import { useState, useEffect, useRef } from "react"; import Head from "next/head"; import Image from "next/image"; import styles from "../styles/studio.module.css"; import FormData from 'form-data'; import Dropzone from 'react-dropzone'; import { userAgentFromString } from "next/server"; import TextInput from "@/components/textinput"; import { Canvas, useFrame, useThree } from '@react-three/fiber' import { GLTFLoader } from 'three/examples/jsm/loaders/GLTFLoader'; import {CanvasComponent} from "@/components/canvascomponent"; const sleep = (ms) => new Promise((r) => setTimeout(r, ms)); export default function Studio(){ const [gltfModel, setGltfModel] = useState(null); const [isResultVisible, setIsResultVisible] = useState(null) const [isLoadingVisible, setIsLoadingVisible] = useState(null) const [prediction, setPrediction] = useState(null); const [error, setError] = useState(null); const [inputValue, setInputValue] = useState(''); // create a canvas reference in the main state const [canvasRef, setCanvasRef] = useState(null); function handleInputValueChange(newInputValue) { setInputValue(newInputValue); } useEffect(() => { console.log("loaded the page"); setIsResultVisible(false) setIsLoadingVisible(false) },[]); const handleDrop = (event) => { event.preventDefault(); const file = event.dataTransfer.files[0]; if (file && file.name.endsWith('.glb')) { const reader = new FileReader(); reader.readAsArrayBuffer(file); reader.onload = (event) => { const arrayBuffer = event.target.result; const loader = new GLTFLoader(); loader.parse(arrayBuffer, '', (gltf) => { setGltfModel(gltf); console.log("gltf model loaded") console.log('Loaded Scene:', gltf.scene); }, (error) => { console.error('ArrayBuffer loading error:', error); }); }; } }; const getReplicateResults = async (image, mask) => { setIsLoadingVisible(true) let promptText = "beautiful living room" if (inputValue) { promptText = inputValue } const response = await fetch("/api/predictions", { method: "POST", headers: { "Content-Type": "application/json", }, body: JSON.stringify({ prompt: promptText + ", photorealistic, high resolution product photography, don't modify product", negative_prompt: "blurry, painting, cartoon, abstract, ugly, deformed", image: image, mask: mask, num_outputs: 4, guidance_scale: 7.5, }), }); let prediction = await response.json(); if (response.status !== 201) { setError(prediction.detail); return; } setPrediction(prediction); while ( prediction.status !== "succeeded" && prediction.status !== "failed" ) { await sleep(1000); const response = await fetch("/api/predictions/" + prediction.id); prediction = await response.json(); if (response.status !== 200) { setError(prediction.detail); return; } if (prediction.status == "succeeded" && prediction.output) { setIsResultVisible(true) setIsLoadingVisible(false) } console.log({prediction}) setPrediction(prediction); } }; async function generateImages() { console.log("Called the generate images function") // Do something with the image data URL let snapshotImage = capture3DSnapshot() const formData = new FormData(); formData.append('image', snapshotImage); if (!snapshotImage) { console.log("image file is null") } // Generate base64 url image for remove bg try { const response = await fetch('http://127.0.0.1:5000/get_item_mask', { method: 'POST', body: formData }); console.log(response) const data = await response.json(); let maskBase64Url = `data:image/jpeg;base64,${data.ai_mask}` setIsResultVisible(false) let imageURLTemp = "https://images.unsplash.com/photo-1490730141103-6cac27aaab94?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=2940&q=80" // Generate base64 image for input image. // Filereader converts a file blob into a base64 string const reader = new FileReader(); reader.readAsDataURL(snapshotImage); reader.onload = async () => { const imageBase64Url = reader.result; // now send a request to replicate await getReplicateResults(imageBase64Url ,maskBase64Url) }; } catch (error) { console.error(error); } } function base64ToBlob(base64Image) { const parts = base64Image.split(';base64,'); const mimeType = parts[0].split(':')[1]; const byteString = atob(parts[1]); const arrayBuffer = new ArrayBuffer(byteString.length); const uint8Array = new Uint8Array(arrayBuffer); for (let i = 0; i < byteString.length; i++) { uint8Array[i] = byteString.charCodeAt(i); } return new Blob([arrayBuffer], { type: mimeType }); } function capture3DSnapshot() { const dataUrl = canvasRef.toDataURL("image/png") const blob = base64ToBlob(dataUrl); setIsResultVisible(false) return blob } //download snapshot const download3DSnapshot = () => { const link = document.createElement("a"); link.setAttribute("download", "canvas.png"); link.setAttribute( "href", canvasRef.toDataURL("image/png").replace("image/png", "image/octet-stream") ); link.click(); }; return(
event.preventDefault()} > {gltfModel ? : "Drop your GLB model here"}
generateImages()} > Generate Images
{isResultVisible? ( <>
{prediction.output && (
output
output
output
output
)}
) : ( <> )} { isLoadingVisible? (

Loading...

):(<>) }
); }