from what you requested,
// as not all parameters and hints are hard constraints. This includes the size
// of the window, especially for full screen windows. To retrieve the actual
// attributes of the created window and context, use queries like
// GetWindowAttrib and GetWindowSize.
//
// To create the window at a specific position, make it initially invisible using
// the Visible window hint, set its position and then show it.
//
// If a fullscreen window is active, the screensaver is prohibited from starting.
//
// Windows: If the executable has an icon resource named GLFW_ICON, it will be
// set as the icon for the window. If no such icon is present, the IDI_WINLOGO
// icon will be used instead.
//
// Mac OS X: The GLFW window has no icon, as it is not a document window, but the
// dock icon will be the same as the application bundle's icon. Also, the first
// time a window is opened the menu bar is populated with common commands like
// Hide, Quit and About. The (minimal) about dialog uses information from the
// application's bundle. For more information on bundles, see the Bundle
// Programming Guide provided by Apple.
//
// This function may only be called from the main thread.
func CreateWindow(width, height int, title string, monitor *Monitor, share *Window) (*Window, error) {
var (
m *C.GLFWmonitor
s *C.GLFWwindow
)
t := C.CString(title)
defer C.free(unsafe.Pointer(t))
if monitor != nil {
m = monitor.data
}
if share != nil {
s = share.data
}
w := C.glfwCreateWindow(C.int(width), C.int(height), t, m, s)
if w == nil {
return nil, acceptError(APIUnavailable, VersionUnavailable)
}
wnd := &Window{data: w}
windows.put(wnd)
return wnd, nil
}
// Destroy destroys the specified window and its context. On calling this
// function, no further callbacks will be called for that window.
//
// This function may only be called from the main thread.
func (w *Window) Destroy() {
windows.remove(w.data)
C.glfwDestroyWindow(w.data)
panicError()
}
// ShouldClose reports the value of the close flag of the specified window.
func (w *Window) ShouldClose() bool {
ret := glfwbool(C.glfwWindowShouldClose(w.data))
panicError()
return ret
}
// SetShouldClose sets the value of the close flag of the window. This can be
// used to override the user's attempt to close the window, or to signal that it
// should be closed.
func (w *Window) SetShouldClose(value bool) {
if !value {
C.glfwSetWindowShouldClose(w.data, C.GL_FALSE)
} else {
C.glfwSetWindowShouldClose(w.data, C.GL_TRUE)
}
panicError()
}
// SetTitle sets the window title, encoded as UTF-8, of the window.
//
// This function may only be called from the main thread.
func (w *Window) SetTitle(title string) {
t := C.CString(title)
defer C.free(unsafe.Pointer(t))
C.glfwSetWindowTitle(w.data, t)
panicError()
}
// SetIcon sets the icon of the specified window. If passed an array of candidate images,
// those of or closest to the sizes desired by the system are selected. If no images are
// specified, the window reverts to its default icon.
//
// The image is ideally provided in the form of *image.NRGBA.
// The pixels are 32-bit, little-endian, non-premultiplied RGBA, i.e. eight
// bits per channel with the red channel first. They are arranged canonically
// as packed sequential rows, starting from the top-left corner. If the image
// type is not *image.NRGBA, it will be converted to it.
//
// The desired image sizes varies depending on platform and system settings. The selected
// images will be rescaled as needed. Good sizes include 16x16, 32x32 and 48x48.
func (w *Window) SetIcon(images []image.Image) {
count := len(images)
cimages := make([]C.GLFWimage, count)
freePixels := make([]func(), count)
for i, img := range images {
var pixels []uint8
b := img.Bounds()
switch img := img.(type) {
case *image.NRGBA:
pixels = img.Pix
default:
m := image.NewNRGBA(image.Rect(0, 0, b.Dx(), b.Dy()))
draw.Draw(m, m.Bounds(), img, b.Min, draw.Src)
pixels = m.Pix
}
pix, free := bytes(pixels)
freePixels[i] = free
cimages[i].width = C.int(b.Dx())
cimages[i].height = C.int(b.Dy())
cimages[i].pixels = (*C.uchar)(pix)
}
var p *C.GLFWimage
if count > 0 {
p = &cimages[0]
}
C.glfwSetWindowIcon(w.data, C.int(count), p)
for _, v := range freePixels {
v()
}
panicError()
}
// GetPos returns the position, in screen coordinates, of the upper-left
// corner of the client area of the window.
func (w *Window) GetPos() (x, y int) {
var xpos, ypos C.int
C.glfwGetWindowPos(w.data, &xpos, &ypos)
panicError()
return int(xpos), int(ypos)
}
// SetPos sets the position, in screen coordinates, of the upper-left corner
// of the client area of the window.
//
// If it is a full screen window, this function does nothing.
//
// If you wish to set an initial window position you should create a hidden
// window (using Hint and Visible), set its position and then show it.
//
// It is very rarely a good idea to move an already visible window, as it will
// confuse and annoy the user.
//
// The window manager may put limits on what positions are allowed.
//
// This function may only be called from the main thread.
func (w *Window) SetPos(xpos, ypos int) {
C.glfwSetWindowPos(w.data, C.int(xpos), C.int(ypos))
panicError()
}
// GetSize returns the size, in screen coordinates, of the client area of the
// specified window.
func (w *Window) GetSize() (width, height int) {
var wi, h C.int
C.glfwGetWindowSize(w.data, &wi, &h)
panicError()
return int(wi), int(h)
}
// SetSize sets the size, in screen coordinates, of the client area of the
// window.
//
// For full screen windows, this function selects and switches to the resolution
// closest to the specified size, without affecting the window's context. As the
// context is unaffected, the bit depths of the framebuffer remain unchanged.
//
// The window manager may put limits on what window sizes are allowed.
//
// This function may only be called from the main thread.
func (w *Window) SetSize(width, height int) {
C.glfwSetWindowSize(w.data, C.int(width), C.int(height))
panicError()
}
// SetSizeLimits sets the size limits of the client area of the specified window.
// If the window is full screen or not resizable, this function does nothing.
//
// The size limits are applied immediately and may cause the window to be resized.
func (w *Window) SetSizeLimits(minw, minh, maxw, maxh int) {
C.glfwSetWindowSizeLimits(w.data, C.int(minw), C.int(minh), C.int(maxw), C.int(maxh))
panicError()
}
// SetAspectRatio sets the required aspect ratio of the client area of the specified window.
// If the window is full screen or not resizable, this function does nothing.
//
// The aspect ratio is specified as a numerator and a denominator and both values must be greater
// than zero. For example, the common 16:9 aspect ratio is specified as 16 and 9, respectively.
//
// If the numerator and denominator is set to glfw.DontCare then the aspect ratio limit is disabled.
//
// The aspect ratio is applied immediately and may cause the window to be resized.
func (w *Window) SetAspectRatio(numer, denom int) {
C.glfwSetWindowAspectRatio(w.data, C.int(numer), C.int(denom))
panicError()
}
// GetFramebufferSize retrieves the size, in pixels, of the framebuffer of the
// specified window.
func (w *Window) GetFramebufferSize() (width, height int) {
var wi, h C.int
C.glfwGetFramebufferSize(w.data, &wi, &h)
panicError()
return int(wi), int(h)
}
// GetFrameSize retrieves the size, in screen coordinates, of each edge of the frame
// of the specified window. This size includes the title bar, if the window has one.
// The size of the frame may vary depending on the window-related hints used to create it.
//
// Because this function retrieves the size of each window frame edge and not the offset
// along a particular coordinate axis, the retrieved values will always be zero or positive.
func (w *Window) GetFrameSize() (left, top, right, bottom int) {
var l, t, r, b C.int
C.glfwGetWindowFrameSize(w.data, &l, &t, &r, &b)
panicError()
return int(l), int(t), int(r), int(b)
}
// Focus brings the specified window to front and sets input focus.
// The window should already be visible and not iconified.
//
// By default, both windowed and full screen mode windows are focused when initially created.
// Set the glfw.Focused to disable this behavior.
//
// Do not use this function to steal focus from other applications unless you are certain that
// is what the user wants. Focus stealing can be extremely disruptive.
func (w *Window) Focus() error {
C.glfwFocusWindow(w.data)
return acceptError(APIUnavailable)
}
// Iconify iconifies/minimizes the window, if it was previously restored. If it
// is a full screen window, the original monitor resolution is restored until the
// window is restored. If the window is already iconified, this function does
// nothing.
//
// This function may only be called from the main thread.
func (w *Window) Iconify() error {
C.glfwIconifyWindow(w.data)
return acceptError(APIUnavailable)
}
// Maximize maximizes the specified window if it was previously not maximized.
// If the window is already maximized, this function does nothing.
//
// If the specified window is a full screen window, this function does nothing.
func (w *Window) Maximize() error {
C.glfwMaximizeWindow(w.data)
return acceptError(APIUnavailable)
}
// Restore restores the window, if it was previously iconified/minimized. If it
// is a full screen window, the resolution chosen for the window is restored on
// the selected monitor. If the window is already restored, this function does
// nothing.
//
// This function may only be called from the main thread.
func (w *Window) Restore() error {
C.glfwRestoreWindow(w.data)
return acceptError(APIUnavailable)
}
// Show makes the window visible, if it was previously hidden. If the window is
// already visible or is in full screen mode, this function does nothing.
//
// This function may only be called from the main thread.
func (w *Window) Show() {
C.glfwShowWindow(w.data)
panicError()
}
// Hide hides the window, if it was previously visible. If the window is already
// hidden or is in full screen mode, this function does nothing.
//
// This function may only be called from the main thread.
func (w *Window) Hide() {
C.glfwHideWindow(w.data)
panicError()
}
// GetMonitor returns the handle of the monitor that the window is in
// fullscreen on.
//
// Returns nil if the window is in windowed mode.
func (w *Window) GetMonitor() *Monitor {
m := C.glfwGetWindowMonitor(w.data)
panicError()
if m == nil {
return nil
}
return &Monitor{m}
}
// SetMonitor sets the monitor that the window uses for full screen mode or,
// if the monitor is NULL, makes it windowed mode.
//
// When setting a monitor, this function updates the width, height and refresh
// rate of the desired video mode and switches to the video mode closest to it.
// The window position is ignored when setting a monitor.
//
// When the monitor is NULL, the position, width and height are used to place
// the window client area. The refresh rate is ignored when no monitor is specified.
// If you only wish to update the resolution of a full screen window or the size of
// a windowed mode window, see window.SetSize.
//
// When a window transitions from full screen to windowed mode, this function
// restores any previous window settings such as whether it is decorated, floating,
// resizable, has size or aspect ratio limits, etc..
func (w *Window) SetMonitor(monitor *Monitor, xpos, ypos, width, height, refreshRate int) {
var m *C.GLFWmonitor
if monitor == nil {
m = nil
} else {
m = monitor.data
}
C.glfwSetWindowMonitor(w.data, m, C.int(xpos), C.int(ypos), C.int(width), C.int(height), C.int(refreshRate))
panicError()
}
// GetAttrib returns an attribute of the window. There are many attributes,
// some related to the window and others to its context.
func (w *Window) GetAttrib(attrib Hint) int {
ret := int(C.glfwGetWindowAttrib(w.data, C.int(attrib)))
panicError()
return ret
}
// SetUserPointer sets the user-defined pointer of the window. The current value
// is retained until the window is destroyed. The initial value is nil.
func (w *Window) SetUserPointer(pointer unsafe.Pointer) {
C.glfwSetWindowUserPointer(w.data, pointer)
panicError()
}
// GetUserPointer returns the current value of the user-defined pointer of the
// window. The initial value is nil.
func (w *Window) GetUserPointer() unsafe.Pointer {
ret := C.glfwGetWindowUserPointer(w.data)
panicError()
return ret
}
// PosCallback is the window position callback.
type PosCallback func(w *Window, xpos int, ypos int)
// SetPosCallback sets the position callback of the window, which is called
// when the window is moved. The callback is provided with the screen position
// of the upper-left corner of the client area of the window.
func (w *Window) SetPosCallback(cbfun PosCallback) (previous PosCallback) {
previous = w.fPosHolder
w.fPosHolder = cbfun
if cbfun == nil {
C.glfwSetWindowPosCallback(w.data, nil)
} else {
C.glfwSetWindowPosCallbackCB(w.data)
}
panicError()
return previous
}
// SizeCallback is the window size callback.
type SizeCallback func(w *Window, width int, height int)
// SetSizeCallback sets the size callback of the window, which is called when
// the window is resized. The callback is provided with the size, in screen
// coordinates, of the client area of the window.
func (w *Window) SetSizeCallback(cbfun SizeCallback) (previous SizeCallback) {
previous = w.fSizeHolder
w.fSizeHolder = cbfun
if cbfun == nil {
C.glfwSetWindowSizeCallback(w.data, nil)
} else {
C.glfwSetWindowSizeCallbackCB(w.data)
}
panicError()
return previous
}
// FramebufferSizeCallback is the framebuffer size callback.
type FramebufferSizeCallback func(w *Window, width int, height int)
// SetFramebufferSizeCallback sets the framebuffer resize callback of the specified
// window, which is called when the framebuffer of the specified window is resized.
func (w *Window) SetFramebufferSizeCallback(cbfun FramebufferSizeCallback) (previous FramebufferSizeCallback) {
previous = w.fFramebufferSizeHolder
w.fFramebufferSizeHolder = cbfun
if cbfun == nil {
C.glfwSetFramebufferSizeCallback(w.data, nil)
} else {
C.glfwSetFramebufferSizeCallbackCB(w.data)
}
panicError()
return previous
}
// CloseCallback is the window close callback.
type CloseCallback func(w *Window)
// SetCloseCallback sets the close callback of the window, which is called when
// the user attempts to close the window, for example by clicking the close
// widget in the title bar.
//
// The close flag is set before this callback is called, but you can modify it at
// any time with SetShouldClose.
//
// Mac OS X: Selecting Quit from the application menu will trigger the close
// callback for all windows.
func (w *Window) SetCloseCallback(cbfun CloseCallback) (previous CloseCallback) {
previous = w.fCloseHolder
w.fCloseHolder = cbfun
if cbfun == nil {
C.glfwSetWindowCloseCallback(w.data, nil)
} else {
C.glfwSetWindowCloseCallbackCB(w.data)
}
panicError()
return previous
}
// RefreshCallback is the window refresh callback.
type RefreshCallback func(w *Window)
// SetRefreshCallback sets the refresh callback of the window, which
// is called when the client area of the window needs to be redrawn, for example
// if the window has been exposed after having been covered by another window.
//
// On compositing window systems such as Aero, Compiz or Aqua, where the window
// contents are saved off-screen, this callback may be called only very
// infrequently or never at all.
func (w *Window) SetRefreshCallback(cbfun RefreshCallback) (previous RefreshCallback) {
previous = w.fRefreshHolder
w.fRefreshHolder = cbfun
if cbfun == nil {
C.glfwSetWindowRefreshCallback(w.data, nil)
} else {
C.glfwSetWindowRefreshCallbackCB(w.data)
}
panicError()
return previous
}
// FocusCallback is the window focus callback.
type FocusCallback func(w *Window, focused bool)
// SetFocusCallback sets the focus callback of the window, which is called when
// the window gains or loses focus.
//
// After the focus callback is called for a window that lost focus, synthetic key
// and mouse button release events will be generated for all such that had been
// pressed. For more information, see SetKeyCallback and SetMouseButtonCallback.
func (w *Window) SetFocusCallback(cbfun FocusCallback) (previous FocusCallback) {
previous = w.fFocusHolder
w.fFocusHolder = cbfun
if cbfun == nil {
C.glfwSetWindowFocusCallback(w.data, nil)
} else {
C.glfwSetWindowFocusCallbackCB(w.data)
}
panicError()
return previous
}
// IconifyCallback is the window iconification callback.
type IconifyCallback func(w *Window, iconified bool)
// SetIconifyCallback sets the iconification callback of the window, which is
// called when the window is iconified or restored.
func (w *Window) SetIconifyCallback(cbfun IconifyCallback) (previous IconifyCallback) {
previous = w.fIconifyHolder
w.fIconifyHolder = cbfun
if cbfun == nil {
C.glfwSetWindowIconifyCallback(w.data, nil)
} else {
C.glfwSetWindowIconifyCallbackCB(w.data)
}
panicError()
return previous
}
// SetClipboardString sets the system clipboard to the specified UTF-8 encoded
// string.
//
// This function may only be called from the main thread.
func (w *Window) SetClipboardString(str string) {
cp := C.CString(str)
defer C.free(unsafe.Pointer(cp))
C.glfwSetClipboardString(w.data, cp)
panicError()
}
// GetClipboardString returns the contents of the system clipboard, if it
// contains or is convertible to a UTF-8 encoded string.
//
// This function may only be called from the main thread.
func (w *Window) GetClipboardString() (string, error) {
cs := C.glfwGetClipboardString(w.data)
if cs == nil {
return "", acceptError(FormatUnavailable)
}
return C.GoString(cs), nil
}
// PollEvents processes only those events that have already been received and
// then returns immediately. Processing events will cause the window and input
// callbacks associated with those events to be called.
//
// This function is not required for joystick input to work.
//
// This function may not be called from a callback.
//
// This function may only be called from the main thread.
func PollEvents() {
C.glfwPollEvents()
panicError()
}
// WaitEvents puts the calling thread to sleep until at least one event has been
// received. Once one or more events have been recevied, it behaves as if
// PollEvents was called, i.e. the events are processed and the function then
// returns immediately. Processing events will cause the window and input
// callbacks associated with those events to be called.
//
// Since not all events are associated with callbacks, this function may return
// without a callback having been called even if you are monitoring all
// callbacks.
//
// This function may not be called from a callback.
//
// This function may only be called from the main thread.
func WaitEvents() {
C.glfwWaitEvents()
panicError()
}
// WaitEventsTimeout puts the calling thread to sleep until at least one event is available in the
// event queue, or until the specified timeout is reached. If one or more events are available,
// it behaves exactly like PollEvents, i.e. the events in the queue are processed and the function
// then returns immediately. Processing events will cause the window and input callbacks associated
// with those events to be called.
//
// The timeout value must be a positive finite number.
//
// Since not all events are associated with callbacks, this function may return without a callback
// having been called even if you are monitoring all callbacks.
//
// On some platforms, a window move, resize or menu operation will cause event processing to block.
// This is due to how event processing is designed on those platforms. You can use the window
// refresh callback to redraw the contents of your window when necessary during such operations.
//
// On some platforms, certain callbacks may be called outside of a call to one of the event
// processing functions.
//
// If no windows exist, this function returns immediately. For synchronization of threads in
// applications that do not create windows, use native Go primitives.
//
// Event processing is not required for joystick input to work.
func WaitEventsTimeout(timeout float64) {
C.glfwWaitEventsTimeout(C.double(timeout))
panicError()
}
// PostEmptyEvent posts an empty event from the current thread to the main
// thread event queue, causing WaitEvents to return.
//
// If no windows exist, this function returns immediately. For synchronization of threads in
// applications that do not create windows, use native Go primitives.
//
// This function may be called from secondary threads.
func PostEmptyEvent() {
C.glfwPostEmptyEvent()
panicError()
}

View File

@ -1,20 +0,0 @@
---
engines:
golint:
enabled: true
checks:
GoLint/Naming/MixedCaps:
enabled: false
govet:
enabled: true
gofmt:
enabled: true
fixme:
enabled: true
ratings:
paths:
- "**.go"
exclude_paths:
- "**/*_test.go"
- "*_test.go"
- "fixtures/"

View File

@ -1,33 +0,0 @@
*.log
.DS_Store
doc
tmp
pkg
*.gem
*.pid
coverage
coverage.data
build/*
*.pbxuser
*.mode1v3
.svn
profile
.console_history
.sass-cache/*
.rake_tasks~
*.log.lck
solr/
.jhw-cache/
jhw.*
*.sublime*
node_modules/
dist/
generated/
.vendor/
bin/*
gin-bin
/packr_darwin_amd64
/packr_linux_amd64
.vscode/
debug.test
.grifter/

View File

@ -1,25 +0,0 @@
builds:
-
goos:
- darwin
- linux
- windows
env:
- CGO_ENABLED=0
main: ./packr/main.go
binary: packr
checksum:
name_template: 'checksums.txt'
snapshot:
name_template: "{{ .Tag }}-next"
changelog:
sort: asc
filters:
exclude:
- '^docs:'
- '^test:'
brew:
github:
owner: gobuffalo
name: homebrew-tap

View File

@ -1,16 +0,0 @@
language: go
sudo: false
go:
- 1.9
- "1.10"
- "1.11"
- tip
matrix:
allow_failures:
- go: 'tip'
script:
- make ci-test

View File

@ -1,8 +0,0 @@
The MIT License (MIT)
Copyright (c) 2016 Mark Bates
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

View File

@ -1,36 +0,0 @@
TAGS ?= "sqlite"
GO_BIN ?= go
install: deps
packr
$(GO_BIN) install -v .
deps:
$(GO_BIN) get github.com/gobuffalo/packr/packr
$(GO_BIN) get -tags ${TAGS} -t ./...
build: deps
packr
$(GO_BIN) build -v .
test:
packr
$(GO_BIN) test -tags ${TAGS} ./...
ci-test: deps
$(GO_BIN) test -tags ${TAGS} -race ./...
lint:
gometalinter --vendor ./... --deadline=1m --skip=internal
update:
$(GO_BIN) get -u
$(GO_BIN) mod tidy
packr
make test
release-test:
$(GO_BIN) test -tags ${TAGS} -race ./...
release:
release -y -f version.go

View File

@ -1,196 +0,0 @@
# packr
[![GoDoc](https://godoc.org/github.com/gobuffalo/packr?status.svg)](https://godoc.org/github.com/gobuffalo/packr)
Packr is a simple solution for bundling static assets inside of Go binaries. Most importantly it does it in a way that is friendly to developers while they are developing.
## Intro Video
To get an idea of the what and why of packr, please enjoy this short video: [https://vimeo.com/219863271](https://vimeo.com/219863271).
## Installation
```text
$ go get -u github.com/gobuffalo/packr/...
```
## Usage
### In Code
The first step in using Packr is to create a new box. A box represents a folder on disk. Once you have a box you can get `string` or `[]byte` representations of the file.
```go
// set up a new box by giving it a (relative) path to a folder on disk:
box := packr.NewBox("./templates")
// Get the string representation of a file:
html := box.String("index.html")
// Get the string representation of a file, or an error if it doesn't exist:
html, err := box.MustString("index.html")
// Get the []byte representation of a file:
html := box.Bytes("index.html")
// Get the []byte representation of a file, or an error if it doesn't exist:
html, err := box.MustBytes("index.html")
```
### What is a Box?
A box represents a folder, and any sub-folders, on disk that you want to have access to in your binary. When compiling a binary using the `packr` CLI the contents of the folder will be converted into Go files that can be compiled inside of a "standard" go binary. Inside of the compiled binary the files will be read from memory. When working locally the files will be read directly off of disk. This is a seamless switch that doesn't require any special attention on your part.
#### Example
Assume the follow directory structure:
```
├── main.go
└── templates
├── admin
│   └── index.html
└── index.html
```
The following program will read the `./templates/admin/index.html` file and print it out.
```go
package main
import (
"fmt"
"github.com/gobuffalo/packr"
)
func main() {
box := packr.NewBox("./templates")
s := box.String("admin/index.html")
fmt.Println(s)
}
```
### Development Made Easy
In order to get static files into a Go binary, those files must first be converted to Go code. To do that, Packr, ships with a few tools to help build binaries. See below.
During development, however, it is painful to have to keep running a tool to compile those files.
Packr uses the following resolution rules when looking for a file:
1. Look for the file in-memory (inside a Go binary)
1. Look for the file on disk (during development)
Because Packr knows how to fall through to the file system, developers don't need to worry about constantly compiling their static files into a binary. They can work unimpeded.
Packr takes file resolution a step further. When declaring a new box you use a relative path, `./templates`. When Packr recieves this call it calculates out the absolute path to that directory. By doing this it means you can be guaranteed that Packr can find your files correctly, even if you're not running in the directory that the box was created in. This helps with the problem of testing, where Go changes the `pwd` for each package, making relative paths difficult to work with. This is not a problem when using Packr.
---
## Usage with HTTP
A box implements the [`http.FileSystem`](https://golang.org/pkg/net/http/#FileSystemhttps://golang.org/pkg/net/http/#FileSystem) interface, meaning it can be used to serve static files.
```go
package main
import (
"net/http"
"github.com/gobuffalo/packr"
)
func main() {
box := packr.NewBox("./templates")
http.Handle("/", http.FileServer(box))
http.ListenAndServe(":3000", nil)
}
```
---
## Building a Binary (the easy way)
When it comes time to build, or install, your Go binary, simply use `packr build` or `packr install` just as you would `go build` or `go install`. All flags for the `go` tool are supported and everything works the way you expect, the only difference is your static assets are now bundled in the generated binary. If you want more control over how this happens, looking at the following section on building binaries (the hard way).
## Building a Binary (the hard way)
Before you build your Go binary, run the `packr` command first. It will look for all the boxes in your code and then generate `.go` files that pack the static files into bytes that can be bundled into the Go binary.
```
$ packr
```
Then run your `go build command` like normal.
*NOTE*: It is not recommended to check-in these generated `-packr.go` files. They can be large, and can easily become out of date if not careful. It is recommended that you always run `packr clean` after running the `packr` tool.
#### Cleaning Up
When you're done it is recommended that you run the `packr clean` command. This will remove all of the generated files that Packr created for you.
```
$ packr clean
```
Why do you want to do this? Packr first looks to the information stored in these generated files, if the information isn't there it looks to disk. This makes it easy to work with in development.
---
## Building/Moving a portable release
When it comes to building multiple releases you typically want that release to be built in a specific directory.
For example: `./releases`
However, because passing a `.go` file requires absolute paths, we must compile the release in the appropriate absolute path.
```bash
GOOS=linux GOARCH=amd64 packr build
```
Now your `project_name` binary will be built at the root of your project dir. Great!
All that is left to do is to move that binary to your release dir:
Linux/macOS/Windows (bash)
```bash
mv ./project_name ./releases
```
Windows (cmd):
```cmd
move ./project_name ./releases
```
Powershell:
```powershell
Move-Item -Path .\project_name -Destination .\releases\
```
If you _target_ for Windows when building don't forget that it's `project_name.exe`
Now you can make multiple releases and all of your needed static files will be available!
#### Summing it up:
Example Script for building to 3 common targets:
```bash
GOOS=darwin GOARCH=amd64 packr build && mv ./project_name ./releases/darwin-project_name \
&& GOOS=linux GOARCH=amd64 packr build && mv ./project_name ./releases/linux-project_name \
&& GOOS=windows GOARCH=386 packr build && mv ./project_name.exe ./releases/project_name.exe \
&& packr clean
```
---
## Debugging
The `packr` command passes all arguments down to the underlying `go` command, this includes the `-v` flag to print out `go build` information. Packr looks for the `-v` flag, and will turn on its own verbose logging. This is very useful for trying to understand what the `packr` command is doing when it is run.

View File

@ -1,204 +0,0 @@
package packr
import (
"bytes"
"compress/gzip"
"io/ioutil"
"net/http"
"os"
"path"
"path/filepath"
"runtime"
"strings"
"github.com/pkg/errors"
)
var (
// ErrResOutsideBox gets returned in case of the requested resources being outside the box
ErrResOutsideBox = errors.New("Can't find a resource outside the box")
)
// NewBox returns a Box that can be used to
// retrieve files from either disk or the embedded
// binary.
func NewBox(path string) Box {
var cd string
if !filepath.IsAbs(path) {
_, filename, _, _ := runtime.Caller(1)
cd = filepath.Dir(filename)
}
// this little hack courtesy of the `-cover` flag!!
cov := filepath.Join("_test", "_obj_test")
cd = strings.Replace(cd, string(filepath.Separator)+cov, "", 1)
if !filepath.IsAbs(cd) && cd != "" {
cd = filepath.Join(GoPath(), "src", cd)
}
return Box{
Path: path,
callingDir: cd,
data: map[string][]byte{},
}
}
// Box represent a folder on a disk you want to
// have access to in the built Go binary.
type Box struct {
Path string
callingDir string
data map[string][]byte
directories map[string]bool
}
// AddString converts t to a byteslice and delegates to AddBytes to add to b.data
func (b Box) AddString(path string, t string) {
b.AddBytes(path, []byte(t))
}
// AddBytes sets t in b.data by the given path
func (b Box) AddBytes(path string, t []byte) {
b.data[path] = t
}
// String of the file asked for or an empty string.
func (b Box) String(name string) string {
return string(b.Bytes(name))
}
// MustString returns either the string of the requested
// file or an error if it can not be found.
func (b Box) MustString(name string) (string, error) {
bb, err := b.MustBytes(name)
return string(bb), err
}
// Bytes of the file asked for or an empty byte slice.
func (b Box) Bytes(name string) []byte {
bb, _ := b.MustBytes(name)
return bb
}
// MustBytes returns either the byte slice of the requested
// file or an error if it can not be found.
func (b Box) MustBytes(name string) ([]byte, error) {
f, err := b.find(name)
if err == nil {
bb := &bytes.Buffer{}
bb.ReadFrom(f)
return bb.Bytes(), err
}
return nil, err
}
// Has returns true if the resource exists in the box
func (b Box) Has(name string) bool {
_, err := b.find(name)
if err != nil {
return false
}
return true
}
func (b Box) decompress(bb []byte) []byte {
reader, err := gzip.NewReader(bytes.NewReader(bb))
if err != nil {
return bb
}
data, err := ioutil.ReadAll(reader)
if err != nil {
return bb
}
return data
}
func (b Box) find(name string) (File, error) {
if bb, ok := b.data[name]; ok {
return newVirtualFile(name, bb), nil
}
if b.directories == nil {
b.indexDirectories()
}
cleanName := filepath.ToSlash(filepath.Clean(name))
// Ensure name is not outside the box
if strings.HasPrefix(cleanName, "../") {
return nil, ErrResOutsideBox
}
// Absolute name is considered as relative to the box root
cleanName = strings.TrimPrefix(cleanName, "/")
// Try to get the resource from the box
if _, ok := data[b.Path]; ok {
if bb, ok := data[b.Path][cleanName]; ok {
bb = b.decompress(bb)
return newVirtualFile(cleanName, bb), nil
}
if _, ok := b.directories[cleanName]; ok {
return newVirtualDir(cleanName), nil
}
if filepath.Ext(cleanName) != "" {
// The Handler created by http.FileSystem checks for those errors and
// returns http.StatusNotFound instead of http.StatusInternalServerError.
return nil, os.ErrNotExist
}
return nil, os.ErrNotExist
}
// Not found in the box virtual fs, try to get it from the file system
cleanName = filepath.FromSlash(cleanName)
p := filepath.Join(b.callingDir, b.Path, cleanName)
return fileFor(p, cleanName)
}
// Open returns a File using the http.File interface
func (b Box) Open(name string) (http.File, error) {
return b.find(name)
}
// List shows "What's in the box?"
func (b Box) List() []string {
var keys []string
if b.data == nil || len(b.data) == 0 {
b.Walk(func(path string, info File) error {
finfo, _ := info.FileInfo()
if !finfo.IsDir() {
keys = append(keys, finfo.Name())
}
return nil
})
} else {
for k := range b.data {
keys = append(keys, k)
}
}
return keys
}
func (b *Box) indexDirectories() {
b.directories = map[string]bool{}
if _, ok := data[b.Path]; ok {
for name := range data[b.Path] {
prefix, _ := path.Split(name)
// Even on Windows the suffix appears to be a /
prefix = strings.TrimSuffix(prefix, "/")
b.directories[prefix] = true
}
}
}
func fileFor(p string, name string) (File, error) {
fi, err := os.Stat(p)
if err != nil {
return nil, err
}
if fi.IsDir() {
return newVirtualDir(p), nil
}
if bb, err := ioutil.ReadFile(p); err == nil {
return newVirtualFile(name, bb), nil
}
return nil, os.ErrNotExist
}

View File

@ -1,39 +0,0 @@
package packr
import (
"os"
"os/exec"
"path/filepath"
"strings"
"sync"
)
var goPath = filepath.Join(os.Getenv("HOME"), "go")
func init() {
var once sync.Once
once.Do(func() {
cmd := exec.Command("go", "env", "GOPATH")
b, err := cmd.CombinedOutput()
if err != nil {
return
}
goPath = strings.TrimSpace(string(b))
})
}
// GoPath returns the current GOPATH env var
// or if it's missing, the default.
func GoPath() string {
return goPath
}
// GoBin returns the current GO_BIN env var
// or if it's missing, a default of "go"
func GoBin() string {
go_bin := os.Getenv("GO_BIN")
if go_bin == "" {
return "go"
}
return go_bin
}

View File

@ -1,15 +0,0 @@
package packr
import (
"io"
"os"
)
type File interface {
io.ReadCloser
io.Writer
FileInfo() (os.FileInfo, error)
Readdir(count int) ([]os.FileInfo, error)
Seek(offset int64, whence int) (int64, error)
Stat() (os.FileInfo, error)
}

View File

@ -1,38 +0,0 @@
package packr
import (
"os"
"time"
)
type fileInfo struct {
Path string
Contents []byte
size int64
modTime time.Time
isDir bool
}
func (f fileInfo) Name() string {
return f.Path
}
func (f fileInfo) Size() int64 {
return f.size
}
func (f fileInfo) Mode() os.FileMode {
return 0444
}
func (f fileInfo) ModTime() time.Time {
return f.modTime
}
func (f fileInfo) IsDir() bool {
return f.isDir
}
func (f fileInfo) Sys() interface{} {
return nil
}

View File

@ -1,13 +0,0 @@
module github.com/gobuffalo/packr
require (
github.com/davecgh/go-spew v1.1.1 // indirect
github.com/inconshreveable/mousetrap v1.0.0 // indirect
github.com/pkg/errors v0.8.0
github.com/pmezard/go-difflib v1.0.0 // indirect
github.com/spf13/cobra v0.0.3
github.com/spf13/pflag v1.0.2 // indirect
github.com/stretchr/testify v1.2.2
golang.org/x/net v0.0.0-20180921000356-2f5d2388922f // indirect
golang.org/x/sync v0.0.0-20180314180146-1d60e4601c6f
)

View File

@ -1,18 +0,0 @@
github.com/davecgh/go-spew v1.1.1 h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c=
github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
github.com/inconshreveable/mousetrap v1.0.0 h1:Z8tu5sraLXCXIcARxBp/8cbvlwVa7Z1NHg9XEKhtSvM=
github.com/inconshreveable/mousetrap v1.0.0/go.mod h1:PxqpIevigyE2G7u3NXJIT2ANytuPF1OarO4DADm73n8=
github.com/pkg/errors v0.8.0 h1:WdK/asTD0HN+q6hsWO3/vpuAkAr+tw6aNJNDFFf0+qw=
github.com/pkg/errors v0.8.0/go.mod h1:bwawxfHBFNV+L2hUp1rHADufV3IMtnDRdf1r5NINEl0=
github.com/pmezard/go-difflib v1.0.0 h1:4DBwDE0NGyQoBHbLQYPwSUPoCMWR5BEzIk/f1lZbAQM=
github.com/pmezard/go-difflib v1.0.0/go.mod h1:iKH77koFhYxTK1pcRnkKkqfTogsbg7gZNVY4sRDYZ/4=
github.com/spf13/cobra v0.0.3 h1:ZlrZ4XsMRm04Fr5pSFxBgfND2EBVa1nLpiy1stUsX/8=
github.com/spf13/cobra v0.0.3/go.mod h1:1l0Ry5zgKvJasoi3XT1TypsSe7PqH0Sj9dhYf7v3XqQ=
github.com/spf13/pflag v1.0.2 h1:Fy0orTDgHdbnzHcsOgfCN4LtHf0ec3wwtiwJqwvf3Gc=
github.com/spf13/pflag v1.0.2/go.mod h1:DYY7MBk1bdzusC3SYhjObp+wFpr4gzcvqqNjLnInEg4=
github.com/stretchr/testify v1.2.2 h1:bSDNvY7ZPG5RlJ8otE/7V6gMiyenm9RtJ7IUVIAoJ1w=
github.com/stretchr/testify v1.2.2/go.mod h1:a8OnRcib4nhh0OaRAV+Yts87kKdq0PP7pXfy6kDkUVs=
golang.org/x/net v0.0.0-20180921000356-2f5d2388922f h1:QM2QVxvDoW9PFSPp/zy9FgxJLfaWTZlS61KEPtBwacM=
golang.org/x/net v0.0.0-20180921000356-2f5d2388922f/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
golang.org/x/sync v0.0.0-20180314180146-1d60e4601c6f h1:wMNYb4v58l5UBM7MYRLPG6ZhfOqbKu7X5eyFl8ZhKvA=
golang.org/x/sync v0.0.0-20180314180146-1d60e4601c6f/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=

View File

@ -1,74 +0,0 @@
package packr
import (
"bytes"
"compress/gzip"
"encoding/json"
"runtime"
"strings"
"sync"
)
var gil = &sync.Mutex{}
var data = map[string]map[string][]byte{}
// PackBytes packs bytes for a file into a box.
func PackBytes(box string, name string, bb []byte) {
gil.Lock()
defer gil.Unlock()
if _, ok := data[box]; !ok {
data[box] = map[string][]byte{}
}
data[box][name] = bb
}
// PackBytesGzip packets the gzipped compressed bytes into a box.
func PackBytesGzip(box string, name string, bb []byte) error {
var buf bytes.Buffer
w := gzip.NewWriter(&buf)
_, err := w.Write(bb)
if err != nil {
return err
}
err = w.Close()
if err != nil {
return err
}
PackBytes(box, name, buf.Bytes())
return nil
}
// PackJSONBytes packs JSON encoded bytes for a file into a box.
func PackJSONBytes(box string, name string, jbb string) error {
var bb []byte
err := json.Unmarshal([]byte(jbb), &bb)
if err != nil {
return err
}
PackBytes(box, name, bb)
return nil
}
// UnpackBytes unpacks bytes for specific box.
func UnpackBytes(box string) {
gil.Lock()
defer gil.Unlock()
delete(data, box)
}
func osPaths(paths ...string) []string {
if runtime.GOOS == "windows" {
for i, path := range paths {
paths[i] = strings.Replace(path, "/", "\\", -1)
}
}
return paths
}
func osPath(path string) string {
if runtime.GOOS == "windows" {
return strings.Replace(path, "/", "\\", -1)
}
return path
}

View File

@ -1,13 +0,0 @@
package packr
import "os"
var _ File = physicalFile{}
type physicalFile struct {
*os.File
}
func (p physicalFile) FileInfo() (os.FileInfo, error) {
return os.Stat(p.Name())
}

View File

@ -1,24 +0,0 @@
# github.com/gobuffalo/packr Stands on the Shoulders of Giants
github.com/gobuffalo/packr does not try to reinvent the wheel! Instead, it uses the already great wheels developed by the Go community and puts them all together in the best way possible. Without these giants this project would not be possible. Please make sure to check them out and thank them for all of their hard work.
Thank you to the following **GIANTS**:
* [github.com/pkg/errors](https://godoc.org/github.com/pkg/errors)
* [github.com/spf13/cobra](https://godoc.org/github.com/spf13/cobra)
* [github.com/spf13/pflag](https://godoc.org/github.com/spf13/pflag)
* [github.com/stretchr/testify/assert](https://godoc.org/github.com/stretchr/testify/assert)
* [github.com/stretchr/testify/require](https://godoc.org/github.com/stretchr/testify/require)
* [github.com/stretchr/testify/vendor/github.com/davecgh/go-spew/spew](https://godoc.org/github.com/stretchr/testify/vendor/github.com/davecgh/go-spew/spew)
* [github.com/stretchr/testify/vendor/github.com/pmezard/go-difflib/difflib](https://godoc.org/github.com/stretchr/testify/vendor/github.com/pmezard/go-difflib/difflib)
* [golang.org/x/net/context](https://godoc.org/golang.org/x/net/context)
* [golang.org/x/sync/errgroup](https://godoc.org/golang.org/x/sync/errgroup)

View File

@ -1,3 +0,0 @@
package packr
const Version = "v1.13.7"

View File

@ -1,57 +0,0 @@
package packr
import (
"bytes"
"fmt"
"os"
"time"
)
var virtualFileModTime = time.Now()
var _ File = virtualFile{}
type virtualFile struct {
*bytes.Reader
Name string
info fileInfo
}
func (f virtualFile) FileInfo() (os.FileInfo, error) {
return f.info, nil
}
func (f virtualFile) Close() error {
return nil
}
func (f virtualFile) Write(p []byte) (n int, err error) {
return 0, fmt.Errorf("not implemented")
}
func (f virtualFile) Readdir(count int) ([]os.FileInfo, error) {
return []os.FileInfo{f.info}, nil
}
func (f virtualFile) Stat() (os.FileInfo, error) {
return f.info, nil
}
func newVirtualFile(name string, b []byte) File {
return virtualFile{
Reader: bytes.NewReader(b),
Name: name,
info: fileInfo{
Path: name,
Contents: b,
size: int64(len(b)),
modTime: virtualFileModTime,
},
}
}
func newVirtualDir(name string) File {
var b []byte
v := newVirtualFile(name, b).(virtualFile)
v.info.isDir = true
return v
}

View File

@ -1,63 +0,0 @@
package packr
import (
"os"
"path/filepath"
"strings"
"github.com/pkg/errors"
)
type WalkFunc func(string, File) error
// Walk will traverse the box and call the WalkFunc for each file in the box/folder.
func (b Box) Walk(wf WalkFunc) error {
if data[b.Path] == nil {
base, err := filepath.EvalSymlinks(filepath.Join(b.callingDir, b.Path))
if err != nil {
return errors.WithStack(err)
}
return filepath.Walk(base, func(path string, info os.FileInfo, err error) error {
cleanName, err := filepath.Rel(base, path)
if err != nil {
cleanName = strings.TrimPrefix(path, base)
}
cleanName = filepath.ToSlash(filepath.Clean(cleanName))
cleanName = strings.TrimPrefix(cleanName, "/")
cleanName = filepath.FromSlash(cleanName)
if info == nil || info.IsDir() {
return nil
}
file, err := fileFor(path, cleanName)
if err != nil {
return err
}
return wf(cleanName, file)
})
}
for n := range data[b.Path] {
f, err := b.find(n)
if err != nil {
return err
}
err = wf(n, f)
if err != nil {
return err
}
}
return nil
}
// WalkPrefix will call box.Walk and call the WalkFunc when it finds paths that have a matching prefix
func (b Box) WalkPrefix(prefix string, wf WalkFunc) error {
opre := osPath(prefix)
return b.Walk(func(path string, f File) error {
if strings.HasPrefix(osPath(path), opre) {
if err := wf(path, f); err != nil {
return errors.WithStack(err)
}
}
return nil
})
}

View File

@ -1,20 +0,0 @@
# This is the official list of Freetype-Go authors for copyright purposes.
# This file is distinct from the CONTRIBUTORS files.
# See the latter for an explanation.
#
# Freetype-Go is derived from Freetype, which is written in C. The latter
# is copyright 1996-2010 David Turner, Robert Wilhelm, and Werner Lemberg.
# Names should be added to this file as
# Name or Organization <email address>
# The email address is not required for organizations.
# Please keep the list sorted.
Google Inc.
Jeff R. Allen <jra@nella.org>
Maksim Kochkin <maxxarts@gmail.com>
Michael Fogleman <fogleman@gmail.com>
Rémy Oudompheng <oudomphe@phare.normalesup.org>
Roger Peppe <rogpeppe@gmail.com>
Steven Edwards <steven@stephenwithav.com>

View File

@ -1,38 +0,0 @@
# This is the official list of people who can contribute
# (and typically have contributed) code to the Freetype-Go repository.
# The AUTHORS file lists the copyright holders; this file
# lists people. For example, Google employees are listed here
# but not in AUTHORS, because Google holds the copyright.
#
# The submission process automatically checks to make sure
# that people submitting code are listed in this file (by email address).
#
# Names should be added to this file only after verifying that
# the individual or the individual's organization has agreed to
# the appropriate Contributor License Agreement, found here:
#
# http://code.google.com/legal/individual-cla-v1.0.html
# http://code.google.com/legal/corporate-cla-v1.0.html
#
# The agreement for individuals can be filled out on the web.
#
# When adding J Random Contributor's name to this file,
# either J's name or J's organization's name should be
# added to the AUTHORS file, depending on whether the
# individual or corporate CLA was used.
# Names should be added to this file like so:
# Name <email address>
# Please keep the list sorted.
Andrew Gerrand <adg@golang.org>
Jeff R. Allen <jra@nella.org> <jeff.allen@gmail.com>
Maksim Kochkin <maxxarts@gmail.com>
Michael Fogleman <fogleman@gmail.com>
Nigel Tao <nigeltao@golang.org>
Rémy Oudompheng <oudomphe@phare.normalesup.org> <remyoudompheng@gmail.com>
Rob Pike <r@golang.org>
Roger Peppe <rogpeppe@gmail.com>
Russ Cox <rsc@golang.org>
Steven Edwards <steven@stephenwithav.com>

View File

@ -1,12 +0,0 @@
Use of the Freetype-Go software is subject to your choice of exactly one of
the following two licenses:
* The FreeType License, which is similar to the original BSD license with
an advertising clause, or
* The GNU General Public License (GPL), version 2 or later.
The text of these licenses are available in the licenses/ftl.txt and the
licenses/gpl.txt files respectively. They are also available at
http://freetype.sourceforge.net/license.html
The Luxi fonts in the testdata directory are licensed separately. See the
testdata/COPYING file for details.

View File

@ -1,21 +0,0 @@
The Freetype font rasterizer in the Go programming language.
To download and install from source:
$ go get github.com/golang/freetype
It is an incomplete port:
* It only supports TrueType fonts, and not Type 1 fonts nor bitmap fonts.
* It only supports the Unicode encoding.
There are also some implementation differences:
* It uses a 26.6 fixed point co-ordinate system everywhere internally,
as opposed to the original Freetype's mix of 26.6 (or 10.6 for 16-bit
systems) in some places, and 24.8 in the "smooth" rasterizer.
Freetype-Go is derived from Freetype, which is written in C. Freetype is
copyright 1996-2010 David Turner, Robert Wilhelm, and Werner Lemberg.
Freetype-Go is copyright The Freetype-Go Authors, who are listed in the
AUTHORS file.
Unless otherwise noted, the Freetype-Go source files are distributed
under the BSD-style license found in the LICENSE file.

View File

@ -1,341 +0,0 @@
// Copyright 2010 The Freetype-Go Authors. All rights reserved.
// Use of this source code is governed by your choice of either the
// FreeType License or the GNU General Public License version 2 (or
// any later version), both of which can be found in the LICENSE file.
// The freetype package provides a convenient API to draw text onto an image.
// Use the freetype/raster and freetype/truetype packages for lower level
// control over rasterization and TrueType parsing.
package freetype // import "github.com/golang/freetype"
import (
"errors"
"image"
"image/draw"
"github.com/golang/freetype/raster"
"github.com/golang/freetype/truetype"
"golang.org/x/image/font"
"golang.org/x/image/math/fixed"
)
// These constants determine the size of the glyph cache. The cache is keyed
// primarily by the glyph index modulo nGlyphs, and secondarily by sub-pixel
// position for the mask image. Sub-pixel positions are quantized to
// nXFractions possible values in both the x and y directions.
const (
nGlyphs = 256
nXFractions = 4
nYFractions = 1
)
// An entry in the glyph cache is keyed explicitly by the glyph index and
// implicitly by the quantized x and y fractional offset. It maps to a mask
// image and an offset.
type cacheEntry struct {
valid bool
glyph truetype.Index
advanceWidth fixed.Int26_6
mask *image.Alpha
offset image.Point
}
// ParseFont just calls the Parse function from the freetype/truetype package.
// It is provided here so that code that imports this package doesn't need
// to also include the freetype/truetype package.
func ParseFont(b []byte) (*truetype.Font, error) {
return truetype.Parse(b)
}
// Pt converts from a co-ordinate pair measured in pixels to a fixed.Point26_6
// co-ordinate pair measured in fixed.Int26_6 units.
func Pt(x, y int) fixed.Point26_6 {
return fixed.Point26_6{
X: fixed.Int26_6(x << 6),
Y: fixed.Int26_6(y << 6),
}
}
// A Context holds the state for drawing text in a given font and size.
type Context struct {
r *raster.Rasterizer
f *truetype.Font
glyphBuf truetype.GlyphBuf
// clip is the clip rectangle for drawing.
clip image.Rectangle
// dst and src are the destination and source images for drawing.
dst draw.Image
src image.Image
// fontSize and dpi are used to calculate scale. scale is the number of
// 26.6 fixed point units in 1 em. hinting is the hinting policy.
fontSize, dpi float64
scale fixed.Int26_6
hinting font.Hinting
// cache is the glyph cache.
cache [nGlyphs * nXFractions * nYFractions]cacheEntry
}
// PointToFixed converts the given number of points (as in "a 12 point font")
// into a 26.6 fixed point number of pixels.
func (c *Context) PointToFixed(x float64) fixed.Int26_6 {
return fixed.Int26_6(x * float64(c.dpi) * (64.0 / 72.0))
}
// drawContour draws the given closed contour with the given offset.
func (c *Context) drawContour(ps []truetype.Point, dx, dy fixed.Int26_6) {
if len(ps) == 0 {
return
}
// The low bit of each point's Flags value is whether the point is on the
// curve. Truetype fonts only have quadratic Bézier curves, not cubics.
// Thus, two consecutive off-curve points imply an on-curve point in the
// middle of those two.
//
// See http://chanae.walon.org/pub/ttf/ttf_glyphs.htm for more details.
// ps[0] is a truetype.Point measured in FUnits and positive Y going
// upwards. start is the same thing measured in fixed point units and
// positive Y going downwards, and offset by (dx, dy).
start := fixed.Point26_6{
X: dx + ps[0].X,
Y: dy - ps[0].Y,
}
others := []truetype.Point(nil)
if ps[0].Flags&0x01 != 0 {
others = ps[1:]
} else {
last := fixed.Point26_6{
X: dx + ps[len(ps)-1].X,
Y: dy - ps[len(ps)-1].Y,
}
if ps[len(ps)-1].Flags&0x01 != 0 {
start = last
others = ps[:len(ps)-1]
} else {
start = fixed.Point26_6{
X: (start.X + last.X) / 2,
Y: (start.Y + last.Y) / 2,
}
others = ps
}
}
c.r.Start(start)
q0, on0 := start, true
for _, p := range others {
q := fixed.Point26_6{
X: dx + p.X,
Y: dy - p.Y,
}
on := p.Flags&0x01 != 0
if on {
if on0 {
c.r.Add1(q)
} else {
c.r.Add2(q0, q)
}
} else {
if on0 {
// No-op.
} else {
mid := fixed.Point26_6{
X: (q0.X + q.X) / 2,
Y: (q0.Y + q.Y) / 2,
}
c.r.Add2(q0, mid)
}
}
q0, on0 = q, on
}
// Close the curve.
if on0 {
c.r.Add1(start)
} else {
c.r.Add2(q0, start)
}
}
// rasterize returns the advance width, glyph mask and integer-pixel offset
// to render the given glyph at the given sub-pixel offsets.
// The 26.6 fixed point arguments fx and fy must be in the range [0, 1).
func (c *Context) rasterize(glyph truetype.Index, fx, fy fixed.Int26_6) (
fixed.Int26_6, *image.Alpha, image.Point, error) {
if err := c.glyphBuf.Load(c.f, c.scale, glyph, c.hinting); err != nil {
return 0, nil, image.Point{}, err
}
// Calculate the integer-pixel bounds for the glyph.
xmin := int(fx+c.glyphBuf.Bounds.Min.X) >> 6
ymin := int(fy-c.glyphBuf.Bounds.Max.Y) >> 6
xmax := int(fx+c.glyphBuf.Bounds.Max.X+0x3f) >> 6
ymax := int(fy-c.glyphBuf.Bounds.Min.Y+0x3f) >> 6
if xmin > xmax || ymin > ymax {
return 0, nil, image.Point{}, errors.New("freetype: negative sized glyph")
}
// A TrueType's glyph's nodes can have negative co-ordinates, but the
// rasterizer clips anything left of x=0 or above y=0. xmin and ymin are
// the pixel offsets, based on the font's FUnit metrics, that let a
// negative co-ordinate in TrueType space be non-negative in rasterizer
// space. xmin and ymin are typically <= 0.
fx -= fixed.Int26_6(xmin << 6)
fy -= fixed.Int26_6(ymin << 6)
// Rasterize the glyph's vectors.
c.r.Clear()
e0 := 0
for _, e1 := range c.glyphBuf.Ends {
c.drawContour(c.glyphBuf.Points[e0:e1], fx, fy)
e0 = e1
}
a := image.NewAlpha(image.Rect(0, 0, xmax-xmin, ymax-ymin))
c.r.Rasterize(raster.NewAlphaSrcPainter(a))
return c.glyphBuf.AdvanceWidth, a, image.Point{xmin, ymin}, nil
}
// glyph returns the advance width, glyph mask and integer-pixel offset to
// render the given glyph at the given sub-pixel point. It is a cache for the
// rasterize method. Unlike rasterize, p's co-ordinates do not have to be in
// the range [0, 1).
func (c *Context) glyph(glyph truetype.Index, p fixed.Point26_6) (
fixed.Int26_6, *image.Alpha, image.Point, error) {
// Split p.X and p.Y into their integer and fractional parts.
ix, fx := int(p.X>>6), p.X&0x3f
iy, fy := int(p.Y>>6), p.Y&0x3f
// Calculate the index t into the cache array.
tg := int(glyph) % nGlyphs
tx := int(fx) / (64 / nXFractions)
ty := int(fy) / (64 / nYFractions)
t := ((tg*nXFractions)+tx)*nYFractions + ty
// Check for a cache hit.
if e := c.cache[t]; e.valid && e.glyph == glyph {
return e.advanceWidth, e.mask, e.offset.Add(image.Point{ix, iy}), nil
}
// Rasterize the glyph and put the result into the cache.
advanceWidth, mask, offset, err := c.rasterize(glyph, fx, fy)
if err != nil {
return 0, nil, image.Point{}, err
}
c.cache[t] = cacheEntry{true, glyph, advanceWidth, mask, offset}
return advanceWidth, mask, offset.Add(image.Point{ix, iy}), nil
}
// DrawString draws s at p and returns p advanced by the text extent. The text
// is placed so that the left edge of the em square of the first character of s
// and the baseline intersect at p. The majority of the affected pixels will be
// above and to the right of the point, but some may be below or to the left.
// For example, drawing a string that starts with a 'J' in an italic font may
// affect pixels below and left of the point.
//
// p is a fixed.Point26_6 and can therefore represent sub-pixel positions.
func (c *Context) DrawString(s string, p fixed.Point26_6) (fixed.Point26_6, error) {
if c.f == nil {
return fixed.Point26_6{}, errors.New("freetype: DrawText called with a nil font")
}
prev, hasPrev := truetype.Index(0), false
for _, rune := range s {
index := c.f.Index(rune)
if hasPrev {
kern := c.f.Kern(c.scale, prev, index)
if c.hinting != font.HintingNone {
kern = (kern + 32) &^ 63
}
p.X += kern
}
advanceWidth, mask, offset, err := c.glyph(index, p)
if err != nil {
return fixed.Point26_6{}, err
}
p.X += advanceWidth
glyphRect := mask.Bounds().Add(offset)
dr := c.clip.Intersect(glyphRect)
if !dr.Empty() {
mp := image.Point{0, dr.Min.Y - glyphRect.Min.Y}
draw.DrawMask(c.dst, dr, c.src, image.ZP, mask, mp, draw.Over)
}
prev, hasPrev = index, true
}
return p, nil
}
// recalc recalculates scale and bounds values from the font size, screen
// resolution and font metrics, and invalidates the glyph cache.
func (c *Context) recalc() {
c.scale = fixed.Int26_6(c.fontSize * c.dpi * (64.0 / 72.0))
if c.f == nil {
c.r.SetBounds(0, 0)
} else {
// Set the rasterizer's bounds to be big enough to handle the largest glyph.
b := c.f.Bounds(c.scale)
xmin := +int(b.Min.X) >> 6
ymin := -int(b.Max.Y) >> 6
xmax := +int(b.Max.X+63) >> 6
ymax := -int(b.Min.Y-63) >> 6
c.r.SetBounds(xmax-xmin, ymax-ymin)
}
for i := range c.cache {
c.cache[i] = cacheEntry{}
}
}
// SetDPI sets the screen resolution in dots per inch.
func (c *Context) SetDPI(dpi float64) {
if c.dpi == dpi {
return
}
c.dpi = dpi
c.recalc()
}
// SetFont sets the font used to draw text.
func (c *Context) SetFont(f *truetype.Font) {
if c.f == f {
return
}
c.f = f
c.recalc()
}
// SetFontSize sets the font size in points (as in "a 12 point font").
func (c *Context) SetFontSize(fontSize float64) {
if c.fontSize == fontSize {
return
}
c.fontSize = fontSize
c.recalc()
}
// SetHinting sets the hinting policy.
func (c *Context) SetHinting(hinting font.Hinting) {
c.hinting = hinting
for i := range c.cache {
c.cache[i] = cacheEntry{}
}
}
// SetDst sets the destination image for draw operations.
func (c *Context) SetDst(dst draw.Image) {
c.dst = dst
}
// SetSrc sets the source image for draw operations. This is typically an
// image.Uniform.
func (c *Context) SetSrc(src image.Image) {
c.src = src
}
// SetClip sets the clip rectangle for drawing.
func (c *Context) SetClip(clip image.Rectangle) {
c.clip = clip
}
// TODO(nigeltao): implement Context.SetGamma.
// NewContext creates a new Context.
func NewContext() *Context {
return &Context{
r: raster.NewRasterizer(0, 0),
fontSize: 12,
dpi: 72,
scale: 12 << 6,
}
}

View File

@ -1,245 +0,0 @@
// Copyright 2010 The Freetype-Go Authors. All rights reserved.
// Use of this source code is governed by your choice of either the
// FreeType License or the GNU General Public License version 2 (or
// any later version), both of which can be found in the LICENSE file.
package raster
import (
"fmt"
"math"
"golang.org/x/image/math/fixed"
)
// maxAbs returns the maximum of abs(a) and abs(b).
func maxAbs(a, b fixed.Int26_6) fixed.Int26_6 {
if a < 0 {
a = -a
}
if b < 0 {
b = -b
}
if a < b {
return b
}
return a
}
// pNeg returns the vector -p, or equivalently p rotated by 180 degrees.
func pNeg(p fixed.Point26_6) fixed.Point26_6 {
return fixed.Point26_6{-p.X, -p.Y}
}
// pDot returns the dot product p·q.
func pDot(p fixed.Point26_6, q fixed.Point26_6) fixed.Int52_12 {
px, py := int64(p.X), int64(p.Y)
qx, qy := int64(q.X), int64(q.Y)
return fixed.Int52_12(px*qx + py*qy)
}
// pLen returns the length of the vector p.
func pLen(p fixed.Point26_6) fixed.Int26_6 {
// TODO(nigeltao): use fixed point math.
x := float64(p.X)
y := float64(p.Y)
return fixed.Int26_6(math.Sqrt(x*x + y*y))
}
// pNorm returns the vector p normalized to the given length, or zero if p is
// degenerate.
func pNorm(p fixed.Point26_6, length fixed.Int26_6) fixed.Point26_6 {
d := pLen(p)
if d == 0 {
return fixed.Point26_6{}
}
s, t := int64(length), int64(d)
x := int64(p.X) * s / t
y := int64(p.Y) * s / t
return fixed.Point26_6{fixed.Int26_6(x), fixed.Int26_6(y)}
}
// pRot45CW returns the vector p rotated clockwise by 45 degrees.
//
// Note that the Y-axis grows downwards, so {1, 0}.Rot45CW is {1/√2, 1/√2}.
func pRot45CW(p fixed.Point26_6) fixed.Point26_6 {
// 181/256 is approximately 1/√2, or sin(π/4).
px, py := int64(p.X), int64(p.Y)
qx := (+px - py) * 181 / 256
qy := (+px + py) * 181 / 256
return fixed.Point26_6{fixed.Int26_6(qx), fixed.Int26_6(qy)}
}
// pRot90CW returns the vector p rotated clockwise by 90 degrees.
//
// Note that the Y-axis grows downwards, so {1, 0}.Rot90CW is {0, 1}.
func pRot90CW(p fixed.Point26_6) fixed.Point26_6 {
return fixed.Point26_6{-p.Y, p.X}
}
// pRot135CW returns the vector p rotated clockwise by 135 degrees.
//
// Note that the Y-axis grows downwards, so {1, 0}.Rot135CW is {-1/√2, 1/√2}.
func pRot135CW(p fixed.Point26_6) fixed.Point26_6 {
// 181/256 is approximately 1/√2, or sin(π/4).
px, py := int64(p.X), int64(p.Y)
qx := (-px - py) * 181 / 256
qy := (+px - py) * 181 / 256
return fixed.Point26_6{fixed.Int26_6(qx), fixed.Int26_6(qy)}
}
// pRot45CCW returns the vector p rotated counter-clockwise by 45 degrees.
//
// Note that the Y-axis grows downwards, so {1, 0}.Rot45CCW is {1/√2, -1/√2}.
func pRot45CCW(p fixed.Point26_6) fixed.Point26_6 {
// 181/256 is approximately 1/√2, or sin(π/4).
px, py := int64(p.X), int64(p.Y)
qx := (+px + py) * 181 / 256
qy := (-px + py) * 181 / 256
return fixed.Point26_6{fixed.Int26_6(qx), fixed.Int26_6(qy)}
}
// pRot90CCW returns the vector p rotated counter-clockwise by 90 degrees.
//
// Note that the Y-axis grows downwards, so {1, 0}.Rot90CCW is {0, -1}.
func pRot90CCW(p fixed.Point26_6) fixed.Point26_6 {
return fixed.Point26_6{p.Y, -p.X}
}
// pRot135CCW returns the vector p rotated counter-clockwise by 135 degrees.
//
// Note that the Y-axis grows downwards, so {1, 0}.Rot135CCW is {-1/√2, -1/√2}.
func pRot135CCW(p fixed.Point26_6) fixed.Point26_6 {
// 181/256 is approximately 1/√2, or sin(π/4).
px, py := int64(p.X), int64(p.Y)
qx := (-px + py) * 181 / 256
qy := (-px - py) * 181 / 256
return fixed.Point26_6{fixed.Int26_6(qx), fixed.Int26_6(qy)}
}
// An Adder accumulates points on a curve.
type Adder interface {
// Start starts a new curve at the given point.
Start(a fixed.Point26_6)
// Add1 adds a linear segment to the current curve.
Add1(b fixed.Point26_6)
// Add2 adds a quadratic segment to the current curve.
Add2(b, c fixed.Point26_6)
// Add3 adds a cubic segment to the current curve.
Add3(b, c, d fixed.Point26_6)
}
// A Path is a sequence of curves, and a curve is a start point followed by a
// sequence of linear, quadratic or cubic segments.
type Path []fixed.Int26_6
// String returns a human-readable representation of a Path.
func (p Path) String() string {
s := ""
for i := 0; i < len(p); {
if i != 0 {
s += " "
}
switch p[i] {
case 0:
s += "S0" + fmt.Sprint([]fixed.Int26_6(p[i+1:i+3]))
i += 4
case 1:
s += "A1" + fmt.Sprint([]fixed.Int26_6(p[i+1:i+3]))
i += 4
case 2:
s += "A2" + fmt.Sprint([]fixed.Int26_6(p[i+1:i+5]))
i += 6
case 3:
s += "A3" + fmt.Sprint([]fixed.Int26_6(p[i+1:i+7]))
i += 8
default:
panic("freetype/raster: bad path")
}
}
return s
}
// Clear cancels any previous calls to p.Start or p.AddXxx.
func (p *Path) Clear() {
*p = (*p)[:0]
}
// Start starts a new curve at the given point.
func (p *Path) Start(a fixed.Point26_6) {
*p = append(*p, 0, a.X, a.Y, 0)
}
// Add1 adds a linear segment to the current curve.
func (p *Path) Add1(b fixed.Point26_6) {
*p = append(*p, 1, b.X, b.Y, 1)
}
// Add2 adds a quadratic segment to the current curve.
func (p *Path) Add2(b, c fixed.Point26_6) {
*p = append(*p, 2, b.X, b.Y, c.X, c.Y, 2)
}
// Add3 adds a cubic segment to the current curve.
func (p *Path) Add3(b, c, d fixed.Point26_6) {
*p = append(*p, 3, b.X, b.Y, c.X, c.Y, d.X, d.Y, 3)
}
// AddPath adds the Path q to p.
func (p *Path) AddPath(q Path) {
*p = append(*p, q...)
}
// AddStroke adds a stroked Path.
func (p *Path) AddStroke(q Path, width fixed.Int26_6, cr Capper, jr Joiner) {
Stroke(p, q, width, cr, jr)
}
// firstPoint returns the first point in a non-empty Path.
func (p Path) firstPoint() fixed.Point26_6 {
return fixed.Point26_6{p[1], p[2]}
}
// lastPoint returns the last point in a non-empty Path.
func (p Path) lastPoint() fixed.Point26_6 {
return fixed.Point26_6{p[len(p)-3], p[len(p)-2]}
}
// addPathReversed adds q reversed to p.
// For example, if q consists of a linear segment from A to B followed by a
// quadratic segment from B to C to D, then the values of q looks like:
// index: 01234567890123
// value: 0AA01BB12CCDD2
// So, when adding q backwards to p, we want to Add2(C, B) followed by Add1(A).
func addPathReversed(p Adder, q Path) {
if len(q) == 0 {
return
}
i := len(q) - 1
for {
switch q[i] {
case 0:
return
case 1:
i -= 4
p.Add1(
fixed.Point26_6{q[i-2], q[i-1]},
)
case 2:
i -= 6
p.Add2(
fixed.Point26_6{q[i+2], q[i+3]},
fixed.Point26_6{q[i-2], q[i-1]},
)
case 3:
i -= 8
p.Add3(
fixed.Point26_6{q[i+4], q[i+5]},
fixed.Point26_6{q[i+2], q[i+3]},
fixed.Point26_6{q[i-2], q[i-1]},
)
default:
panic("freetype/raster: bad path")
}
}
}

View File

@ -1,287 +0,0 @@
// Copyright 2010 The Freetype-Go Authors. All rights reserved.
// Use of this source code is governed by your choice of either the
// FreeType License or the GNU General Public License version 2 (or
// any later version), both of which can be found in the LICENSE file.
package raster
import (
"image"
"image/color"
"image/draw"
"math"
)
// A Span is a horizontal segment of pixels with constant alpha. X0 is an
// inclusive bound and X1 is exclusive, the same as for slices. A fully opaque
// Span has Alpha == 0xffff.
type Span struct {
Y, X0, X1 int
Alpha uint32
}
// A Painter knows how to paint a batch of Spans. Rasterization may involve
// Painting multiple batches, and done will be true for the final batch. The
// Spans' Y values are monotonically increasing during a rasterization. Paint
// may use all of ss as scratch space during the call.
type Painter interface {
Paint(ss []Span, done bool)
}
// The PainterFunc type adapts an ordinary function to the Painter interface.
type PainterFunc func(ss []Span, done bool)
// Paint just delegates the call to f.
func (f PainterFunc) Paint(ss []Span, done bool) { f(ss, done) }
// An AlphaOverPainter is a Painter that paints Spans onto a *image.Alpha using
// the Over Porter-Duff composition operator.
type AlphaOverPainter struct {
Image *image.Alpha
}
// Paint satisfies the Painter interface.
func (r AlphaOverPainter) Paint(ss []Span, done bool) {
b := r.Image.Bounds()
for _, s := range ss {
if s.Y < b.Min.Y {
continue
}
if s.Y >= b.Max.Y {
return
}
if s.X0 < b.Min.X {
s.X0 = b.Min.X
}
if s.X1 > b.Max.X {
s.X1 = b.Max.X
}
if s.X0 >= s.X1 {
continue
}
base := (s.Y-r.Image.Rect.Min.Y)*r.Image.Stride - r.Image.Rect.Min.X
p := r.Image.Pix[base+s.X0 : base+s.X1]
a := int(s.Alpha >> 8)
for i, c := range p {
v := int(c)
p[i] = uint8((v*255 + (255-v)*a) / 255)
}
}
}
// NewAlphaOverPainter creates a new AlphaOverPainter for the given image.
func NewAlphaOverPainter(m *image.Alpha) AlphaOverPainter {
return AlphaOverPainter{m}
}
// An AlphaSrcPainter is a Painter that paints Spans onto a *image.Alpha using
// the Src Porter-Duff composition operator.
type AlphaSrcPainter struct {
Image *image.Alpha
}
// Paint satisfies the Painter interface.
func (r AlphaSrcPainter) Paint(ss []Span, done bool) {
b := r.Image.Bounds()
for _, s := range ss {
if s.Y < b.Min.Y {
continue
}
if s.Y >= b.Max.Y {
return
}
if s.X0 < b.Min.X {
s.X0 = b.Min.X
}
if s.X1 > b.Max.X {
s.X1 = b.Max.X
}
if s.X0 >= s.X1 {
continue
}
base := (s.Y-r.Image.Rect.Min.Y)*r.Image.Stride - r.Image.Rect.Min.X
p := r.Image.Pix[base+s.X0 : base+s.X1]
color := uint8(s.Alpha >> 8)
for i := range p {
p[i] = color
}
}
}
// NewAlphaSrcPainter creates a new AlphaSrcPainter for the given image.
func NewAlphaSrcPainter(m *image.Alpha) AlphaSrcPainter {
return AlphaSrcPainter{m}
}
// An RGBAPainter is a Painter that paints Spans onto a *image.RGBA.
type RGBAPainter struct {
// Image is the image to compose onto.
Image *image.RGBA
// Op is the Porter-Duff composition operator.
Op draw.Op
// cr, cg, cb and ca are the 16-bit color to paint the spans.
cr, cg, cb, ca uint32
}
// Paint satisfies the Painter interface.
func (r *RGBAPainter) Paint(ss []Span, done bool) {
b := r.Image.Bounds()
for _, s := range ss {
if s.Y < b.Min.Y {
continue
}
if s.Y >= b.Max.Y {
return
}
if s.X0 < b.Min.X {
s.X0 = b.Min.X
}
if s.X1 > b.Max.X {
s.X1 = b.Max.X
}
if s.X0 >= s.X1 {
continue
}
// This code mimics drawGlyphOver in $GOROOT/src/image/draw/draw.go.
ma := s.Alpha
const m = 1<<16 - 1
i0 := (s.Y-r.Image.Rect.Min.Y)*r.Image.Stride + (s.X0-r.Image.Rect.Min.X)*4
i1 := i0 + (s.X1-s.X0)*4
if r.Op == draw.Over {
for i := i0; i < i1; i += 4 {
dr := uint32(r.Image.Pix[i+0])
dg := uint32(r.Image.Pix[i+1])
db := uint32(r.Image.Pix[i+2])
da := uint32(r.Image.Pix[i+3])
a := (m - (r.ca * ma / m)) * 0x101
r.Image.Pix[i+0] = uint8((dr*a + r.cr*ma) / m >> 8)
r.Image.Pix[i+1] = uint8((dg*a + r.cg*ma) / m >> 8)
r.Image.Pix[i+2] = uint8((db*a + r.cb*ma) / m >> 8)
r.Image.Pix[i+3] = uint8((da*a + r.ca*ma) / m >> 8)
}
} else {
for i := i0; i < i1; i += 4 {
r.Image.Pix[i+0] = uint8(r.cr * ma / m >> 8)
r.Image.Pix[i+1] = uint8(r.cg * ma / m >> 8)
r.Image.Pix[i+2] = uint8(r.cb * ma / m >> 8)
r.Image.Pix[i+3] = uint8(r.ca * ma / m >> 8)
}
}
}
}
// SetColor sets the color to paint the spans.
func (r *RGBAPainter) SetColor(c color.Color) {
r.cr, r.cg, r.cb, r.ca = c.RGBA()
}
// NewRGBAPainter creates a new RGBAPainter for the given image.
func NewRGBAPainter(m *image.RGBA) *RGBAPainter {
return &RGBAPainter{Image: m}
}
// A MonochromePainter wraps another Painter, quantizing each Span's alpha to
// be either fully opaque or fully transparent.
type MonochromePainter struct {
Painter Painter
y, x0, x1 int
}
// Paint delegates to the wrapped Painter after quantizing each Span's alpha
// value and merging adjacent fully opaque Spans.
func (m *MonochromePainter) Paint(ss []Span, done bool) {
// We compact the ss slice, discarding any Spans whose alpha quantizes to zero.
j := 0
for _, s := range ss {
if s.Alpha >= 0x8000 {
if m.y == s.Y && m.x1 == s.X0 {
m.x1 = s.X1
} else {
ss[j] = Span{m.y, m.x0, m.x1, 1<<16 - 1}
j++
m.y, m.x0, m.x1 = s.Y, s.X0, s.X1
}
}
}
if done {
// Flush the accumulated Span.
finalSpan := Span{m.y, m.x0, m.x1, 1<<16 - 1}
if j < len(ss) {
ss[j] = finalSpan
j++
m.Painter.Paint(ss[:j], true)
} else if j == len(ss) {
m.Painter.Paint(ss, false)
if cap(ss) > 0 {
ss = ss[:1]
} else {
ss = make([]Span, 1)
}
ss[0] = finalSpan
m.Painter.Paint(ss, true)
} else {
panic("unreachable")
}
// Reset the accumulator, so that this Painter can be re-used.
m.y, m.x0, m.x1 = 0, 0, 0
} else {
m.Painter.Paint(ss[:j], false)
}
}
// NewMonochromePainter creates a new MonochromePainter that wraps the given
// Painter.
func NewMonochromePainter(p Painter) *MonochromePainter {
return &MonochromePainter{Painter: p}
}
// A GammaCorrectionPainter wraps another Painter, performing gamma-correction
// on each Span's alpha value.
type GammaCorrectionPainter struct {
// Painter is the wrapped Painter.
Painter Painter
// a is the precomputed alpha values for linear interpolation, with fully
// opaque == 0xffff.
a [256]uint16
// gammaIsOne is whether gamma correction is a no-op.
gammaIsOne bool
}
// Paint delegates to the wrapped Painter after performing gamma-correction on
// each Span.
func (g *GammaCorrectionPainter) Paint(ss []Span, done bool) {
if !g.gammaIsOne {
const n = 0x101
for i, s := range ss {
if s.Alpha == 0 || s.Alpha == 0xffff {
continue
}
p, q := s.Alpha/n, s.Alpha%n
// The resultant alpha is a linear interpolation of g.a[p] and g.a[p+1].
a := uint32(g.a[p])*(n-q) + uint32(g.a[p+1])*q
ss[i].Alpha = (a + n/2) / n
}
}
g.Painter.Paint(ss, done)
}
// SetGamma sets the gamma value.
func (g *GammaCorrectionPainter) SetGamma(gamma float64) {
g.gammaIsOne = gamma == 1
if g.gammaIsOne {
return
}
for i := 0; i < 256; i++ {
a := float64(i) / 0xff
a = math.Pow(a, gamma)
g.a[i] = uint16(0xffff * a)
}
}
// NewGammaCorrectionPainter creates a new GammaCorrectionPainter that wraps
// the given Painter.
func NewGammaCorrectionPainter(p Painter, gamma float64) *GammaCorrectionPainter {
g := &GammaCorrectionPainter{Painter: p}
g.SetGamma(gamma)
return g
}

View File

@ -1,601 +0,0 @@
// Copyright 2010 The Freetype-Go Authors. All rights reserved.
// Use of this source code is governed by your choice of either the
// FreeType License or the GNU General Public License version 2 (or
// any later version), both of which can be found in the LICENSE file.
// Package raster provides an anti-aliasing 2-D rasterizer.
//
// It is part of the larger Freetype suite of font-related packages, but the
// raster package is not specific to font rasterization, and can be used
// standalone without any other Freetype package.
//
// Rasterization is done by the same area/coverage accumulation algorithm as
// the Freetype "smooth" module, and the Anti-Grain Geometry library. A
// description of the area/coverage algorithm is at
// http://projects.tuxee.net/cl-vectors/section-the-cl-aa-algorithm
package raster // import "github.com/golang/freetype/raster"
import (
"strconv"
"golang.org/x/image/math/fixed"
)
// A cell is part of a linked list (for a given yi co-ordinate) of accumulated
// area/coverage for the pixel at (xi, yi).
type cell struct {
xi int
area, cover int
next int
}
type Rasterizer struct {
// If false, the default behavior is to use the even-odd winding fill
// rule during Rasterize.
UseNonZeroWinding bool
// An offset (in pixels) to the painted spans.
Dx, Dy int
// The width of the Rasterizer. The height is implicit in len(cellIndex).
width int
// splitScaleN is the scaling factor used to determine how many times
// to decompose a quadratic or cubic segment into a linear approximation.
splitScale2, splitScale3 int
// The current pen position.
a fixed.Point26_6
// The current cell and its area/coverage being accumulated.
xi, yi int
area, cover int
// Saved cells.
cell []cell
// Linked list of cells, one per row.
cellIndex []int
// Buffers.
cellBuf [256]cell
cellIndexBuf [64]int
spanBuf [64]Span
}
// findCell returns the index in r.cell for the cell corresponding to
// (r.xi, r.yi). The cell is created if necessary.
func (r *Rasterizer) findCell() int {
if r.yi < 0 || r.yi >= len(r.cellIndex) {
return -1
}
xi := r.xi
if xi < 0 {
xi = -1
} else if xi > r.width {
xi = r.width
}
i, prev := r.cellIndex[r.yi], -1
for i != -1 && r.cell[i].xi <= xi {
if r.cell[i].xi == xi {
return i
}
i, prev = r.cell[i].next, i
}
c := len(r.cell)
if c == cap(r.cell) {
buf := make([]cell, c, 4*c)
copy(buf, r.cell)
r.cell = buf[0 : c+1]
} else {
r.cell = r.cell[0 : c+1]
}
r.cell[c] = cell{xi, 0, 0, i}
if prev == -1 {
r.cellIndex[r.yi] = c
} else {
r.cell[prev].next = c
}
return c
}
// saveCell saves any accumulated r.area/r.cover for (r.xi, r.yi).
func (r *Rasterizer) saveCell() {
if r.area != 0 || r.cover != 0 {
i := r.findCell()
if i != -1 {
r.cell[i].area += r.area
r.cell[i].cover += r.cover
}
r.area = 0
r.cover = 0
}
}
// setCell sets the (xi, yi) cell that r is accumulating area/coverage for.
func (r *Rasterizer) setCell(xi, yi int) {
if r.xi != xi || r.yi != yi {
r.saveCell()
r.xi, r.yi = xi, yi
}
}
// scan accumulates area/coverage for the yi'th scanline, going from
// x0 to x1 in the horizontal direction (in 26.6 fixed point co-ordinates)
// and from y0f to y1f fractional vertical units within that scanline.
func (r *Rasterizer) scan(yi int, x0, y0f, x1, y1f fixed.Int26_6) {
// Break the 26.6 fixed point X co-ordinates into integral and fractional parts.
x0i := int(x0) / 64
x0f := x0 - fixed.Int26_6(64*x0i)
x1i := int(x1) / 64
x1f := x1 - fixed.Int26_6(64*x1i)
// A perfectly horizontal scan.
if y0f == y1f {
r.setCell(x1i, yi)
return
}
dx, dy := x1-x0, y1f-y0f
// A single cell scan.
if x0i == x1i {
r.area += int((x0f + x1f) * dy)
r.cover += int(dy)
return
}
// There are at least two cells. Apart from the first and last cells,
// all intermediate cells go through the full width of the cell,
// or 64 units in 26.6 fixed point format.
var (
p, q, edge0, edge1 fixed.Int26_6
xiDelta int
)
if dx > 0 {
p, q = (64-x0f)*dy, dx
edge0, edge1, xiDelta = 0, 64, 1
} else {
p, q = x0f*dy, -dx
edge0, edge1, xiDelta = 64, 0, -1
}
yDelta, yRem := p/q, p%q
if yRem < 0 {
yDelta -= 1
yRem += q
}
// Do the first cell.
xi, y := x0i, y0f
r.area += int((x0f + edge1) * yDelta)
r.cover += int(yDelta)
xi, y = xi+xiDelta, y+yDelta
r.setCell(xi, yi)
if xi != x1i {
// Do all the intermediate cells.
p = 64 * (y1f - y + yDelta)
fullDelta, fullRem := p/q, p%q
if fullRem < 0 {
fullDelta -= 1
fullRem += q
}
yRem -= q
for xi != x1i {
yDelta = fullDelta
yRem += fullRem
if yRem >= 0 {
yDelta += 1
yRem -= q
}
r.area += int(64 * yDelta)
r.cover += int(yDelta)
xi, y = xi+xiDelta, y+yDelta
r.setCell(xi, yi)
}
}
// Do the last cell.
yDelta = y1f - y
r.area += int((edge0 + x1f) * yDelta)
r.cover += int(yDelta)
}
// Start starts a new curve at the given point.
func (r *Rasterizer) Start(a fixed.Point26_6) {
r.setCell(int(a.X/64), int(a.Y/64))
r.a = a
}
// Add1 adds a linear segment to the current curve.
func (r *Rasterizer) Add1(b fixed.Point26_6) {
x0, y0 := r.a.X, r.a.Y
x1, y1 := b.X, b.Y
dx, dy := x1-x0, y1-y0
// Break the 26.6 fixed point Y co-ordinates into integral and fractional
// parts.
y0i := int(y0) / 64
y0f := y0 - fixed.Int26_6(64*y0i)
y1i := int(y1) / 64
y1f := y1 - fixed.Int26_6(64*y1i)
if y0i == y1i {
// There is only one scanline.
r.scan(y0i, x0, y0f, x1, y1f)
} else if dx == 0 {
// This is a vertical line segment. We avoid calling r.scan and instead
// manipulate r.area and r.cover directly.
var (
edge0, edge1 fixed.Int26_6
yiDelta int
)
if dy > 0 {
edge0, edge1, yiDelta = 0, 64, 1
} else {
edge0, edge1, yiDelta = 64, 0, -1
}
x0i, yi := int(x0)/64, y0i
x0fTimes2 := (int(x0) - (64 * x0i)) * 2
// Do the first pixel.
dcover := int(edge1 - y0f)
darea := int(x0fTimes2 * dcover)
r.area += darea
r.cover += dcover
yi += yiDelta
r.setCell(x0i, yi)
// Do all the intermediate pixels.
dcover = int(edge1 - edge0)
darea = int(x0fTimes2 * dcover)
for yi != y1i {
r.area += darea
r.cover += dcover
yi += yiDelta
r.setCell(x0i, yi)
}
// Do the last pixel.
dcover = int(y1f - edge0)
darea = int(x0fTimes2 * dcover)
r.area += darea
r.cover += dcover
} else {
// There are at least two scanlines. Apart from the first and last
// scanlines, all intermediate scanlines go through the full height of
// the row, or 64 units in 26.6 fixed point format.
var (
p, q, edge0, edge1 fixed.Int26_6
yiDelta int
)
if dy > 0 {
p, q = (64-y0f)*dx, dy
edge0, edge1, yiDelta = 0, 64, 1
} else {
p, q = y0f*dx, -dy
edge0, edge1, yiDelta = 64, 0, -1
}
xDelta, xRem := p/q, p%q
if xRem < 0 {
xDelta -= 1
xRem += q
}
// Do the first scanline.
x, yi := x0, y0i
r.scan(yi, x, y0f, x+xDelta, edge1)
x, yi = x+xDelta, yi+yiDelta
r.setCell(int(x)/64, yi)
if yi != y1i {
// Do all the intermediate scanlines.
p = 64 * dx
fullDelta, fullRem := p/q, p%q
if fullRem < 0 {
fullDelta -= 1
fullRem += q
}
xRem -= q
for yi != y1i {
xDelta = fullDelta
xRem += fullRem
if xRem >= 0 {
xDelta += 1
xRem -= q
}
r.scan(yi, x, edge0, x+xDelta, edge1)
x, yi = x+xDelta, yi+yiDelta
r.setCell(int(x)/64, yi)
}
}
// Do the last scanline.
r.scan(yi, x, edge0, x1, y1f)
}
// The next lineTo starts from b.
r.a = b
}
// Add2 adds a quadratic segment to the current curve.
func (r *Rasterizer) Add2(b, c fixed.Point26_6) {
// Calculate nSplit (the number of recursive decompositions) based on how
// 'curvy' it is. Specifically, how much the middle point b deviates from
// (a+c)/2.
dev := maxAbs(r.a.X-2*b.X+c.X, r.a.Y-2*b.Y+c.Y) / fixed.Int26_6(r.splitScale2)
nsplit := 0
for dev > 0 {
dev /= 4
nsplit++
}
// dev is 32-bit, and nsplit++ every time we shift off 2 bits, so maxNsplit
// is 16.
const maxNsplit = 16
if nsplit > maxNsplit {
panic("freetype/raster: Add2 nsplit too large: " + strconv.Itoa(nsplit))
}
// Recursively decompose the curve nSplit levels deep.
var (
pStack [2*maxNsplit + 3]fixed.Point26_6
sStack [maxNsplit + 1]int
i int
)
sStack[0] = nsplit
pStack[0] = c
pStack[1] = b
pStack[2] = r.a
for i >= 0 {
s := sStack[i]
p := pStack[2*i:]
if s > 0 {
// Split the quadratic curve p[:3] into an equivalent set of two
// shorter curves: p[:3] and p[2:5]. The new p[4] is the old p[2],
// and p[0] is unchanged.
mx := p[1].X
p[4].X = p[2].X
p[3].X = (p[4].X + mx) / 2
p[1].X = (p[0].X + mx) / 2
p[2].X = (p[1].X + p[3].X) / 2
my := p[1].Y
p[4].Y = p[2].Y
p[3].Y = (p[4].Y + my) / 2
p[1].Y = (p[0].Y + my) / 2
p[2].Y = (p[1].Y + p[3].Y) / 2
// The two shorter curves have one less split to do.
sStack[i] = s - 1
sStack[i+1] = s - 1
i++
} else {
// Replace the level-0 quadratic with a two-linear-piece
// approximation.
midx := (p[0].X + 2*p[1].X + p[2].X) / 4
midy := (p[0].Y + 2*p[1].Y + p[2].Y) / 4
r.Add1(fixed.Point26_6{midx, midy})
r.Add1(p[0])
i--
}
}
}
// Add3 adds a cubic segment to the current curve.
func (r *Rasterizer) Add3(b, c, d fixed.Point26_6) {
// Calculate nSplit (the number of recursive decompositions) based on how
// 'curvy' it is.
dev2 := maxAbs(r.a.X-3*(b.X+c.X)+d.X, r.a.Y-3*(b.Y+c.Y)+d.Y) / fixed.Int26_6(r.splitScale2)
dev3 := maxAbs(r.a.X-2*b.X+d.X, r.a.Y-2*b.Y+d.Y) / fixed.Int26_6(r.splitScale3)
nsplit := 0
for dev2 > 0 || dev3 > 0 {
dev2 /= 8
dev3 /= 4
nsplit++
}
// devN is 32-bit, and nsplit++ every time we shift off 2 bits, so
// maxNsplit is 16.
const maxNsplit = 16
if nsplit > maxNsplit {
panic("freetype/raster: Add3 nsplit too large: " + strconv.Itoa(nsplit))
}
// Recursively decompose the curve nSplit levels deep.
var (
pStack [3*maxNsplit + 4]fixed.Point26_6
sStack [maxNsplit + 1]int
i int
)
sStack[0] = nsplit
pStack[0] = d
pStack[1] = c
pStack[2] = b
pStack[3] = r.a
for i >= 0 {
s := sStack[i]
p := pStack[3*i:]
if s > 0 {
// Split the cubic curve p[:4] into an equivalent set of two
// shorter curves: p[:4] and p[3:7]. The new p[6] is the old p[3],
// and p[0] is unchanged.
m01x := (p[0].X + p[1].X) / 2
m12x := (p[1].X + p[2].X) / 2
m23x := (p[2].X + p[3].X) / 2
p[6].X = p[3].X
p[5].X = m23x
p[1].X = m01x
p[2].X = (m01x + m12x) / 2
p[4].X = (m12x + m23x) / 2
p[3].X = (p[2].X + p[4].X) / 2
m01y := (p[0].Y + p[1].Y) / 2
m12y := (p[1].Y + p[2].Y) / 2
m23y := (p[2].Y + p[3].Y) / 2
p[6].Y = p[3].Y
p[5].Y = m23y
p[1].Y = m01y
p[2].Y = (m01y + m12y) / 2
p[4].Y = (m12y + m23y) / 2
p[3].Y = (p[2].Y + p[4].Y) / 2
// The two shorter curves have one less split to do.
sStack[i] = s - 1
sStack[i+1] = s - 1
i++
} else {
// Replace the level-0 cubic with a two-linear-piece approximation.
midx := (p[0].X + 3*(p[1].X+p[2].X) + p[3].X) / 8
midy := (p[0].Y + 3*(p[1].Y+p[2].Y) + p[3].Y) / 8
r.Add1(fixed.Point26_6{midx, midy})
r.Add1(p[0])
i--
}
}
}
// AddPath adds the given Path.
func (r *Rasterizer) AddPath(p Path) {
for i := 0; i < len(p); {
switch p[i] {
case 0:
r.Start(
fixed.Point26_6{p[i+1], p[i+2]},
)
i += 4
case 1:
r.Add1(
fixed.Point26_6{p[i+1], p[i+2]},
)
i += 4
case 2:
r.Add2(
fixed.Point26_6{p[i+1], p[i+2]},
fixed.Point26_6{p[i+3], p[i+4]},
)
i += 6
case 3:
r.Add3(
fixed.Point26_6{p[i+1], p[i+2]},
fixed.Point26_6{p[i+3], p[i+4]},
fixed.Point26_6{p[i+5], p[i+6]},
)
i += 8
default:
panic("freetype/raster: bad path")
}
}
}
// AddStroke adds a stroked Path.
func (r *Rasterizer) AddStroke(q Path, width fixed.Int26_6, cr Capper, jr Joiner) {
Stroke(r, q, width, cr, jr)
}
// areaToAlpha converts an area value to a uint32 alpha value. A completely
// filled pixel corresponds to an area of 64*64*2, and an alpha of 0xffff. The
// conversion of area values greater than this depends on the winding rule:
// even-odd or non-zero.
func (r *Rasterizer) areaToAlpha(area int) uint32 {
// The C Freetype implementation (version 2.3.12) does "alpha := area>>1"
// without the +1. Round-to-nearest gives a more symmetric result than
// round-down. The C implementation also returns 8-bit alpha, not 16-bit
// alpha.
a := (area + 1) >> 1
if a < 0 {
a = -a
}
alpha := uint32(a)
if r.UseNonZeroWinding {
if alpha > 0x0fff {
alpha = 0x0fff
}
} else {
alpha &= 0x1fff
if alpha > 0x1000 {
alpha = 0x2000 - alpha
} else if alpha == 0x1000 {
alpha = 0x0fff
}
}
// alpha is now in the range [0x0000, 0x0fff]. Convert that 12-bit alpha to
// 16-bit alpha.
return alpha<<4 | alpha>>8
}
// Rasterize converts r's accumulated curves into Spans for p. The Spans passed
// to p are non-overlapping, and sorted by Y and then X. They all have non-zero
// width (and 0 <= X0 < X1 <= r.width) and non-zero A, except for the final
// Span, which has Y, X0, X1 and A all equal to zero.
func (r *Rasterizer) Rasterize(p Painter) {
r.saveCell()
s := 0
for yi := 0; yi < len(r.cellIndex); yi++ {
xi, cover := 0, 0
for c := r.cellIndex[yi]; c != -1; c = r.cell[c].next {
if cover != 0 && r.cell[c].xi > xi {
alpha := r.areaToAlpha(cover * 64 * 2)
if alpha != 0 {
xi0, xi1 := xi, r.cell[c].xi
if xi0 < 0 {
xi0 = 0
}
if xi1 >= r.width {
xi1 = r.width
}
if xi0 < xi1 {
r.spanBuf[s] = Span{yi + r.Dy, xi0 + r.Dx, xi1 + r.Dx, alpha}
s++
}
}
}
cover += r.cell[c].cover
alpha := r.areaToAlpha(cover*64*2 - r.cell[c].area)
xi = r.cell[c].xi + 1
if alpha != 0 {
xi0, xi1 := r.cell[c].xi, xi
if xi0 < 0 {
xi0 = 0
}
if xi1 >= r.width {
xi1 = r.width
}
if xi0 < xi1 {
r.spanBuf[s] = Span{yi + r.Dy, xi0 + r.Dx, xi1 + r.Dx, alpha}
s++
}
}
if s > len(r.spanBuf)-2 {
p.Paint(r.spanBuf[:s], false)
s = 0
}
}
}
p.Paint(r.spanBuf[:s], true)
}
// Clear cancels any previous calls to r.Start or r.AddXxx.
func (r *Rasterizer) Clear() {
r.a = fixed.Point26_6{}
r.xi = 0
r.yi = 0
r.area = 0
r.cover = 0
r.cell = r.cell[:0]
for i := 0; i < len(r.cellIndex); i++ {
r.cellIndex[i] = -1
}
}
// SetBounds sets the maximum width and height of the rasterized image and
// calls Clear. The width and height are in pixels, not fixed.Int26_6 units.
func (r *Rasterizer) SetBounds(width, height int) {
if width < 0 {
width = 0
}
if height < 0 {
height = 0
}
// Use the same ssN heuristic as the C Freetype (version 2.4.0)
// implementation.
ss2, ss3 := 32, 16
if width > 24 || height > 24 {
ss2, ss3 = 2*ss2, 2*ss3
if width > 120 || height > 120 {
ss2, ss3 = 2*ss2, 2*ss3
}
}
r.width = width
r.splitScale2 = ss2
r.splitScale3 = ss3
r.cell = r.cellBuf[:0]
if height > len(r.cellIndexBuf) {
r.cellIndex = make([]int, height)
} else {
r.cellIndex = r.cellIndexBuf[:height]
}
r.Clear()
}
// NewRasterizer creates a new Rasterizer with the given bounds.
func NewRasterizer(width, height int) *Rasterizer {
r := new(Rasterizer)
r.SetBounds(width, height)
return r
}

View File

@ -1,483 +0,0 @@
// Copyright 2010 The Freetype-Go Authors. All rights reserved.
// Use of this source code is governed by your choice of either the
// FreeType License or the GNU General Public License version 2 (or
// any later version), both of which can be found in the LICENSE file.
package raster
import (
"golang.org/x/image/math/fixed"
)
// Two points are considered practically equal if the square of the distance
// between them is less than one quarter (i.e. 1024 / 4096).
const epsilon = fixed.Int52_12(1024)
// A Capper signifies how to begin or end a stroked path.
type Capper interface {
// Cap adds a cap to p given a pivot point and the normal vector of a
// terminal segment. The normal's length is half of the stroke width.
Cap(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6)
}
// The CapperFunc type adapts an ordinary function to be a Capper.
type CapperFunc func(Adder, fixed.Int26_6, fixed.Point26_6, fixed.Point26_6)
func (f CapperFunc) Cap(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) {
f(p, halfWidth, pivot, n1)
}
// A Joiner signifies how to join interior nodes of a stroked path.
type Joiner interface {
// Join adds a join to the two sides of a stroked path given a pivot
// point and the normal vectors of the trailing and leading segments.
// Both normals have length equal to half of the stroke width.
Join(lhs, rhs Adder, halfWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6)
}
// The JoinerFunc type adapts an ordinary function to be a Joiner.
type JoinerFunc func(lhs, rhs Adder, halfWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6)
func (f JoinerFunc) Join(lhs, rhs Adder, halfWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6) {
f(lhs, rhs, halfWidth, pivot, n0, n1)
}
// RoundCapper adds round caps to a stroked path.
var RoundCapper Capper = CapperFunc(roundCapper)
func roundCapper(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) {
// The cubic Bézier approximation to a circle involves the magic number
// (√2 - 1) * 4/3, which is approximately 35/64.
const k = 35
e := pRot90CCW(n1)
side := pivot.Add(e)
start, end := pivot.Sub(n1), pivot.Add(n1)
d, e := n1.Mul(k), e.Mul(k)
p.Add3(start.Add(e), side.Sub(d), side)
p.Add3(side.Add(d), end.Add(e), end)
}
// ButtCapper adds butt caps to a stroked path.
var ButtCapper Capper = CapperFunc(buttCapper)
func buttCapper(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) {
p.Add1(pivot.Add(n1))
}
// SquareCapper adds square caps to a stroked path.
var SquareCapper Capper = CapperFunc(squareCapper)
func squareCapper(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) {
e := pRot90CCW(n1)
side := pivot.Add(e)
p.Add1(side.Sub(n1))
p.Add1(side.Add(n1))
p.Add1(pivot.Add(n1))
}
// RoundJoiner adds round joins to a stroked path.
var RoundJoiner Joiner = JoinerFunc(roundJoiner)
func roundJoiner(lhs, rhs Adder, haflWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6) {
dot := pDot(pRot90CW(n0), n1)
if dot >= 0 {
addArc(lhs, pivot, n0, n1)
rhs.Add1(pivot.Sub(n1))
} else {
lhs.Add1(pivot.Add(n1))
addArc(rhs, pivot, pNeg(n0), pNeg(n1))
}
}
// BevelJoiner adds bevel joins to a stroked path.
var BevelJoiner Joiner = JoinerFunc(bevelJoiner)
func bevelJoiner(lhs, rhs Adder, haflWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6) {
lhs.Add1(pivot.Add(n1))
rhs.Add1(pivot.Sub(n1))
}
// addArc adds a circular arc from pivot+n0 to pivot+n1 to p. The shorter of
// the two possible arcs is taken, i.e. the one spanning <= 180 degrees. The
// two vectors n0 and n1 must be of equal length.
func addArc(p Adder, pivot, n0, n1 fixed.Point26_6) {
// r2 is the square of the length of n0.
r2 := pDot(n0, n0)
if r2 < epsilon {
// The arc radius is so small that we collapse to a straight line.
p.Add1(pivot.Add(n1))
return
}
// We approximate the arc by 0, 1, 2 or 3 45-degree quadratic segments plus
// a final quadratic segment from s to n1. Each 45-degree segment has
// control points {1, 0}, {1, tan(π/8)} and {1/√2, 1/√2} suitably scaled,
// rotated and translated. tan(π/8) is approximately 27/64.
const tpo8 = 27
var s fixed.Point26_6
// We determine which octant the angle between n0 and n1 is in via three
// dot products. m0, m1 and m2 are n0 rotated clockwise by 45, 90 and 135
// degrees.
m0 := pRot45CW(n0)
m1 := pRot90CW(n0)
m2 := pRot90CW(m0)
if pDot(m1, n1) >= 0 {
if pDot(n0, n1) >= 0 {
if pDot(m2, n1) <= 0 {
// n1 is between 0 and 45 degrees clockwise of n0.
s = n0
} else {
// n1 is between 45 and 90 degrees clockwise of n0.
p.Add2(pivot.Add(n0).Add(m1.Mul(tpo8)), pivot.Add(m0))
s = m0
}
} else {
pm1, n0t := pivot.Add(m1), n0.Mul(tpo8)
p.Add2(pivot.Add(n0).Add(m1.Mul(tpo8)), pivot.Add(m0))
p.Add2(pm1.Add(n0t), pm1)
if pDot(m0, n1) >= 0 {
// n1 is between 90 and 135 degrees clockwise of n0.
s = m1
} else {
// n1 is between 135 and 180 degrees clockwise of n0.
p.Add2(pm1.Sub(n0t), pivot.Add(m2))
s = m2
}
}
} else {
if pDot(n0, n1) >= 0 {
if pDot(m0, n1) >= 0 {
// n1 is between 0 and 45 degrees counter-clockwise of n0.
s = n0
} else {
// n1 is between 45 and 90 degrees counter-clockwise of n0.
p.Add2(pivot.Add(n0).Sub(m1.Mul(tpo8)), pivot.Sub(m2))
s = pNeg(m2)
}
} else {
pm1, n0t := pivot.Sub(m1), n0.Mul(tpo8)
p.Add2(pivot.Add(n0).Sub(m1.Mul(tpo8)), pivot.Sub(m2))
p.Add2(pm1.Add(n0t), pm1)
if pDot(m2, n1) <= 0 {
// n1 is between 90 and 135 degrees counter-clockwise of n0.
s = pNeg(m1)
} else {
// n1 is between 135 and 180 degrees counter-clockwise of n0.
p.Add2(pm1.Sub(n0t), pivot.Sub(m0))
s = pNeg(m0)
}
}
}
// The final quadratic segment has two endpoints s and n1 and the middle
// control point is a multiple of s.Add(n1), i.e. it is on the angle
// bisector of those two points. The multiple ranges between 128/256 and
// 150/256 as the angle between s and n1 ranges between 0 and 45 degrees.
//
// When the angle is 0 degrees (i.e. s and n1 are coincident) then
// s.Add(n1) is twice s and so the middle control point of the degenerate
// quadratic segment should be half s.Add(n1), and half = 128/256.
//
// When the angle is 45 degrees then 150/256 is the ratio of the lengths of
// the two vectors {1, tan(π/8)} and {1 + 1/√2, 1/√2}.
//
// d is the normalized dot product between s and n1. Since the angle ranges
// between 0 and 45 degrees then d ranges between 256/256 and 181/256.
d := 256 * pDot(s, n1) / r2
multiple := fixed.Int26_6(150-(150-128)*(d-181)/(256-181)) >> 2
p.Add2(pivot.Add(s.Add(n1).Mul(multiple)), pivot.Add(n1))
}
// midpoint returns the midpoint of two Points.
func midpoint(a, b fixed.Point26_6) fixed.Point26_6 {
return fixed.Point26_6{(a.X + b.X) / 2, (a.Y + b.Y) / 2}
}
// angleGreaterThan45 returns whether the angle between two vectors is more
// than 45 degrees.
func angleGreaterThan45(v0, v1 fixed.Point26_6) bool {
v := pRot45CCW(v0)
return pDot(v, v1) < 0 || pDot(pRot90CW(v), v1) < 0
}
// interpolate returns the point (1-t)*a + t*b.
func interpolate(a, b fixed.Point26_6, t fixed.Int52_12) fixed.Point26_6 {
s := 1<<12 - t
x := s*fixed.Int52_12(a.X) + t*fixed.Int52_12(b.X)
y := s*fixed.Int52_12(a.Y) + t*fixed.Int52_12(b.Y)
return fixed.Point26_6{fixed.Int26_6(x >> 12), fixed.Int26_6(y >> 12)}
}
// curviest2 returns the value of t for which the quadratic parametric curve
// (1-t)²*a + 2*t*(1-t).b + t²*c has maximum curvature.
//
// The curvature of the parametric curve f(t) = (x(t), y(t)) is
// |xy″-yx″| / (x²+y²)^(3/2).
//
// Let d = b-a and e = c-2*b+a, so that f(t) = 2*d+2*e*t and f″(t) = 2*e.
// The curvature's numerator is (2*dx+2*ex*t)*(2*ey)-(2*dy+2*ey*t)*(2*ex),
// which simplifies to 4*dx*ey-4*dy*ex, which is constant with respect to t.
//
// Thus, curvature is extreme where the denominator is extreme, i.e. where
// (x²+y²) is extreme. The first order condition is that
// 2*x*x″+2*y*y″ = 0, or (dx+ex*t)*ex + (dy+ey*t)*ey = 0.
// Solving for t gives t = -(dx*ex+dy*ey) / (ex*ex+ey*ey).
func curviest2(a, b, c fixed.Point26_6) fixed.Int52_12 {
dx := int64(b.X - a.X)
dy := int64(b.Y - a.Y)
ex := int64(c.X - 2*b.X + a.X)
ey := int64(c.Y - 2*b.Y + a.Y)
if ex == 0 && ey == 0 {
return 2048
}
return fixed.Int52_12(-4096 * (dx*ex + dy*ey) / (ex*ex + ey*ey))
}
// A stroker holds state for stroking a path.
type stroker struct {
// p is the destination that records the stroked path.
p Adder
// u is the half-width of the stroke.
u fixed.Int26_6
// cr and jr specify how to end and connect path segments.
cr Capper
jr Joiner
// r is the reverse path. Stroking a path involves constructing two
// parallel paths 2*u apart. The first path is added immediately to p,
// the second path is accumulated in r and eventually added in reverse.
r Path
// a is the most recent segment point. anorm is the segment normal of
// length u at that point.
a, anorm fixed.Point26_6
}
// addNonCurvy2 adds a quadratic segment to the stroker, where the segment
// defined by (k.a, b, c) achieves maximum curvature at either k.a or c.
func (k *stroker) addNonCurvy2(b, c fixed.Point26_6) {
// We repeatedly divide the segment at its middle until it is straight
// enough to approximate the stroke by just translating the control points.
// ds and ps are stacks of depths and points. t is the top of the stack.
const maxDepth = 5
var (
ds [maxDepth + 1]int
ps [2*maxDepth + 3]fixed.Point26_6
t int
)
// Initially the ps stack has one quadratic segment of depth zero.
ds[0] = 0
ps[2] = k.a
ps[1] = b
ps[0] = c
anorm := k.anorm
var cnorm fixed.Point26_6
for {
depth := ds[t]
a := ps[2*t+2]
b := ps[2*t+1]
c := ps[2*t+0]
ab := b.Sub(a)
bc := c.Sub(b)
abIsSmall := pDot(ab, ab) < fixed.Int52_12(1<<12)
bcIsSmall := pDot(bc, bc) < fixed.Int52_12(1<<12)
if abIsSmall && bcIsSmall {
// Approximate the segment by a circular arc.
cnorm = pRot90CCW(pNorm(bc, k.u))
mac := midpoint(a, c)
addArc(k.p, mac, anorm, cnorm)
addArc(&k.r, mac, pNeg(anorm), pNeg(cnorm))
} else if depth < maxDepth && angleGreaterThan45(ab, bc) {
// Divide the segment in two and push both halves on the stack.
mab := midpoint(a, b)
mbc := midpoint(b, c)
t++
ds[t+0] = depth + 1
ds[t-1] = depth + 1
ps[2*t+2] = a
ps[2*t+1] = mab
ps[2*t+0] = midpoint(mab, mbc)
ps[2*t-1] = mbc
continue
} else {
// Translate the control points.
bnorm := pRot90CCW(pNorm(c.Sub(a), k.u))
cnorm = pRot90CCW(pNorm(bc, k.u))
k.p.Add2(b.Add(bnorm), c.Add(cnorm))
k.r.Add2(b.Sub(bnorm), c.Sub(cnorm))
}
if t == 0 {
k.a, k.anorm = c, cnorm
return
}
t--
anorm = cnorm
}
panic("unreachable")
}
// Add1 adds a linear segment to the stroker.
func (k *stroker) Add1(b fixed.Point26_6) {
bnorm := pRot90CCW(pNorm(b.Sub(k.a), k.u))
if len(k.r) == 0 {
k.p.Start(k.a.Add(bnorm))
k.r.Start(k.a.Sub(bnorm))
} else {
k.jr.Join(k.p, &k.r, k.u, k.a, k.anorm, bnorm)
}
k.p.Add1(b.Add(bnorm))
k.r.Add1(b.Sub(bnorm))
k.a, k.anorm = b, bnorm
}
// Add2 adds a quadratic segment to the stroker.
func (k *stroker) Add2(b, c fixed.Point26_6) {
ab := b.Sub(k.a)
bc := c.Sub(b)
abnorm := pRot90CCW(pNorm(ab, k.u))
if len(k.r) == 0 {
k.p.Start(k.a.Add(abnorm))
k.r.Start(k.a.Sub(abnorm))
} else {
k.jr.Join(k.p, &k.r, k.u, k.a, k.anorm, abnorm)
}
// Approximate nearly-degenerate quadratics by linear segments.
abIsSmall := pDot(ab, ab) < epsilon
bcIsSmall := pDot(bc, bc) < epsilon
if abIsSmall || bcIsSmall {
acnorm := pRot90CCW(pNorm(c.Sub(k.a), k.u))
k.p.Add1(c.Add(acnorm))
k.r.Add1(c.Sub(acnorm))
k.a, k.anorm = c, acnorm
return
}
// The quadratic segment (k.a, b, c) has a point of maximum curvature.
// If this occurs at an end point, we process the segment as a whole.
t := curviest2(k.a, b, c)
if t <= 0 || 4096 <= t {
k.addNonCurvy2(b, c)
return
}
// Otherwise, we perform a de Casteljau decomposition at the point of
// maximum curvature and process the two straighter parts.
mab := interpolate(k.a, b, t)
mbc := interpolate(b, c, t)
mabc := interpolate(mab, mbc, t)
// If the vectors ab and bc are close to being in opposite directions,
// then the decomposition can become unstable, so we approximate the
// quadratic segment by two linear segments joined by an arc.
bcnorm := pRot90CCW(pNorm(bc, k.u))
if pDot(abnorm, bcnorm) < -fixed.Int52_12(k.u)*fixed.Int52_12(k.u)*2047/2048 {
pArc := pDot(abnorm, bc) < 0
k.p.Add1(mabc.Add(abnorm))
if pArc {
z := pRot90CW(abnorm)
addArc(k.p, mabc, abnorm, z)
addArc(k.p, mabc, z, bcnorm)
}
k.p.Add1(mabc.Add(bcnorm))
k.p.Add1(c.Add(bcnorm))
k.r.Add1(mabc.Sub(abnorm))
if !pArc {
z := pRot90CW(abnorm)
addArc(&k.r, mabc, pNeg(abnorm), z)
addArc(&k.r, mabc, z, pNeg(bcnorm))
}
k.r.Add1(mabc.Sub(bcnorm))
k.r.Add1(c.Sub(bcnorm))
k.a, k.anorm = c, bcnorm
return
}
// Process the decomposed parts.
k.addNonCurvy2(mab, mabc)
k.addNonCurvy2(mbc, c)
}
// Add3 adds a cubic segment to the stroker.
func (k *stroker) Add3(b, c, d fixed.Point26_6) {
panic("freetype/raster: stroke unimplemented for cubic segments")
}
// stroke adds the stroked Path q to p, where q consists of exactly one curve.
func (k *stroker) stroke(q Path) {
// Stroking is implemented by deriving two paths each k.u apart from q.
// The left-hand-side path is added immediately to k.p; the right-hand-side
// path is accumulated in k.r. Once we've finished adding the LHS to k.p,
// we add the RHS in reverse order.
k.r = make(Path, 0, len(q))
k.a = fixed.Point26_6{q[1], q[2]}
for i := 4; i < len(q); {
switch q[i] {
case 1:
k.Add1(
fixed.Point26_6{q[i+1], q[i+2]},
)
i += 4
case 2:
k.Add2(
fixed.Point26_6{q[i+1], q[i+2]},
fixed.Point26_6{q[i+3], q[i+4]},
)
i += 6
case 3:
k.Add3(
fixed.Point26_6{q[i+1], q[i+2]},
fixed.Point26_6{q[i+3], q[i+4]},
fixed.Point26_6{q[i+5], q[i+6]},
)
i += 8
default:
panic("freetype/raster: bad path")
}
}
if len(k.r) == 0 {
return
}
// TODO(nigeltao): if q is a closed curve then we should join the first and
// last segments instead of capping them.
k.cr.Cap(k.p, k.u, q.lastPoint(), pNeg(k.anorm))
addPathReversed(k.p, k.r)
pivot := q.firstPoint()
k.cr.Cap(k.p, k.u, pivot, pivot.Sub(fixed.Point26_6{k.r[1], k.r[2]}))
}
// Stroke adds q stroked with the given width to p. The result is typically
// self-intersecting and should be rasterized with UseNonZeroWinding.
// cr and jr may be nil, which defaults to a RoundCapper or RoundJoiner.
func Stroke(p Adder, q Path, width fixed.Int26_6, cr Capper, jr Joiner) {
if len(q) == 0 {
return
}
if cr == nil {
cr = RoundCapper
}
if jr == nil {
jr = RoundJoiner
}
if q[0] != 0 {
panic("freetype/raster: bad path")
}
s := stroker{p: p, u: width / 2, cr: cr, jr: jr}
i := 0
for j := 4; j < len(q); {
switch q[j] {
case 0:
s.stroke(q[i:j])
i, j = j, j+4
case 1:
j += 4
case 2:
j += 6
case 3:
j += 8
default:
panic("freetype/raster: bad path")
}
}
s.stroke(q[i:])
}

View File

@ -1,507 +0,0 @@
// Copyright 2015 The Freetype-Go Authors. All rights reserved.
// Use of this source code is governed by your choice of either the
// FreeType License or the GNU General Public License version 2 (or
// any later version), both of which can be found in the LICENSE file.
package truetype
import (
"image"
"math"
"github.com/golang/freetype/raster"
"golang.org/x/image/font"
"golang.org/x/image/math/fixed"
)
func powerOf2(i int) bool {
return i != 0 && (i&(i-1)) == 0
}
// Options are optional arguments to NewFace.
type Options struct {
// Size is the font size in points, as in "a 10 point font size".
//
// A zero value means to use a 12 point font size.
Size float64
// DPI is the dots-per-inch resolution.
//
// A zero value means to use 72 DPI.
DPI float64
// Hinting is how to quantize the glyph nodes.
//
// A zero value means to use no hinting.
Hinting font.Hinting
// GlyphCacheEntries is the number of entries in the glyph mask image
// cache.
//
// If non-zero, it must be a power of 2.
//
// A zero value means to use 512 entries.
GlyphCacheEntries int
// SubPixelsX is the number of sub-pixel locations a glyph's dot is
// quantized to, in the horizontal direction. For example, a value of 8
// means that the dot is quantized to 1/8th of a pixel. This quantization
// only affects the glyph mask image, not its bounding box or advance
// width. A higher value gives a more faithful glyph image, but reduces the
// effectiveness of the glyph cache.
//
// If non-zero, it must be a power of 2, and be between 1 and 64 inclusive.
//
// A zero value means to use 4 sub-pixel locations.
SubPixelsX int
// SubPixelsY is the number of sub-pixel locations a glyph's dot is
// quantized to, in the vertical direction. For example, a value of 8
// means that the dot is quantized to 1/8th of a pixel. This quantization
// only affects the glyph mask image, not its bounding box or advance
// width. A higher value gives a more faithful glyph image, but reduces the
// effectiveness of the glyph cache.
//
// If non-zero, it must be a power of 2, and be between 1 and 64 inclusive.
//
// A zero value means to use 1 sub-pixel location.
SubPixelsY int
}
func (o *Options) size() float64 {
if o != nil && o.Size > 0 {
return o.Size
}
return 12
}
func (o *Options) dpi() float64 {
if o != nil && o.DPI > 0 {
return o.DPI
}
return 72
}
func (o *Options) hinting() font.Hinting {
if o != nil {
switch o.Hinting {
case font.HintingVertical, font.HintingFull:
// TODO: support vertical hinting.
return font.HintingFull
}
}
return font.HintingNone
}
func (o *Options) glyphCacheEntries() int {
if o != nil && powerOf2(o.GlyphCacheEntries) {
return o.GlyphCacheEntries
}
// 512 is 128 * 4 * 1, which lets us cache 128 glyphs at 4 * 1 subpixel
// locations in the X and Y direction.
return 512
}
func (o *Options) subPixelsX() (value uint32, halfQuantum, mask fixed.Int26_6) {
if o != nil {
switch o.SubPixelsX {
case 1, 2, 4, 8, 16, 32, 64:
return subPixels(o.SubPixelsX)
}
}
// This default value of 4 isn't based on anything scientific, merely as
// small a number as possible that looks almost as good as no quantization,
// or returning subPixels(64).
return subPixels(4)
}
func (o *Options) subPixelsY() (value uint32, halfQuantum, mask fixed.Int26_6) {
if o != nil {
switch o.SubPixelsX {
case 1, 2, 4, 8, 16, 32, 64:
return subPixels(o.SubPixelsX)
}
}
// This default value of 1 isn't based on anything scientific, merely that
// vertical sub-pixel glyph rendering is pretty rare. Baseline locations
// can usually afford to snap to the pixel grid, so the vertical direction
// doesn't have the deal with the horizontal's fractional advance widths.
return subPixels(1)
}
// subPixels returns q and the bias and mask that leads to q quantized
// sub-pixel locations per full pixel.
//
// For example, q == 4 leads to a bias of 8 and a mask of 0xfffffff0, or -16,
// because we want to round fractions of fixed.Int26_6 as:
// - 0 to 7 rounds to 0.
// - 8 to 23 rounds to 16.
// - 24 to 39 rounds to 32.
// - 40 to 55 rounds to 48.
// - 56 to 63 rounds to 64.
// which means to add 8 and then bitwise-and with -16, in two's complement
// representation.
//
// When q == 1, we want bias == 32 and mask == -64.
// When q == 2, we want bias == 16 and mask == -32.
// When q == 4, we want bias == 8 and mask == -16.
// ...
// When q == 64, we want bias == 0 and mask == -1. (The no-op case).
// The pattern is clear.
func subPixels(q int) (value uint32, bias, mask fixed.Int26_6) {
return uint32(q), 32 / fixed.Int26_6(q), -64 / fixed.Int26_6(q)
}
// glyphCacheEntry caches the arguments and return values of rasterize.
type glyphCacheEntry struct {
key glyphCacheKey
val glyphCacheVal
}
type glyphCacheKey struct {
index Index
fx, fy uint8
}
type glyphCacheVal struct {
advanceWidth fixed.Int26_6
offset image.Point
gw int
gh int
}
type indexCacheEntry struct {
rune rune
index Index
}
// NewFace returns a new font.Face for the given Font.
func NewFace(f *Font, opts *Options) font.Face {
a := &face{
f: f,
hinting: opts.hinting(),
scale: fixed.Int26_6(0.5 + (opts.size() * opts.dpi() * 64 / 72)),
glyphCache: make([]glyphCacheEntry, opts.glyphCacheEntries()),
}
a.subPixelX, a.subPixelBiasX, a.subPixelMaskX = opts.subPixelsX()
a.subPixelY, a.subPixelBiasY, a.subPixelMaskY = opts.subPixelsY()
// Fill the cache with invalid entries. Valid glyph cache entries have fx
// and fy in the range [0, 64). Valid index cache entries have rune >= 0.
for i := range a.glyphCache {
a.glyphCache[i].key.fy = 0xff
}
for i := range a.indexCache {
a.indexCache[i].rune = -1
}
// Set the rasterizer's bounds to be big enough to handle the largest glyph.
b := f.Bounds(a.scale)
xmin := +int(b.Min.X) >> 6
ymin := -int(b.Max.Y) >> 6
xmax := +int(b.Max.X+63) >> 6
ymax := -int(b.Min.Y-63) >> 6
a.maxw = xmax - xmin
a.maxh = ymax - ymin
a.masks = image.NewAlpha(image.Rect(0, 0, a.maxw, a.maxh*len(a.glyphCache)))
a.r.SetBounds(a.maxw, a.maxh)
a.p = facePainter{a}
return a
}
type face struct {
f *Font
hinting font.Hinting
scale fixed.Int26_6
subPixelX uint32
subPixelBiasX fixed.Int26_6
subPixelMaskX fixed.Int26_6
subPixelY uint32
subPixelBiasY fixed.Int26_6
subPixelMaskY fixed.Int26_6
masks *image.Alpha
glyphCache []glyphCacheEntry
r raster.Rasterizer
p raster.Painter
paintOffset int
maxw int
maxh int
glyphBuf GlyphBuf
indexCache [indexCacheLen]indexCacheEntry
// TODO: clip rectangle?
}
const indexCacheLen = 256
func (a *face) index(r rune) Index {
const mask = indexCacheLen - 1
c := &a.indexCache[r&mask]
if c.rune == r {
return c.index
}
i := a.f.Index(r)
c.rune = r
c.index = i
return i
}
// Close satisfies the font.Face interface.
func (a *face) Close() error { return nil }
// Metrics satisfies the font.Face interface.
func (a *face) Metrics() font.Metrics {
scale := float64(a.scale)
fupe := float64(a.f.FUnitsPerEm())
return font.Metrics{
Height: a.scale,
Ascent: fixed.Int26_6(math.Ceil(scale * float64(+a.f.ascent) / fupe)),
Descent: fixed.Int26_6(math.Ceil(scale * float64(-a.f.descent) / fupe)),
}
}
// Kern satisfies the font.Face interface.
func (a *face) Kern(r0, r1 rune) fixed.Int26_6 {
i0 := a.index(r0)
i1 := a.index(r1)
kern := a.f.Kern(a.scale, i0, i1)
if a.hinting != font.HintingNone {
kern = (kern + 32) &^ 63
}
return kern
}
// Glyph satisfies the font.Face interface.
func (a *face) Glyph(dot fixed.Point26_6, r rune) (
dr image.Rectangle, mask image.Image, maskp image.Point, advance fixed.Int26_6, ok bool) {
// Quantize to the sub-pixel granularity.
dotX := (dot.X + a.subPixelBiasX) & a.subPixelMaskX
dotY := (dot.Y + a.subPixelBiasY) & a.subPixelMaskY
// Split the coordinates into their integer and fractional parts.
ix, fx := int(dotX>>6), dotX&0x3f
iy, fy := int(dotY>>6), dotY&0x3f
index := a.index(r)
cIndex := uint32(index)
cIndex = cIndex*a.subPixelX - uint32(fx/a.subPixelMaskX)
cIndex = cIndex*a.subPixelY - uint32(fy/a.subPixelMaskY)
cIndex &= uint32(len(a.glyphCache) - 1)
a.paintOffset = a.maxh * int(cIndex)
k := glyphCacheKey{
index: index,
fx: uint8(fx),
fy: uint8(fy),
}
var v glyphCacheVal
if a.glyphCache[cIndex].key != k {
var ok bool
v, ok = a.rasterize(index, fx, fy)
if !ok {
return image.Rectangle{}, nil, image.Point{}, 0, false
}
a.glyphCache[cIndex] = glyphCacheEntry{k, v}
} else {
v = a.glyphCache[cIndex].val
}
dr.Min = image.Point{
X: ix + v.offset.X,
Y: iy + v.offset.Y,
}
dr.Max = image.Point{
X: dr.Min.X + v.gw,
Y: dr.Min.Y + v.gh,
}
return dr, a.masks, image.Point{Y: a.paintOffset}, v.advanceWidth, true
}
func (a *face) GlyphBounds(r rune) (bounds fixed.Rectangle26_6, advance fixed.Int26_6, ok bool) {
if err := a.glyphBuf.Load(a.f, a.scale, a.index(r), a.hinting); err != nil {
return fixed.Rectangle26_6{}, 0, false
}
xmin := +a.glyphBuf.Bounds.Min.X
ymin := -a.glyphBuf.Bounds.Max.Y
xmax := +a.glyphBuf.Bounds.Max.X
ymax := -a.glyphBuf.Bounds.Min.Y
if xmin > xmax || ymin > ymax {
return fixed.Rectangle26_6{}, 0, false
}
return fixed.Rectangle26_6{
Min: fixed.Point26_6{
X: xmin,
Y: ymin,
},
Max: fixed.Point26_6{
X: xmax,
Y: ymax,
},
}, a.glyphBuf.AdvanceWidth, true
}
func (a *face) GlyphAdvance(r rune) (advance fixed.Int26_6, ok bool) {
if err := a.glyphBuf.Load(a.f, a.scale, a.index(r), a.hinting); err != nil {
return 0, false
}
return a.glyphBuf.AdvanceWidth, true
}
// rasterize returns the advance width, integer-pixel offset to render at, and
// the width and height of the given glyph at the given sub-pixel offsets.
//
// The 26.6 fixed point arguments fx and fy must be in the range [0, 1).
func (a *face) rasterize(index Index, fx, fy fixed.Int26_6) (v glyphCacheVal, ok bool) {
if err := a.glyphBuf.Load(a.f, a.scale, index, a.hinting); err != nil {
return glyphCacheVal{}, false
}
// Calculate the integer-pixel bounds for the glyph.
xmin := int(fx+a.glyphBuf.Bounds.Min.X) >> 6
ymin := int(fy-a.glyphBuf.Bounds.Max.Y) >> 6
xmax := int(fx+a.glyphBuf.Bounds.Max.X+0x3f) >> 6
ymax := int(fy-a.glyphBuf.Bounds.Min.Y+0x3f) >> 6
if xmin > xmax || ymin > ymax {
return glyphCacheVal{}, false
}
// A TrueType's glyph's nodes can have negative co-ordinates, but the
// rasterizer clips anything left of x=0 or above y=0. xmin and ymin are
// the pixel offsets, based on the font's FUnit metrics, that let a
// negative co-ordinate in TrueType space be non-negative in rasterizer
// space. xmin and ymin are typically <= 0.
fx -= fixed.Int26_6(xmin << 6)
fy -= fixed.Int26_6(ymin << 6)
// Rasterize the glyph's vectors.
a.r.Clear()
pixOffset := a.paintOffset * a.maxw
clear(a.masks.Pix[pixOffset : pixOffset+a.maxw*a.maxh])
e0 := 0
for _, e1 := range a.glyphBuf.Ends {
a.drawContour(a.glyphBuf.Points[e0:e1], fx, fy)
e0 = e1
}
a.r.Rasterize(a.p)
return glyphCacheVal{
a.glyphBuf.AdvanceWidth,
image.Point{xmin, ymin},
xmax - xmin,
ymax - ymin,
}, true
}
func clear(pix []byte) {
for i := range pix {
pix[i] = 0
}
}
// drawContour draws the given closed contour with the given offset.
func (a *face) drawContour(ps []Point, dx, dy fixed.Int26_6) {
if len(ps) == 0 {
return
}
// The low bit of each point's Flags value is whether the point is on the
// curve. Truetype fonts only have quadratic Bézier curves, not cubics.
// Thus, two consecutive off-curve points imply an on-curve point in the
// middle of those two.
//
// See http://chanae.walon.org/pub/ttf/ttf_glyphs.htm for more details.
// ps[0] is a truetype.Point measured in FUnits and positive Y going
// upwards. start is the same thing measured in fixed point units and
// positive Y going downwards, and offset by (dx, dy).
start := fixed.Point26_6{
X: dx + ps[0].X,
Y: dy - ps[0].Y,
}
var others []Point
if ps[0].Flags&0x01 != 0 {
others = ps[1:]
} else {
last := fixed.Point26_6{
X: dx + ps[len(ps)-1].X,
Y: dy - ps[len(ps)-1].Y,
}
if ps[len(ps)-1].Flags&0x01 != 0 {
start = last
others = ps[:len(ps)-1]
} else {
start = fixed.Point26_6{
X: (start.X + last.X) / 2,
Y: (start.Y + last.Y) / 2,
}
others = ps
}
}
a.r.Start(start)
q0, on0 := start, true
for _, p := range others {
q := fixed.Point26_6{
X: dx + p.X,
Y: dy - p.Y,
}
on := p.Flags&0x01 != 0
if on {
if on0 {
a.r.Add1(q)
} else {
a.r.Add2(q0, q)
}
} else {
if on0 {
// No-op.
} else {
mid := fixed.Point26_6{
X: (q0.X + q.X) / 2,
Y: (q0.Y + q.Y) / 2,
}
a.r.Add2(q0, mid)
}
}
q0, on0 = q, on
}
// Close the curve.
if on0 {
a.r.Add1(start)
} else {
a.r.Add2(q0, start)
}
}
// facePainter is like a raster.AlphaSrcPainter, with an additional Y offset
// (face.paintOffset) to the painted spans.
type facePainter struct {
a *face
}
func (p facePainter) Paint(ss []raster.Span, done bool) {
m := p.a.masks
b := m.Bounds()
b.Min.Y = p.a.paintOffset
b.Max.Y = p.a.paintOffset + p.a.maxh
for _, s := range ss {
s.Y += p.a.paintOffset
if s.Y < b.Min.Y {
continue
}
if s.Y >= b.Max.Y {
return
}
if s.X0 < b.Min.X {
s.X0 = b.Min.X
}
if s.X1 > b.Max.X {
s.X1 = b.Max.X
}
if s.X0 >= s.X1 {
continue
}
base := (s.Y-m.Rect.Min.Y)*m.Stride - m.Rect.Min.X
p := m.Pix[base+s.X0 : base+s.X1]
color := uint8(s.Alpha >> 8)
for i := range p {
p[i] = color
}
}
}

View File

@ -1,522 +0,0 @@
// Copyright 2010 The Freetype-Go Authors. All rights reserved.
// Use of this source code is governed by your choice of either the
// FreeType License or the GNU General Public License version 2 (or
// any later version), both of which can be found in the LICENSE file.
package truetype
import (
"golang.org/x/image/font"
"golang.org/x/image/math/fixed"
)
// TODO: implement VerticalHinting.
// A Point is a co-ordinate pair plus whether it is 'on' a contour or an 'off'
// control point.
type Point struct {
X, Y fixed.Int26_6
// The Flags' LSB means whether or not this Point is 'on' the contour.
// Other bits are reserved for internal use.
Flags uint32
}
// A GlyphBuf holds a glyph's contours. A GlyphBuf can be re-used to load a
// series of glyphs from a Font.
type GlyphBuf struct {
// AdvanceWidth is the glyph's advance width.
AdvanceWidth fixed.Int26_6
// Bounds is the glyph's bounding box.
Bounds fixed.Rectangle26_6
// Points contains all Points from all contours of the glyph. If hinting
// was used to load a glyph then Unhinted contains those Points before they
// were hinted, and InFontUnits contains those Points before they were
// hinted and scaled.
Points, Unhinted, InFontUnits []Point
// Ends is the point indexes of the end point of each contour. The length
// of Ends is the number of contours in the glyph. The i'th contour
// consists of points Points[Ends[i-1]:Ends[i]], where Ends[-1] is
// interpreted to mean zero.
Ends []int
font *Font
scale fixed.Int26_6
hinting font.Hinting
hinter hinter
// phantomPoints are the co-ordinates of the synthetic phantom points
// used for hinting and bounding box calculations.
phantomPoints [4]Point
// pp1x is the X co-ordinate of the first phantom point. The '1' is
// using 1-based indexing; pp1x is almost always phantomPoints[0].X.
// TODO: eliminate this and consistently use phantomPoints[0].X.
pp1x fixed.Int26_6
// metricsSet is whether the glyph's metrics have been set yet. For a
// compound glyph, a sub-glyph may override the outer glyph's metrics.
metricsSet bool
// tmp is a scratch buffer.
tmp []Point
}
// Flags for decoding a glyph's contours. These flags are documented at
// http://developer.apple.com/fonts/TTRefMan/RM06/Chap6glyf.html.
const (
flagOnCurve = 1 << iota
flagXShortVector
flagYShortVector
flagRepeat
flagPositiveXShortVector
flagPositiveYShortVector
// The remaining flags are for internal use.
flagTouchedX
flagTouchedY
)
// The same flag bits (0x10 and 0x20) are overloaded to have two meanings,
// dependent on the value of the flag{X,Y}ShortVector bits.
const (
flagThisXIsSame = flagPositiveXShortVector
flagThisYIsSame = flagPositiveYShortVector
)
// Load loads a glyph's contours from a Font, overwriting any previously loaded
// contours for this GlyphBuf. scale is the number of 26.6 fixed point units in
// 1 em, i is the glyph index, and h is the hinting policy.
func (g *GlyphBuf) Load(f *Font, scale fixed.Int26_6, i Index, h font.Hinting) error {
g.Points = g.Points[:0]
g.Unhinted = g.Unhinted[:0]
g.InFontUnits = g.InFontUnits[:0]
g.Ends = g.Ends[:0]
g.font = f
g.hinting = h
g.scale = scale
g.pp1x = 0
g.phantomPoints = [4]Point{}
g.metricsSet = false
if h != font.HintingNone {
if err := g.hinter.init(f, scale); err != nil {
return err
}
}
if err := g.load(0, i, true); err != nil {
return err
}
// TODO: this selection of either g.pp1x or g.phantomPoints[0].X isn't ideal,
// and should be cleaned up once we have all the testScaling tests passing,
// plus additional tests for Freetype-Go's bounding boxes matching C Freetype's.
pp1x := g.pp1x
if h != font.HintingNone {
pp1x = g.phantomPoints[0].X
}
if pp1x != 0 {
for i := range g.Points {
g.Points[i].X -= pp1x
}
}
advanceWidth := g.phantomPoints[1].X - g.phantomPoints[0].X
if h != font.HintingNone {
if len(f.hdmx) >= 8 {
if n := u32(f.hdmx, 4); n > 3+uint32(i) {
for hdmx := f.hdmx[8:]; uint32(len(hdmx)) >= n; hdmx = hdmx[n:] {
if fixed.Int26_6(hdmx[0]) == scale>>6 {
advanceWidth = fixed.Int26_6(hdmx[2+i]) << 6
break
}
}
}
}
advanceWidth = (advanceWidth + 32) &^ 63
}
g.AdvanceWidth = advanceWidth
// Set g.Bounds to the 'control box', which is the bounding box of the
// Bézier curves' control points. This is easier to calculate, no smaller
// than and often equal to the tightest possible bounding box of the curves
// themselves. This approach is what C Freetype does. We can't just scale
// the nominal bounding box in the glyf data as the hinting process and
// phantom point adjustment may move points outside of that box.
if len(g.Points) == 0 {
g.Bounds = fixed.Rectangle26_6{}
} else {
p := g.Points[0]
g.Bounds.Min.X = p.X
g.Bounds.Max.X = p.X
g.Bounds.Min.Y = p.Y
g.Bounds.Max.Y = p.Y
for _, p := range g.Points[1:] {
if g.Bounds.Min.X > p.X {
g.Bounds.Min.X = p.X
} else if g.Bounds.Max.X < p.X {
g.Bounds.Max.X = p.X
}
if g.Bounds.Min.Y > p.Y {
g.Bounds.Min.Y = p.Y
} else if g.Bounds.Max.Y < p.Y {
g.Bounds.Max.Y = p.Y
}
}
// Snap the box to the grid, if hinting is on.
if h != font.HintingNone {
g.Bounds.Min.X &^= 63
g.Bounds.Min.Y &^= 63
g.Bounds.Max.X += 63
g.Bounds.Max.X &^= 63
g.Bounds.Max.Y += 63
g.Bounds.Max.Y &^= 63
}
}
return nil
}
func (g *GlyphBuf) load(recursion uint32, i Index, useMyMetrics bool) (err error) {
// The recursion limit here is arbitrary, but defends against malformed glyphs.
if recursion >= 32 {
return UnsupportedError("excessive compound glyph recursion")
}
// Find the relevant slice of g.font.glyf.
var g0, g1 uint32
if g.font.locaOffsetFormat == locaOffsetFormatShort {
g0 = 2 * uint32(u16(g.font.loca, 2*int(i)))
g1 = 2 * uint32(u16(g.font.loca, 2*int(i)+2))
} else {
g0 = u32(g.font.loca, 4*int(i))
g1 = u32(g.font.loca, 4*int(i)+4)
}
// Decode the contour count and nominal bounding box, from the first
// 10 bytes of the glyf data. boundsYMin and boundsXMax, at offsets 4
// and 6, are unused.
glyf, ne, boundsXMin, boundsYMax := []byte(nil), 0, fixed.Int26_6(0), fixed.Int26_6(0)
if g0+10 <= g1 {
glyf = g.font.glyf[g0:g1]
ne = int(int16(u16(glyf, 0)))
boundsXMin = fixed.Int26_6(int16(u16(glyf, 2)))
boundsYMax = fixed.Int26_6(int16(u16(glyf, 8)))
}
// Create the phantom points.
uhm, pp1x := g.font.unscaledHMetric(i), fixed.Int26_6(0)
uvm := g.font.unscaledVMetric(i, boundsYMax)
g.phantomPoints = [4]Point{
{X: boundsXMin - uhm.LeftSideBearing},
{X: boundsXMin - uhm.LeftSideBearing + uhm.AdvanceWidth},
{X: uhm.AdvanceWidth / 2, Y: boundsYMax + uvm.TopSideBearing},
{X: uhm.AdvanceWidth / 2, Y: boundsYMax + uvm.TopSideBearing - uvm.AdvanceHeight},
}
if len(glyf) == 0 {
g.addPhantomsAndScale(len(g.Points), len(g.Points), true, true)
copy(g.phantomPoints[:], g.Points[len(g.Points)-4:])
g.Points = g.Points[:len(g.Points)-4]
// TODO: also trim g.InFontUnits and g.Unhinted?
return nil
}
// Load and hint the contours.
if ne < 0 {
if ne != -1 {
// http://developer.apple.com/fonts/TTRefMan/RM06/Chap6glyf.html says that
// "the values -2, -3, and so forth, are reserved for future use."
return UnsupportedError("negative number of contours")
}
pp1x = g.font.scale(g.scale * (boundsXMin - uhm.LeftSideBearing))
if err := g.loadCompound(recursion, uhm, i, glyf, useMyMetrics); err != nil {
return err
}
} else {
np0, ne0 := len(g.Points), len(g.Ends)
program := g.loadSimple(glyf, ne)
g.addPhantomsAndScale(np0, np0, true, true)
pp1x = g.Points[len(g.Points)-4].X
if g.hinting != font.HintingNone {
if len(program) != 0 {
err := g.hinter.run(
program,
g.Points[np0:],
g.Unhinted[np0:],
g.InFontUnits[np0:],
g.Ends[ne0:],
)
if err != nil {
return err
}
}
// Drop the four phantom points.
g.InFontUnits = g.InFontUnits[:len(g.InFontUnits)-4]
g.Unhinted = g.Unhinted[:len(g.Unhinted)-4]
}
if useMyMetrics {
copy(g.phantomPoints[:], g.Points[len(g.Points)-4:])
}
g.Points = g.Points[:len(g.Points)-4]
if np0 != 0 {
// The hinting program expects the []Ends values to be indexed
// relative to the inner glyph, not the outer glyph, so we delay
// adding np0 until after the hinting program (if any) has run.
for i := ne0; i < len(g.Ends); i++ {
g.Ends[i] += np0
}
}
}
if useMyMetrics && !g.metricsSet {
g.metricsSet = true
g.pp1x = pp1x
}
return nil
}
// loadOffset is the initial offset for loadSimple and loadCompound. The first
// 10 bytes are the number of contours and the bounding box.
const loadOffset = 10
func (g *GlyphBuf) loadSimple(glyf []byte, ne int) (program []byte) {
offset := loadOffset
for i := 0; i < ne; i++ {
g.Ends = append(g.Ends, 1+int(u16(glyf, offset)))
offset += 2
}
// Note the TrueType hinting instructions.
instrLen := int(u16(glyf, offset))
offset += 2
program = glyf[offset : offset+instrLen]
offset += instrLen
if ne == 0 {
return program
}
np0 := len(g.Points)
np1 := np0 + int(g.Ends[len(g.Ends)-1])
// Decode the flags.
for i := np0; i < np1; {
c := uint32(glyf[offset])
offset++
g.Points = append(g.Points, Point{Flags: c})
i++
if c&flagRepeat != 0 {
count := glyf[offset]
offset++
for ; count > 0; count-- {
g.Points = append(g.Points, Point{Flags: c})
i++
}
}
}
// Decode the co-ordinates.
var x int16
for i := np0; i < np1; i++ {
f := g.Points[i].Flags
if f&flagXShortVector != 0 {
dx := int16(glyf[offset])
offset++
if f&flagPositiveXShortVector == 0 {
x -= dx
} else {
x += dx
}
} else if f&flagThisXIsSame == 0 {
x += int16(u16(glyf, offset))
offset += 2
}
g.Points[i].X = fixed.Int26_6(x)
}
var y int16
for i := np0; i < np1; i++ {
f := g.Points[i].Flags
if f&flagYShortVector != 0 {
dy := int16(glyf[offset])
offset++
if f&flagPositiveYShortVector == 0 {
y -= dy
} else {
y += dy
}
} else if f&flagThisYIsSame == 0 {
y += int16(u16(glyf, offset))
offset += 2
}
g.Points[i].Y = fixed.Int26_6(y)
}
return program
}
func (g *GlyphBuf) loadCompound(recursion uint32, uhm HMetric, i Index,
glyf []byte, useMyMetrics bool) error {
// Flags for decoding a compound glyph. These flags are documented at
// http://developer.apple.com/fonts/TTRefMan/RM06/Chap6glyf.html.
const (
flagArg1And2AreWords = 1 << iota
flagArgsAreXYValues
flagRoundXYToGrid
flagWeHaveAScale
flagUnused
flagMoreComponents
flagWeHaveAnXAndYScale
flagWeHaveATwoByTwo
flagWeHaveInstructions
flagUseMyMetrics
flagOverlapCompound
)
np0, ne0 := len(g.Points), len(g.Ends)
offset := loadOffset
for {
flags := u16(glyf, offset)
component := Index(u16(glyf, offset+2))
dx, dy, transform, hasTransform := fixed.Int26_6(0), fixed.Int26_6(0), [4]int16{}, false
if flags&flagArg1And2AreWords != 0 {
dx = fixed.Int26_6(int16(u16(glyf, offset+4)))
dy = fixed.Int26_6(int16(u16(glyf, offset+6)))
offset += 8
} else {
dx = fixed.Int26_6(int16(int8(glyf[offset+4])))
dy = fixed.Int26_6(int16(int8(glyf[offset+5])))
offset += 6
}
if flags&flagArgsAreXYValues == 0 {
return UnsupportedError("compound glyph transform vector")
}
if flags&(flagWeHaveAScale|flagWeHaveAnXAndYScale|flagWeHaveATwoByTwo) != 0 {
hasTransform = true
switch {
case flags&flagWeHaveAScale != 0:
transform[0] = int16(u16(glyf, offset+0))
transform[3] = transform[0]
offset += 2
case flags&flagWeHaveAnXAndYScale != 0:
transform[0] = int16(u16(glyf, offset+0))
transform[3] = int16(u16(glyf, offset+2))
offset += 4
case flags&flagWeHaveATwoByTwo != 0:
transform[0] = int16(u16(glyf, offset+0))
transform[1] = int16(u16(glyf, offset+2))
transform[2] = int16(u16(glyf, offset+4))
transform[3] = int16(u16(glyf, offset+6))
offset += 8
}
}
savedPP := g.phantomPoints
np0 := len(g.Points)
componentUMM := useMyMetrics && (flags&flagUseMyMetrics != 0)
if err := g.load(recursion+1, component, componentUMM); err != nil {
return err
}
if flags&flagUseMyMetrics == 0 {
g.phantomPoints = savedPP
}
if hasTransform {
for j := np0; j < len(g.Points); j++ {
p := &g.Points[j]
newX := 0 +
fixed.Int26_6((int64(p.X)*int64(transform[0])+1<<13)>>14) +
fixed.Int26_6((int64(p.Y)*int64(transform[2])+1<<13)>>14)
newY := 0 +
fixed.Int26_6((int64(p.X)*int64(transform[1])+1<<13)>>14) +
fixed.Int26_6((int64(p.Y)*int64(transform[3])+1<<13)>>14)
p.X, p.Y = newX, newY
}
}
dx = g.font.scale(g.scale * dx)
dy = g.font.scale(g.scale * dy)
if flags&flagRoundXYToGrid != 0 {
dx = (dx + 32) &^ 63
dy = (dy + 32) &^ 63
}
for j := np0; j < len(g.Points); j++ {
p := &g.Points[j]
p.X += dx
p.Y += dy
}
// TODO: also adjust g.InFontUnits and g.Unhinted?
if flags&flagMoreComponents == 0 {
break
}
}
instrLen := 0
if g.hinting != font.HintingNone && offset+2 <= len(glyf) {
instrLen = int(u16(glyf, offset))
offset += 2
}
g.addPhantomsAndScale(np0, len(g.Points), false, instrLen > 0)
points, ends := g.Points[np0:], g.Ends[ne0:]
g.Points = g.Points[:len(g.Points)-4]
for j := range points {
points[j].Flags &^= flagTouchedX | flagTouchedY
}
if instrLen == 0 {
if !g.metricsSet {
copy(g.phantomPoints[:], points[len(points)-4:])
}
return nil
}
// Hint the compound glyph.
program := glyf[offset : offset+instrLen]
// Temporarily adjust the ends to be relative to this compound glyph.
if np0 != 0 {
for i := range ends {
ends[i] -= np0
}
}
// Hinting instructions of a composite glyph completely refer to the
// (already) hinted subglyphs.
g.tmp = append(g.tmp[:0], points...)
if err := g.hinter.run(program, points, g.tmp, g.tmp, ends); err != nil {
return err
}
if np0 != 0 {
for i := range ends {
ends[i] += np0
}
}
if !g.metricsSet {
copy(g.phantomPoints[:], points[len(points)-4:])
}
return nil
}
func (g *GlyphBuf) addPhantomsAndScale(np0, np1 int, simple, adjust bool) {
// Add the four phantom points.
g.Points = append(g.Points, g.phantomPoints[:]...)
// Scale the points.
if simple && g.hinting != font.HintingNone {
g.InFontUnits = append(g.InFontUnits, g.Points[np1:]...)
}
for i := np1; i < len(g.Points); i++ {
p := &g.Points[i]
p.X = g.font.scale(g.scale * p.X)
p.Y = g.font.scale(g.scale * p.Y)
}
if g.hinting == font.HintingNone {
return
}
// Round the 1st phantom point to the grid, shifting all other points equally.
// Note that "all other points" starts from np0, not np1.
// TODO: delete this adjustment and the np0/np1 distinction, when
// we update the compatibility tests to C Freetype 2.5.3.
// See http://git.savannah.gnu.org/cgit/freetype/freetype2.git/commit/?id=05c786d990390a7ca18e62962641dac740bacb06
if adjust {
pp1x := g.Points[len(g.Points)-4].X
if dx := ((pp1x + 32) &^ 63) - pp1x; dx != 0 {
for i := np0; i < len(g.Points); i++ {
g.Points[i].X += dx
}
}
}
if simple {
g.Unhinted = append(g.Unhinted, g.Points[np1:]...)
}
// Round the 2nd and 4th phantom point to the grid.
p := &g.Points[len(g.Points)-3]
p.X = (p.X + 32) &^ 63
p = &g.Points[len(g.Points)-1]
p.Y = (p.Y + 32) &^ 63
}

File diff suppressed because it is too large Load Diff

View File

@ -1,289 +0,0 @@
// Copyright 2012 The Freetype-Go Authors. All rights reserved.
// Use of this source code is governed by your choice of either the
// FreeType License or the GNU General Public License version 2 (or
// any later version), both of which can be found in the LICENSE file.
package truetype
// The Truetype opcodes are summarized at
// https://developer.apple.com/fonts/TTRefMan/RM07/appendixA.html
const (
opSVTCA0 = 0x00 // Set freedom and projection Vectors To Coordinate Axis
opSVTCA1 = 0x01 // .
opSPVTCA0 = 0x02 // Set Projection Vector To Coordinate Axis
opSPVTCA1 = 0x03 // .
opSFVTCA0 = 0x04 // Set Freedom Vector to Coordinate Axis
opSFVTCA1 = 0x05 // .
opSPVTL0 = 0x06 // Set Projection Vector To Line
opSPVTL1 = 0x07 // .
opSFVTL0 = 0x08 // Set Freedom Vector To Line
opSFVTL1 = 0x09 // .
opSPVFS = 0x0a // Set Projection Vector From Stack
opSFVFS = 0x0b // Set Freedom Vector From Stack
opGPV = 0x0c // Get Projection Vector
opGFV = 0x0d // Get Freedom Vector
opSFVTPV = 0x0e // Set Freedom Vector To Projection Vector
opISECT = 0x0f // moves point p to the InterSECTion of two lines
opSRP0 = 0x10 // Set Reference Point 0
opSRP1 = 0x11 // Set Reference Point 1
opSRP2 = 0x12 // Set Reference Point 2
opSZP0 = 0x13 // Set Zone Pointer 0
opSZP1 = 0x14 // Set Zone Pointer 1
opSZP2 = 0x15 // Set Zone Pointer 2
opSZPS = 0x16 // Set Zone PointerS
opSLOOP = 0x17 // Set LOOP variable
opRTG = 0x18 // Round To Grid
opRTHG = 0x19 // Round To Half Grid
opSMD = 0x1a // Set Minimum Distance
opELSE = 0x1b // ELSE clause
opJMPR = 0x1c // JuMP Relative
opSCVTCI = 0x1d // Set Control Value Table Cut-In
opSSWCI = 0x1e // Set Single Width Cut-In
opSSW = 0x1f // Set Single Width
opDUP = 0x20 // DUPlicate top stack element
opPOP = 0x21 // POP top stack element
opCLEAR = 0x22 // CLEAR the stack
opSWAP = 0x23 // SWAP the top two elements on the stack
opDEPTH = 0x24 // DEPTH of the stack
opCINDEX = 0x25 // Copy the INDEXed element to the top of the stack
opMINDEX = 0x26 // Move the INDEXed element to the top of the stack
opALIGNPTS = 0x27 // ALIGN PoinTS
op_0x28 = 0x28 // deprecated
opUTP = 0x29 // UnTouch Point
opLOOPCALL = 0x2a // LOOP and CALL function
opCALL = 0x2b // CALL function
opFDEF = 0x2c // Function DEFinition
opENDF = 0x2d // END Function definition
opMDAP0 = 0x2e // Move Direct Absolute Point
opMDAP1 = 0x2f // .
opIUP0 = 0x30 // Interpolate Untouched Points through the outline
opIUP1 = 0x31 // .
opSHP0 = 0x32 // SHift Point using reference point
opSHP1 = 0x33 // .
opSHC0 = 0x34 // SHift Contour using reference point
opSHC1 = 0x35 // .
opSHZ0 = 0x36 // SHift Zone using reference point
opSHZ1 = 0x37 // .
opSHPIX = 0x38 // SHift point by a PIXel amount
opIP = 0x39 // Interpolate Point
opMSIRP0 = 0x3a // Move Stack Indirect Relative Point
opMSIRP1 = 0x3b // .
opALIGNRP = 0x3c // ALIGN to Reference Point
opRTDG = 0x3d // Round To Double Grid
opMIAP0 = 0x3e // Move Indirect Absolute Point
opMIAP1 = 0x3f // .
opNPUSHB = 0x40 // PUSH N Bytes
opNPUSHW = 0x41 // PUSH N Words
opWS = 0x42 // Write Store
opRS = 0x43 // Read Store
opWCVTP = 0x44 // Write Control Value Table in Pixel units
opRCVT = 0x45 // Read Control Value Table entry
opGC0 = 0x46 // Get Coordinate projected onto the projection vector
opGC1 = 0x47 // .
opSCFS = 0x48 // Sets Coordinate From the Stack using projection vector and freedom vector
opMD0 = 0x49 // Measure Distance
opMD1 = 0x4a // .
opMPPEM = 0x4b // Measure Pixels Per EM
opMPS = 0x4c // Measure Point Size
opFLIPON = 0x4d // set the auto FLIP Boolean to ON
opFLIPOFF = 0x4e // set the auto FLIP Boolean to OFF
opDEBUG = 0x4f // DEBUG call
opLT = 0x50 // Less Than
opLTEQ = 0x51 // Less Than or EQual
opGT = 0x52 // Greater Than
opGTEQ = 0x53 // Greater Than or EQual
opEQ = 0x54 // EQual
opNEQ = 0x55 // Not EQual
opODD = 0x56 // ODD
opEVEN = 0x57 // EVEN
opIF = 0x58 // IF test
opEIF = 0x59 // End IF
opAND = 0x5a // logical AND
opOR = 0x5b // logical OR
opNOT = 0x5c // logical NOT
opDELTAP1 = 0x5d // DELTA exception P1
opSDB = 0x5e // Set Delta Base in the graphics state
opSDS = 0x5f // Set Delta Shift in the graphics state
opADD = 0x60 // ADD
opSUB = 0x61 // SUBtract
opDIV = 0x62 // DIVide
opMUL = 0x63 // MULtiply
opABS = 0x64 // ABSolute value
opNEG = 0x65 // NEGate
opFLOOR = 0x66 // FLOOR
opCEILING = 0x67 // CEILING
opROUND00 = 0x68 // ROUND value
opROUND01 = 0x69 // .
opROUND10 = 0x6a // .
opROUND11 = 0x6b // .
opNROUND00 = 0x6c // No ROUNDing of value
opNROUND01 = 0x6d // .
opNROUND10 = 0x6e // .
opNROUND11 = 0x6f // .
opWCVTF = 0x70 // Write Control Value Table in Funits
opDELTAP2 = 0x71 // DELTA exception P2
opDELTAP3 = 0x72 // DELTA exception P3
opDELTAC1 = 0x73 // DELTA exception C1
opDELTAC2 = 0x74 // DELTA exception C2
opDELTAC3 = 0x75 // DELTA exception C3
opSROUND = 0x76 // Super ROUND
opS45ROUND = 0x77 // Super ROUND 45 degrees
opJROT = 0x78 // Jump Relative On True
opJROF = 0x79 // Jump Relative On False
opROFF = 0x7a // Round OFF
op_0x7b = 0x7b // deprecated
opRUTG = 0x7c // Round Up To Grid
opRDTG = 0x7d // Round Down To Grid
opSANGW = 0x7e // Set ANGle Weight
opAA = 0x7f // Adjust Angle
opFLIPPT = 0x80 // FLIP PoinT
opFLIPRGON = 0x81 // FLIP RanGe ON
opFLIPRGOFF = 0x82 // FLIP RanGe OFF
op_0x83 = 0x83 // deprecated
op_0x84 = 0x84 // deprecated
opSCANCTRL = 0x85 // SCAN conversion ConTRoL
opSDPVTL0 = 0x86 // Set Dual Projection Vector To Line
opSDPVTL1 = 0x87 // .
opGETINFO = 0x88 // GET INFOrmation
opIDEF = 0x89 // Instruction DEFinition
opROLL = 0x8a // ROLL the top three stack elements
opMAX = 0x8b // MAXimum of top two stack elements
opMIN = 0x8c // MINimum of top two stack elements
opSCANTYPE = 0x8d // SCANTYPE
opINSTCTRL = 0x8e // INSTRuction execution ConTRoL
op_0x8f = 0x8f
op_0x90 = 0x90
op_0x91 = 0x91
op_0x92 = 0x92
op_0x93 = 0x93
op_0x94 = 0x94
op_0x95 = 0x95
op_0x96 = 0x96
op_0x97 = 0x97
op_0x98 = 0x98
op_0x99 = 0x99
op_0x9a = 0x9a
op_0x9b = 0x9b
op_0x9c = 0x9c
op_0x9d = 0x9d
op_0x9e = 0x9e
op_0x9f = 0x9f
op_0xa0 = 0xa0
op_0xa1 = 0xa1
op_0xa2 = 0xa2
op_0xa3 = 0xa3
op_0xa4 = 0xa4
op_0xa5 = 0xa5
op_0xa6 = 0xa6
op_0xa7 = 0xa7
op_0xa8 = 0xa8
op_0xa9 = 0xa9
op_0xaa = 0xaa
op_0xab = 0xab
op_0xac = 0xac
op_0xad = 0xad
op_0xae = 0xae
op_0xaf = 0xaf
opPUSHB000 = 0xb0 // PUSH Bytes
opPUSHB001 = 0xb1 // .
opPUSHB010 = 0xb2 // .
opPUSHB011 = 0xb3 // .
opPUSHB100 = 0xb4 // .
opPUSHB101 = 0xb5 // .
opPUSHB110 = 0xb6 // .
opPUSHB111 = 0xb7 // .
opPUSHW000 = 0xb8 // PUSH Words
opPUSHW001 = 0xb9 // .
opPUSHW010 = 0xba // .
opPUSHW011 = 0xbb // .
opPUSHW100 = 0xbc // .
opPUSHW101 = 0xbd // .
opPUSHW110 = 0xbe // .
opPUSHW111 = 0xbf // .
opMDRP00000 = 0xc0 // Move Direct Relative Point
opMDRP00001 = 0xc1 // .
opMDRP00010 = 0xc2 // .
opMDRP00011 = 0xc3 // .
opMDRP00100 = 0xc4 // .
opMDRP00101 = 0xc5 // .
opMDRP00110 = 0xc6 // .
opMDRP00111 = 0xc7 // .
opMDRP01000 = 0xc8 // .
opMDRP01001 = 0xc9 // .
opMDRP01010 = 0xca // .
opMDRP01011 = 0xcb // .
opMDRP01100 = 0xcc // .
opMDRP01101 = 0xcd // .
opMDRP01110 = 0xce // .
opMDRP01111 = 0xcf // .
opMDRP10000 = 0xd0 // .
opMDRP10001 = 0xd1 // .
opMDRP10010 = 0xd2 // .
opMDRP10011 = 0xd3 // .
opMDRP10100 = 0xd4 // .
opMDRP10101 = 0xd5 // .
opMDRP10110 = 0xd6 // .
opMDRP10111 = 0xd7 // .
opMDRP11000 = 0xd8 // .
opMDRP11001 = 0xd9 // .
opMDRP11010 = 0xda // .
opMDRP11011 = 0xdb // .
opMDRP11100 = 0xdc // .
opMDRP11101 = 0xdd // .
opMDRP11110 = 0xde // .
opMDRP11111 = 0xdf // .
opMIRP00000 = 0xe0 // Move Indirect Relative Point
opMIRP00001 = 0xe1 // .
opMIRP00010 = 0xe2 // .
opMIRP00011 = 0xe3 // .
opMIRP00100 = 0xe4 // .
opMIRP00101 = 0xe5 // .
opMIRP00110 = 0xe6 // .
opMIRP00111 = 0xe7 // .
opMIRP01000 = 0xe8 // .
opMIRP01001 = 0xe9 // .
opMIRP01010 = 0xea // .
opMIRP01011 = 0xeb // .
opMIRP01100 = 0xec // .
opMIRP01101 = 0xed // .
opMIRP01110 = 0xee // .
opMIRP01111 = 0xef // .
opMIRP10000 = 0xf0 // .
opMIRP10001 = 0xf1 // .
opMIRP10010 = 0xf2 // .
opMIRP10011 = 0xf3 // .
opMIRP10100 = 0xf4 // .
opMIRP10101 = 0xf5 // .
opMIRP10110 = 0xf6 // .
opMIRP10111 = 0xf7 // .
opMIRP11000 = 0xf8 // .
opMIRP11001 = 0xf9 // .
opMIRP11010 = 0xfa // .
opMIRP11011 = 0xfb // .
opMIRP11100 = 0xfc // .
opMIRP11101 = 0xfd // .
opMIRP11110 = 0xfe // .
opMIRP11111 = 0xff // .
)
// popCount is the number of stack elements that each opcode pops.
var popCount = [256]uint8{
// 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f
0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 5, // 0x00 - 0x0f
1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, // 0x10 - 0x1f
1, 1, 0, 2, 0, 1, 1, 2, 0, 1, 2, 1, 1, 0, 1, 1, // 0x20 - 0x2f
0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 2, 2, 0, 0, 2, 2, // 0x30 - 0x3f
0, 0, 2, 1, 2, 1, 1, 1, 2, 2, 2, 0, 0, 0, 0, 0, // 0x40 - 0x4f
2, 2, 2, 2, 2, 2, 1, 1, 1, 0, 2, 2, 1, 1, 1, 1, // 0x50 - 0x5f
2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 0x60 - 0x6f
2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 0, 0, 0, 0, 1, 1, // 0x70 - 0x7f
0, 2, 2, 0, 0, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 0, // 0x80 - 0x8f
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x90 - 0x9f
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0xa0 - 0xaf
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0xb0 - 0xbf
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 0xc0 - 0xcf
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 0xd0 - 0xdf
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // 0xe0 - 0xef
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // 0xf0 - 0xff
}

View File

@ -1,653 +0,0 @@
// Copyright 2010 The Freetype-Go Authors. All rights reserved.
// Use of this source code is governed by your choice of either the
// FreeType License or the GNU General Public License version 2 (or
// any later version), both of which can be found in the LICENSE file.
// Package truetype provides a parser for the TTF and TTC file formats.
// Those formats are documented at http://developer.apple.com/fonts/TTRefMan/
// and http://www.microsoft.com/typography/otspec/
//
// Some of a font's methods provide lengths or co-ordinates, e.g. bounds, font
// metrics and control points. All these methods take a scale parameter, which
// is the number of pixels in 1 em, expressed as a 26.6 fixed point value. For
// example, if 1 em is 10 pixels then scale is fixed.I(10), which is equal to
// fixed.Int26_6(10 << 6).
//
// To measure a TrueType font in ideal FUnit space, use scale equal to
// font.FUnitsPerEm().
package truetype // import "github.com/golang/freetype/truetype"
import (
"fmt"
"golang.org/x/image/math/fixed"
)
// An Index is a Font's index of a rune.
type Index uint16
// A NameID identifies a name table entry.
//
// See https://developer.apple.com/fonts/TrueType-Reference-Manual/RM06/Chap6name.html
type NameID uint16
const (
NameIDCopyright NameID = 0
NameIDFontFamily = 1
NameIDFontSubfamily = 2
NameIDUniqueSubfamilyID = 3
NameIDFontFullName = 4
NameIDNameTableVersion = 5
NameIDPostscriptName = 6
NameIDTrademarkNotice = 7
NameIDManufacturerName = 8
NameIDDesignerName = 9
NameIDFontDescription = 10
NameIDFontVendorURL = 11
NameIDFontDesignerURL = 12
NameIDFontLicense = 13
NameIDFontLicenseURL = 14
NameIDPreferredFamily = 16
NameIDPreferredSubfamily = 17
NameIDCompatibleName = 18
NameIDSampleText = 19
)
const (
// A 32-bit encoding consists of a most-significant 16-bit Platform ID and a
// least-significant 16-bit Platform Specific ID. The magic numbers are
// specified at https://www.microsoft.com/typography/otspec/name.htm
unicodeEncodingBMPOnly = 0x00000003 // PID = 0 (Unicode), PSID = 3 (Unicode 2.0 BMP Only)
unicodeEncodingFull = 0x00000004 // PID = 0 (Unicode), PSID = 4 (Unicode 2.0 Full Repertoire)
microsoftSymbolEncoding = 0x00030000 // PID = 3 (Microsoft), PSID = 0 (Symbol)
microsoftUCS2Encoding = 0x00030001 // PID = 3 (Microsoft), PSID = 1 (UCS-2)
microsoftUCS4Encoding = 0x0003000a // PID = 3 (Microsoft), PSID = 10 (UCS-4)
)
// An HMetric holds the horizontal metrics of a single glyph.
type HMetric struct {
AdvanceWidth, LeftSideBearing fixed.Int26_6
}
// A VMetric holds the vertical metrics of a single glyph.
type VMetric struct {
AdvanceHeight, TopSideBearing fixed.Int26_6
}
// A FormatError reports that the input is not a valid TrueType font.
type FormatError string
func (e FormatError) Error() string {
return "freetype: invalid TrueType format: " + string(e)
}
// An UnsupportedError reports that the input uses a valid but unimplemented
// TrueType feature.
type UnsupportedError string
func (e UnsupportedError) Error() string {
return "freetype: unsupported TrueType feature: " + string(e)
}
// u32 returns the big-endian uint32 at b[i:].
func u32(b []byte, i int) uint32 {
return uint32(b[i])<<24 | uint32(b[i+1])<<16 | uint32(b[i+2])<<8 | uint32(b[i+3])
}
// u16 returns the big-endian uint16 at b[i:].
func u16(b []byte, i int) uint16 {
return uint16(b[i])<<8 | uint16(b[i+1])
}
// readTable returns a slice of the TTF data given by a table's directory entry.
func readTable(ttf []byte, offsetLength []byte) ([]byte, error) {
offset := int(u32(offsetLength, 0))
if offset < 0 {
return nil, FormatError(fmt.Sprintf("offset too large: %d", uint32(offset)))
}
length := int(u32(offsetLength, 4))
if length < 0 {
return nil, FormatError(fmt.Sprintf("length too large: %d", uint32(length)))
}
end := offset + length
if end < 0 || end > len(ttf) {
return nil, FormatError(fmt.Sprintf("offset + length too large: %d", uint32(offset)+uint32(length)))
}
return ttf[offset:end], nil
}
// parseSubtables returns the offset and platformID of the best subtable in
// table, where best favors a Unicode cmap encoding, and failing that, a
// Microsoft cmap encoding. offset is the offset of the first subtable in
// table, and size is the size of each subtable.
//
// If pred is non-nil, then only subtables that satisfy that predicate will be
// considered.
func parseSubtables(table []byte, name string, offset, size int, pred func([]byte) bool) (
bestOffset int, bestPID uint32, retErr error) {
if len(table) < 4 {
return 0, 0, FormatError(name + " too short")
}
nSubtables := int(u16(table, 2))
if len(table) < size*nSubtables+offset {
return 0, 0, FormatError(name + " too short")
}
ok := false
for i := 0; i < nSubtables; i, offset = i+1, offset+size {
if pred != nil && !pred(table[offset:]) {
continue
}
// We read the 16-bit Platform ID and 16-bit Platform Specific ID as a single uint32.
// All values are big-endian.
pidPsid := u32(table, offset)
// We prefer the Unicode cmap encoding. Failing to find that, we fall
// back onto the Microsoft cmap encoding.
if pidPsid == unicodeEncodingBMPOnly || pidPsid == unicodeEncodingFull {
bestOffset, bestPID, ok = offset, pidPsid>>16, true
break
} else if pidPsid == microsoftSymbolEncoding ||
pidPsid == microsoftUCS2Encoding ||
pidPsid == microsoftUCS4Encoding {
bestOffset, bestPID, ok = offset, pidPsid>>16, true
// We don't break out of the for loop, so that Unicode can override Microsoft.
}
}
if !ok {
return 0, 0, UnsupportedError(name + " encoding")
}
return bestOffset, bestPID, nil
}
const (
locaOffsetFormatUnknown int = iota
locaOffsetFormatShort
locaOffsetFormatLong
)
// A cm holds a parsed cmap entry.
type cm struct {
start, end, delta, offset uint32
}
// A Font represents a Truetype font.
type Font struct {
// Tables sliced from the TTF data. The different tables are documented
// at http://developer.apple.com/fonts/TTRefMan/RM06/Chap6.html
cmap, cvt, fpgm, glyf, hdmx, head, hhea, hmtx, kern, loca, maxp, name, os2, prep, vmtx []byte
cmapIndexes []byte
// Cached values derived from the raw ttf data.
cm []cm
locaOffsetFormat int
nGlyph, nHMetric, nKern int
fUnitsPerEm int32
ascent int32 // In FUnits.
descent int32 // In FUnits; typically negative.
bounds fixed.Rectangle26_6 // In FUnits.
// Values from the maxp section.
maxTwilightPoints, maxStorage, maxFunctionDefs, maxStackElements uint16
}
func (f *Font) parseCmap() error {
const (
cmapFormat4 = 4
cmapFormat12 = 12
languageIndependent = 0
)
offset, _, err := parseSubtables(f.cmap, "cmap", 4, 8, nil)
if err != nil {
return err
}
offset = int(u32(f.cmap, offset+4))
if offset <= 0 || offset > len(f.cmap) {
return FormatError("bad cmap offset")
}
cmapFormat := u16(f.cmap, offset)
switch cmapFormat {
case cmapFormat4:
language := u16(f.cmap, offset+4)
if language != languageIndependent {
return UnsupportedError(fmt.Sprintf("language: %d", language))
}
segCountX2 := int(u16(f.cmap, offset+6))
if segCountX2%2 == 1 {
return FormatError(fmt.Sprintf("bad segCountX2: %d", segCountX2))
}
segCount := segCountX2 / 2
offset += 14
f.cm = make([]cm, segCount)
for i := 0; i < segCount; i++ {
f.cm[i].end = uint32(u16(f.cmap, offset))
offset += 2
}
offset += 2
for i := 0; i < segCount; i++ {
f.cm[i].start = uint32(u16(f.cmap, offset))
offset += 2
}
for i := 0; i < segCount; i++ {
f.cm[i].delta = uint32(u16(f.cmap, offset))
offset += 2
}
for i := 0; i < segCount; i++ {
f.cm[i].offset = uint32(u16(f.cmap, offset))
offset += 2
}
f.cmapIndexes = f.cmap[offset:]
return nil
case cmapFormat12:
if u16(f.cmap, offset+2) != 0 {
return FormatError(fmt.Sprintf("cmap format: % x", f.cmap[offset:offset+4]))
}
length := u32(f.cmap, offset+4)
language := u32(f.cmap, offset+8)
if language != languageIndependent {
return UnsupportedError(fmt.Sprintf("language: %d", language))
}
nGroups := u32(f.cmap, offset+12)
if length != 12*nGroups+16 {
return FormatError("inconsistent cmap length")
}
offset += 16
f.cm = make([]cm, nGroups)
for i := uint32(0); i < nGroups; i++ {
f.cm[i].start = u32(f.cmap, offset+0)
f.cm[i].end = u32(f.cmap, offset+4)
f.cm[i].delta = u32(f.cmap, offset+8) - f.cm[i].start
offset += 12
}
return nil
}
return UnsupportedError(fmt.Sprintf("cmap format: %d", cmapFormat))
}
func (f *Font) parseHead() error {
if len(f.head) != 54 {
return FormatError(fmt.Sprintf("bad head length: %d", len(f.head)))
}
f.fUnitsPerEm = int32(u16(f.head, 18))
f.bounds.Min.X = fixed.Int26_6(int16(u16(f.head, 36)))
f.bounds.Min.Y = fixed.Int26_6(int16(u16(f.head, 38)))
f.bounds.Max.X = fixed.Int26_6(int16(u16(f.head, 40)))
f.bounds.Max.Y = fixed.Int26_6(int16(u16(f.head, 42)))
switch i := u16(f.head, 50); i {
case 0:
f.locaOffsetFormat = locaOffsetFormatShort
case 1:
f.locaOffsetFormat = locaOffsetFormatLong
default:
return FormatError(fmt.Sprintf("bad indexToLocFormat: %d", i))
}
return nil
}
func (f *Font) parseHhea() error {
if len(f.hhea) != 36 {
return FormatError(fmt.Sprintf("bad hhea length: %d", len(f.hhea)))
}
f.ascent = int32(int16(u16(f.hhea, 4)))
f.descent = int32(int16(u16(f.hhea, 6)))
f.nHMetric = int(u16(f.hhea, 34))
if 4*f.nHMetric+2*(f.nGlyph-f.nHMetric) != len(f.hmtx) {
return FormatError(fmt.Sprintf("bad hmtx length: %d", len(f.hmtx)))
}
return nil
}
func (f *Font) parseKern() error {
// Apple's TrueType documentation (http://developer.apple.com/fonts/TTRefMan/RM06/Chap6kern.html) says:
// "Previous versions of the 'kern' table defined both the version and nTables fields in the header
// as UInt16 values and not UInt32 values. Use of the older format on the Mac OS is discouraged
// (although AAT can sense an old kerning table and still make correct use of it). Microsoft
// Windows still uses the older format for the 'kern' table and will not recognize the newer one.
// Fonts targeted for the Mac OS only should use the new format; fonts targeted for both the Mac OS
// and Windows should use the old format."
// Since we expect that almost all fonts aim to be Windows-compatible, we only parse the "older" format,
// just like the C Freetype implementation.
if len(f.kern) == 0 {
if f.nKern != 0 {
return FormatError("bad kern table length")
}
return nil
}
if len(f.kern) < 18 {
return FormatError("kern data too short")
}
version, offset := u16(f.kern, 0), 2
if version != 0 {
return UnsupportedError(fmt.Sprintf("kern version: %d", version))
}
n, offset := u16(f.kern, offset), offset+2
if n == 0 {
return UnsupportedError("kern nTables: 0")
}
// TODO: support multiple subtables. In practice, almost all .ttf files
// have only one subtable, if they have a kern table at all. But it's not
// impossible. Xolonium Regular (https://fontlibrary.org/en/font/xolonium)
// has 3 subtables. Those subtables appear to be disjoint, rather than
// being the same kerning pairs encoded in three different ways.
//
// For now, we'll use only the first subtable.
offset += 2 // Skip the version.
length, offset := int(u16(f.kern, offset)), offset+2
coverage, offset := u16(f.kern, offset), offset+2
if coverage != 0x0001 {
// We only support horizontal kerning.
return UnsupportedError(fmt.Sprintf("kern coverage: 0x%04x", coverage))
}
f.nKern, offset = int(u16(f.kern, offset)), offset+2
if 6*f.nKern != length-14 {
return FormatError("bad kern table length")
}
return nil
}
func (f *Font) parseMaxp() error {
if len(f.maxp) != 32 {
return FormatError(fmt.Sprintf("bad maxp length: %d", len(f.maxp)))
}
f.nGlyph = int(u16(f.maxp, 4))
f.maxTwilightPoints = u16(f.maxp, 16)
f.maxStorage = u16(f.maxp, 18)
f.maxFunctionDefs = u16(f.maxp, 20)
f.maxStackElements = u16(f.maxp, 24)
return nil
}
// scale returns x divided by f.fUnitsPerEm, rounded to the nearest integer.
func (f *Font) scale(x fixed.Int26_6) fixed.Int26_6 {
if x >= 0 {
x += fixed.Int26_6(f.fUnitsPerEm) / 2
} else {
x -= fixed.Int26_6(f.fUnitsPerEm) / 2
}
return x / fixed.Int26_6(f.fUnitsPerEm)
}
// Bounds returns the union of a Font's glyphs' bounds.
func (f *Font) Bounds(scale fixed.Int26_6) fixed.Rectangle26_6 {
b := f.bounds
b.Min.X = f.scale(scale * b.Min.X)
b.Min.Y = f.scale(scale * b.Min.Y)
b.Max.X = f.scale(scale * b.Max.X)
b.Max.Y = f.scale(scale * b.Max.Y)
return b
}
// FUnitsPerEm returns the number of FUnits in a Font's em-square's side.
func (f *Font) FUnitsPerEm() int32 {
return f.fUnitsPerEm
}
// Index returns a Font's index for the given rune.
func (f *Font) Index(x rune) Index {
c := uint32(x)
for i, j := 0, len(f.cm); i < j; {
h := i + (j-i)/2
cm := &f.cm[h]
if c < cm.start {
j = h
} else if cm.end < c {
i = h + 1
} else if cm.offset == 0 {
return Index(c + cm.delta)
} else {
offset := int(cm.offset) + 2*(h-len(f.cm)+int(c-cm.start))
return Index(u16(f.cmapIndexes, offset))
}
}
return 0
}
// Name returns the Font's name value for the given NameID. It returns "" if
// there was an error, or if that name was not found.
func (f *Font) Name(id NameID) string {
x, platformID, err := parseSubtables(f.name, "name", 6, 12, func(b []byte) bool {
return NameID(u16(b, 6)) == id
})
if err != nil {
return ""
}
offset, length := u16(f.name, 4)+u16(f.name, x+10), u16(f.name, x+8)
// Return the ASCII value of the encoded string.
// The string is encoded as UTF-16 on non-Apple platformIDs; Apple is platformID 1.
src := f.name[offset : offset+length]
var dst []byte
if platformID != 1 { // UTF-16.
if len(src)&1 != 0 {
return ""
}
dst = make([]byte, len(src)/2)
for i := range dst {
dst[i] = printable(u16(src, 2*i))
}
} else { // ASCII.
dst = make([]byte, len(src))
for i, c := range src {
dst[i] = printable(uint16(c))
}
}
return string(dst)
}
func printable(r uint16) byte {
if 0x20 <= r && r < 0x7f {
return byte(r)
}
return '?'
}
// unscaledHMetric returns the unscaled horizontal metrics for the glyph with
// the given index.
func (f *Font) unscaledHMetric(i Index) (h HMetric) {
j := int(i)
if j < 0 || f.nGlyph <= j {
return HMetric{}
}
if j >= f.nHMetric {
p := 4 * (f.nHMetric - 1)
return HMetric{
AdvanceWidth: fixed.Int26_6(u16(f.hmtx, p)),
LeftSideBearing: fixed.Int26_6(int16(u16(f.hmtx, p+2*(j-f.nHMetric)+4))),
}
}
return HMetric{
AdvanceWidth: fixed.Int26_6(u16(f.hmtx, 4*j)),
LeftSideBearing: fixed.Int26_6(int16(u16(f.hmtx, 4*j+2))),
}
}
// HMetric returns the horizontal metrics for the glyph with the given index.
func (f *Font) HMetric(scale fixed.Int26_6, i Index) HMetric {
h := f.unscaledHMetric(i)
h.AdvanceWidth = f.scale(scale * h.AdvanceWidth)
h.LeftSideBearing = f.scale(scale * h.LeftSideBearing)
return h
}
// unscaledVMetric returns the unscaled vertical metrics for the glyph with
// the given index. yMax is the top of the glyph's bounding box.
func (f *Font) unscaledVMetric(i Index, yMax fixed.Int26_6) (v VMetric) {
j := int(i)
if j < 0 || f.nGlyph <= j {
return VMetric{}
}
if 4*j+4 <= len(f.vmtx) {
return VMetric{
AdvanceHeight: fixed.Int26_6(u16(f.vmtx, 4*j)),
TopSideBearing: fixed.Int26_6(int16(u16(f.vmtx, 4*j+2))),
}
}
// The OS/2 table has grown over time.
// https://developer.apple.com/fonts/TTRefMan/RM06/Chap6OS2.html
// says that it was originally 68 bytes. Optional fields, including
// the ascender and descender, are described at
// http://www.microsoft.com/typography/otspec/os2.htm
if len(f.os2) >= 72 {
sTypoAscender := fixed.Int26_6(int16(u16(f.os2, 68)))
sTypoDescender := fixed.Int26_6(int16(u16(f.os2, 70)))
return VMetric{
AdvanceHeight: sTypoAscender - sTypoDescender,
TopSideBearing: sTypoAscender - yMax,
}
}
return VMetric{
AdvanceHeight: fixed.Int26_6(f.fUnitsPerEm),
TopSideBearing: 0,
}
}
// VMetric returns the vertical metrics for the glyph with the given index.
func (f *Font) VMetric(scale fixed.Int26_6, i Index) VMetric {
// TODO: should 0 be bounds.YMax?
v := f.unscaledVMetric(i, 0)
v.AdvanceHeight = f.scale(scale * v.AdvanceHeight)
v.TopSideBearing = f.scale(scale * v.TopSideBearing)
return v
}
// Kern returns the horizontal adjustment for the given glyph pair. A positive
// kern means to move the glyphs further apart.
func (f *Font) Kern(scale fixed.Int26_6, i0, i1 Index) fixed.Int26_6 {
if f.nKern == 0 {
return 0
}
g := uint32(i0)<<16 | uint32(i1)
lo, hi := 0, f.nKern
for lo < hi {
i := (lo + hi) / 2
ig := u32(f.kern, 18+6*i)
if ig < g {
lo = i + 1
} else if ig > g {
hi = i
} else {
return f.scale(scale * fixed.Int26_6(int16(u16(f.kern, 22+6*i))))
}
}
return 0
}
// Parse returns a new Font for the given TTF or TTC data.
//
// For TrueType Collections, the first font in the collection is parsed.
func Parse(ttf []byte) (font *Font, err error) {
return parse(ttf, 0)
}
func parse(ttf []byte, offset int) (font *Font, err error) {
if len(ttf)-offset < 12 {
err = FormatError("TTF data is too short")
return
}
originalOffset := offset
magic, offset := u32(ttf, offset), offset+4
switch magic {
case 0x00010000:
// No-op.
case 0x74746366: // "ttcf" as a big-endian uint32.
if originalOffset != 0 {
err = FormatError("recursive TTC")
return
}
ttcVersion, offset := u32(ttf, offset), offset+4
if ttcVersion != 0x00010000 && ttcVersion != 0x00020000 {
err = FormatError("bad TTC version")
return
}
numFonts, offset := int(u32(ttf, offset)), offset+4
if numFonts <= 0 {
err = FormatError("bad number of TTC fonts")
return
}
if len(ttf[offset:])/4 < numFonts {
err = FormatError("TTC offset table is too short")
return
}
// TODO: provide an API to select which font in a TrueType collection to return,
// not just the first one. This may require an API to parse a TTC's name tables,
// so users of this package can select the font in a TTC by name.
offset = int(u32(ttf, offset))
if offset <= 0 || offset > len(ttf) {
err = FormatError("bad TTC offset")
return
}
return parse(ttf, offset)
default:
err = FormatError("bad TTF version")
return
}
n, offset := int(u16(ttf, offset)), offset+2
offset += 6 // Skip the searchRange, entrySelector and rangeShift.
if len(ttf) < 16*n+offset {
err = FormatError("TTF data is too short")
return
}
f := new(Font)
// Assign the table slices.
for i := 0; i < n; i++ {
x := 16*i + offset
switch string(ttf[x : x+4]) {
case "cmap":
f.cmap, err = readTable(ttf, ttf[x+8:x+16])
case "cvt ":
f.cvt, err = readTable(ttf, ttf[x+8:x+16])
case "fpgm":
f.fpgm, err = readTable(ttf, ttf[x+8:x+16])
case "glyf":
f.glyf, err = readTable(ttf, ttf[x+8:x+16])
case "hdmx":
f.hdmx, err = readTable(ttf, ttf[x+8:x+16])
case "head":
f.head, err = readTable(ttf, ttf[x+8:x+16])
case "hhea":
f.hhea, err = readTable(ttf, ttf[x+8:x+16])
case "hmtx":
f.hmtx, err = readTable(ttf, ttf[x+8:x+16])
case "kern":
f.kern, err = readTable(ttf, ttf[x+8:x+16])
case "loca":
f.loca, err = readTable(ttf, ttf[x+8:x+16])
case "maxp":
f.maxp, err = readTable(ttf, ttf[x+8:x+16])
case "name":
f.name, err = readTable(ttf, ttf[x+8:x+16])
case "OS/2":
f.os2, err = readTable(ttf, ttf[x+8:x+16])
case "prep":
f.prep, err = readTable(ttf, ttf[x+8:x+16])
case "vmtx":
f.vmtx, err = readTable(ttf, ttf[x+8:x+16])
}
if err != nil {
return
}
}
// Parse and sanity-check the TTF data.
if err = f.parseHead(); err != nil {
return
}
if err = f.parseMaxp(); err != nil {
return
}
if err = f.parseCmap(); err != nil {
return
}
if err = f.parseKern(); err != nil {
return
}
if err = f.parseHhea(); err != nil {
return
}
font = f
return
}

View File

@ -1,4 +0,0 @@
[568].out
_go*
_test*
_obj

23
vendor/github.com/kr/pty/License generated vendored
View File

@ -1,23 +0,0 @@
Copyright (c) 2011 Keith Rarick
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the
Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall
be included in all copies or substantial portions of the
Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

100
vendor/github.com/kr/pty/README.md generated vendored
View File

@ -1,100 +0,0 @@
# pty
Pty is a Go package for using unix pseudo-terminals.
## Install
go get github.com/kr/pty
## Example
### Command
```go
package main
import (
"github.com/kr/pty"
"io"
"os"
"os/exec"
)
func main() {
c := exec.Command("grep", "--color=auto", "bar")
f, err := pty.Start(c)
if err != nil {
panic(err)
}
go func() {
f.Write([]byte("foo\n"))
f.Write([]byte("bar\n"))
f.Write([]byte("baz\n"))
f.Write([]byte{4}) // EOT
}()
io.Copy(os.Stdout, f)
}
```
### Shell
```go
package main
import (
"io"
"log"
"os"
"os/exec"
"os/signal"
"syscall"
"github.com/kr/pty"
"golang.org/x/crypto/ssh/terminal"
)
func test() error {
// Create arbitrary command.
c := exec.Command("bash")
// Start the command with a pty.
ptmx, err := pty.Start(c)
if err != nil {
return err
}
// Make sure to close the pty at the end.
defer func() { _ = ptmx.Close() }() // Best effort.
// Handle pty size.
ch := make(chan os.Signal, 1)
signal.Notify(ch, syscall.SIGWINCH)
go func() {
for range ch {
if err := pty.InheritSize(os.Stdin, ptmx); err != nil {
log.Printf("error resizing pty: %s", err)
}
}
}()
ch <- syscall.SIGWINCH // Initial resize.
// Set stdin in raw mode.
oldState, err := terminal.MakeRaw(int(os.Stdin.Fd()))
if err != nil {
panic(err)
}
defer func() { _ = terminal.Restore(int(os.Stdin.Fd()), oldState) }() // Best effort.
// Copy stdin to the pty and the pty to stdout.
go func() { _, _ = io.Copy(ptmx, os.Stdin) }()
_, _ = io.Copy(os.Stdout, ptmx)
return nil
}
func main() {
if err := test(); err != nil {
log.Fatal(err)
}
}
```

16
vendor/github.com/kr/pty/doc.go generated vendored
View File

@ -1,16 +0,0 @@
// Package pty provides functions for working with Unix terminals.
package pty
import (
"errors"
"os"
)
// ErrUnsupported is returned if a function is not
// available on the current platform.
var ErrUnsupported = errors.New("unsupported")
// Opens a pty and its corresponding tty.
func Open() (pty, tty *os.File, err error) {
return open()
}

13
vendor/github.com/kr/pty/ioctl.go generated vendored
View File

@ -1,13 +0,0 @@
// +build !windows
package pty
import "syscall"
func ioctl(fd, cmd, ptr uintptr) error {
_, _, e := syscall.Syscall(syscall.SYS_IOCTL, fd, cmd, ptr)
if e != 0 {
return e
}
return nil
}

View File

@ -1,39 +0,0 @@
// +build darwin dragonfly freebsd netbsd openbsd
package pty
// from <sys/ioccom.h>
const (
_IOC_VOID uintptr = 0x20000000
_IOC_OUT uintptr = 0x40000000
_IOC_IN uintptr = 0x80000000
_IOC_IN_OUT uintptr = _IOC_OUT | _IOC_IN
_IOC_DIRMASK = _IOC_VOID | _IOC_OUT | _IOC_IN
_IOC_PARAM_SHIFT = 13
_IOC_PARAM_MASK = (1 << _IOC_PARAM_SHIFT) - 1
)
func _IOC_PARM_LEN(ioctl uintptr) uintptr {
return (ioctl >> 16) & _IOC_PARAM_MASK
}
func _IOC(inout uintptr, group byte, ioctl_num uintptr, param_len uintptr) uintptr {
return inout | (param_len&_IOC_PARAM_MASK)<<16 | uintptr(group)<<8 | ioctl_num
}
func _IO(group byte, ioctl_num uintptr) uintptr {
return _IOC(_IOC_VOID, group, ioctl_num, 0)
}
func _IOR(group byte, ioctl_num uintptr, param_len uintptr) uintptr {
return _IOC(_IOC_OUT, group, ioctl_num, param_len)
}
func _IOW(group byte, ioctl_num uintptr, param_len uintptr) uintptr {
return _IOC(_IOC_IN, group, ioctl_num, param_len)
}
func _IOWR(group byte, ioctl_num uintptr, param_len uintptr) uintptr {
return _IOC(_IOC_IN_OUT, group, ioctl_num, param_len)
}

View File

@ -1,19 +0,0 @@
#!/usr/bin/env bash
GOOSARCH="${GOOS}_${GOARCH}"
case "$GOOSARCH" in
_* | *_ | _)
echo 'undefined $GOOS_$GOARCH:' "$GOOSARCH" 1>&2
exit 1
;;
esac
GODEFS="go tool cgo -godefs"
$GODEFS types.go |gofmt > ztypes_$GOARCH.go
case $GOOS in
freebsd|dragonfly|openbsd)
$GODEFS types_$GOOS.go |gofmt > ztypes_$GOOSARCH.go
;;
esac

View File

@ -1,65 +0,0 @@
package pty
import (
"errors"
"os"
"syscall"
"unsafe"
)
func open() (pty, tty *os.File, err error) {
pFD, err := syscall.Open("/dev/ptmx", syscall.O_RDWR|syscall.O_CLOEXEC, 0)
if err != nil {
return nil, nil, err
}
p := os.NewFile(uintptr(pFD), "/dev/ptmx")
// In case of error after this point, make sure we close the ptmx fd.
defer func() {
if err != nil {
_ = p.Close() // Best effort.
}
}()
sname, err := ptsname(p)
if err != nil {
return nil, nil, err
}
if err := grantpt(p); err != nil {
return nil, nil, err
}
if err := unlockpt(p); err != nil {
return nil, nil, err
}
t, err := os.OpenFile(sname, os.O_RDWR, 0)
if err != nil {
return nil, nil, err
}
return p, t, nil
}
func ptsname(f *os.File) (string, error) {
n := make([]byte, _IOC_PARM_LEN(syscall.TIOCPTYGNAME))
err := ioctl(f.Fd(), syscall.TIOCPTYGNAME, uintptr(unsafe.Pointer(&n[0])))
if err != nil {
return "", err
}
for i, c := range n {
if c == 0 {
return string(n[:i]), nil
}
}
return "", errors.New("TIOCPTYGNAME string not NUL-terminated")
}
func grantpt(f *os.File) error {
return ioctl(f.Fd(), syscall.TIOCPTYGRANT, 0)
}
func unlockpt(f *os.File) error {
return ioctl(f.Fd(), syscall.TIOCPTYUNLK, 0)
}

View File

@ -1,80 +0,0 @@
package pty
import (
"errors"
"os"
"strings"
"syscall"
"unsafe"
)
// same code as pty_darwin.go
func open() (pty, tty *os.File, err error) {
p, err := os.OpenFile("/dev/ptmx", os.O_RDWR, 0)
if err != nil {
return nil, nil, err
}
// In case of error after this point, make sure we close the ptmx fd.
defer func() {
if err != nil {
_ = p.Close() // Best effort.
}
}()
sname, err := ptsname(p)
if err != nil {
return nil, nil, err
}
if err := grantpt(p); err != nil {
return nil, nil, err
}
if err := unlockpt(p); err != nil {
return nil, nil, err
}
t, err := os.OpenFile(sname, os.O_RDWR, 0)
if err != nil {
return nil, nil, err
}
return p, t, nil
}
func grantpt(f *os.File) error {
_, err := isptmaster(f.Fd())
return err
}
func unlockpt(f *os.File) error {
_, err := isptmaster(f.Fd())
return err
}
func isptmaster(fd uintptr) (bool, error) {
err := ioctl(fd, syscall.TIOCISPTMASTER, 0)
return err == nil, err
}
var (
emptyFiodgnameArg fiodgnameArg
ioctl_FIODNAME = _IOW('f', 120, unsafe.Sizeof(emptyFiodgnameArg))
)
func ptsname(f *os.File) (string, error) {
name := make([]byte, _C_SPECNAMELEN)
fa := fiodgnameArg{Name: (*byte)(unsafe.Pointer(&name[0])), Len: _C_SPECNAMELEN, Pad_cgo_0: [4]byte{0, 0, 0, 0}}
err := ioctl(f.Fd(), ioctl_FIODNAME, uintptr(unsafe.Pointer(&fa)))
if err != nil {
return "", err
}
for i, c := range name {
if c == 0 {
s := "/dev/" + string(name[:i])
return strings.Replace(s, "ptm", "pts", -1), nil
}
}
return "", errors.New("TIOCPTYGNAME string not NUL-terminated")
}

View File

@ -1,78 +0,0 @@
package pty
import (
"errors"
"os"
"syscall"
"unsafe"
)
func posixOpenpt(oflag int) (fd int, err error) {
r0, _, e1 := syscall.Syscall(syscall.SYS_POSIX_OPENPT, uintptr(oflag), 0, 0)
fd = int(r0)
if e1 != 0 {
err = e1
}
return fd, err
}
func open() (pty, tty *os.File, err error) {
fd, err := posixOpenpt(syscall.O_RDWR | syscall.O_CLOEXEC)
if err != nil {
return nil, nil, err
}
p := os.NewFile(uintptr(fd), "/dev/pts")
// In case of error after this point, make sure we close the pts fd.
defer func() {
if err != nil {
_ = p.Close() // Best effort.
}
}()
sname, err := ptsname(p)
if err != nil {
return nil, nil, err
}
t, err := os.OpenFile("/dev/"+sname, os.O_RDWR, 0)
if err != nil {
return nil, nil, err
}
return p, t, nil
}
func isptmaster(fd uintptr) (bool, error) {
err := ioctl(fd, syscall.TIOCPTMASTER, 0)
return err == nil, err
}
var (
emptyFiodgnameArg fiodgnameArg
ioctlFIODGNAME = _IOW('f', 120, unsafe.Sizeof(emptyFiodgnameArg))
)
func ptsname(f *os.File) (string, error) {
master, err := isptmaster(f.Fd())
if err != nil {
return "", err
}
if !master {
return "", syscall.EINVAL
}
const n = _C_SPECNAMELEN + 1
var (
buf = make([]byte, n)
arg = fiodgnameArg{Len: n, Buf: (*byte)(unsafe.Pointer(&buf[0]))}
)
if err := ioctl(f.Fd(), ioctlFIODGNAME, uintptr(unsafe.Pointer(&arg))); err != nil {
return "", err
}
for i, c := range buf {
if c == 0 {
return string(buf[:i]), nil
}
}
return "", errors.New("FIODGNAME string not NUL-terminated")
}

Some files were not shown because too many files have changed in this diff Show More